版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
天津市河西區(qū)第四中學2025屆九年級數(shù)學第一學期期末調(diào)研模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.已知,當﹣1≤x≤2時,二次函數(shù)y=m(x﹣1)2﹣5m+1(m≠0,m為常數(shù))有最小值6,則m的值為()A.﹣5 B.﹣1 C.﹣1.25 D.12.如圖,點A,B是反比例函數(shù)y=(x>0)圖象上的兩點,過點A,B分別作AC⊥x軸于點C,BD⊥x軸于點D,連接OA、BC,已知點C(2,0),BD=3,S△BCD=3,則S△AOC為()A.2 B.3 C.4 D.63.方程x2-x-1=0的根是(
)A., B.?,C., D.沒有實數(shù)根4.圖中幾何體的俯視圖是()A. B. C. D.5.一元二次方程的解是()A.5或0 B.或0 C. D.06.關于的一元二次方程,則的條件是()A. B. C. D.7.觀察下列圖形,是中心對稱圖形的是()A. B. C. D.8.在下列圖形中,不是中心對稱圖形的是()A. B. C. D.9.用藍色和紅色可以混合在一起調(diào)配出紫色,小明制作了如圖所示的兩個轉(zhuǎn)盤,其中一個轉(zhuǎn)盤兩部分的圓心角分別是120°和240°,另一個轉(zhuǎn)盤兩部分被平分成兩等份,分別轉(zhuǎn)動兩個轉(zhuǎn)盤,轉(zhuǎn)盤停止后,指針指向的兩個區(qū)域顏色恰能配成紫色的概率是()A. B. C. D.10.如圖,等腰與等腰是以點為位似中心的位似圖形,位似比為,則點的坐標是()A. B. C. D.二、填空題(每小題3分,共24分)11.的半徑為4,圓心到直線的距離為2,則直線與的位置關系是______.12.點P(4,﹣6)關于原點對稱的點的坐標是_____.13.將拋物線向左平移2個單位,再向上平移1個單位后,得到的拋物線的解析式為_________________.14.用反證法證明命題“若⊙O的半徑為r,點P到圓心的距離為d,且d>r,則點P在⊙O的外部”,首先應假設P在__________.15.關于x的一元二次方程x2+nx﹣12=0的一個解為x=3,則n=_____.16.已知p,q都是正整數(shù),方程7x2﹣px+2009q=0的兩個根都是質(zhì)數(shù),則p+q=_____.17.若雙曲線的圖象在第二、四象限內(nèi),則的取值范圍是________.18.如圖,⊙O是△ABC的外接圓,D是AC的中點,連結(jié)AD,BD,其中BD與AC交于點E.寫出圖中所有與△ADE相似的三角形:___________.三、解答題(共66分)19.(10分)如圖,拋物線y=a(x+2)(x﹣4)與x軸交于A,B兩點,與y軸交于點C,且∠ACO=∠CBO.(1)求線段OC的長度;(2)若點D在第四象限的拋物線上,連接BD、CD,求△BCD的面積的最大值;(3)若點P在平面內(nèi),當以點A、C、B、P為頂點的四邊形是平行四邊形時,直接寫出點P的坐標.20.(6分)計算:|1﹣|+(2019﹣50)0﹣()﹣221.(6分)如圖是二次函數(shù)y=(x+m)2+k的圖象,其頂點坐標為M(1,﹣4)(1)求出圖象與x軸的交點A、B的坐標;(2)在二次函數(shù)的圖象上是否存在點P,使S△PAB=S△MAB?若存在,求出點P的坐標;若不存在,請說明理由.22.(8分)已知關于x的一元二次方程x2+x+m﹣1=1.(1)當m=1時,求方程的實數(shù)根.(2)若方程有兩個不相等的實數(shù)根,求實數(shù)m的取值范圍.23.(8分)某市計劃建設一項水利工程,工程需要運送的土石方總量為米3,某運輸公司承辦了這項工程運送土石方的任務.(1)完成運送任務所需的時間(單位:天)與運輸公司平均每天的工作量(單位:米3/天)之間具有怎樣的函數(shù)關系?(2)已知這個運輸公司現(xiàn)有50輛卡車,每天最多可運送土石方米3,則該公司完成全部運輸任務最快需要多長時間?(3)運輸公司連續(xù)工作30天后,天氣預報說兩周后會有大暴雨,公司決定10日內(nèi)把剩余的土石方運完,平均每天至少增加多少輛卡車?24.(8分)如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(2,1),B(-1,)兩點.(1)求m、k、b的值;(2)連接OA、OB,計算三角形OAB的面積;(3)結(jié)合圖象直接寫出不等式的解集.25.(10分)如圖,對稱軸為直線的拋物線與x軸相交于A、B兩點,其中A點的坐標為(-3,0).(1)求點B的坐標;(2)已知,C為拋物線與y軸的交點.①若點P在拋物線上,且,求點P的坐標;②設點Q是線段AC上的動點,作QD⊥x軸交拋物線于點D,求線段QD長度的最大值.26.(10分)如圖,Rt△ABO的頂點A是雙曲線與直線y=?x?(k+1)在第二象限的交點,AB⊥x軸于B且S△ABO=.(1)求這兩個函數(shù)的解析式.(2)求直線與雙曲線的兩個交點A,C的坐標和△AOC的面積.
參考答案一、選擇題(每小題3分,共30分)1、A【分析】根據(jù)題意,分情況討論:當二次函數(shù)開口向上時,在對稱軸上取得最小值,列出關于m的一次方程求解即可;當二次函數(shù)開口向下時,在x=-1時取得最小值,求解關于m的一次方程即可,最后結(jié)合條件得出m的值.【詳解】解:∵當﹣1≤x≤2時,二次函數(shù)y=m(x﹣1)2﹣5m+1(m≠0,m為常數(shù))有最小值6,∴m>0,當x=1時,該函數(shù)取得最小值,即﹣5m+1=6,得m=﹣1(舍去),m<0時,當x=﹣1時,取得最小值,即m(﹣1﹣1)2﹣5m+1=6,得m=﹣5,由上可得,m的值是﹣5,故選:A.【點睛】本題考查了二次函數(shù)的最值問題,注意根據(jù)開口方向分情況討論,一次方程的列式求解,分情況討論是解題的關鍵.2、D【分析】先求CD長度,再求點B坐標,再求函數(shù)解析式,可求得面積.【詳解】因為,BD=3,S△BCD==3,所以,,解得,CD=2,因為,C(2,0)所以,OD=4,所以,B(4,3)把B(4,3)代入y=,得k=12,所以,y=所以,S△AOC=故選D【點睛】本題考核知識點:反比例函數(shù).解題關鍵點:熟記反比例函數(shù)性質(zhì).3、C【解析】先求出根的判別式b2-4ac=(-1)2-4×1×(-1)=5>0,然后根據(jù)一元二次方程的求根公式為,求出這個方程的根是x==.故選C.4、D【解析】本題考查了三視圖的知識找到從上面看所得到的圖形即可.從上面看可得到三個矩形左右排在一起,中間的較大,故選D.5、B【解析】根據(jù)因式分解法即可求出答案.【詳解】∵5x2=x,∴x(5x﹣1)=0,∴x=0或x.故選:B.【點睛】本題考查了一元二次方程,解答本題的關鍵是熟練運用一元二次方程的解法,本題屬于基礎題型.6、C【解析】根據(jù)一元二次方程的定義即可得.【詳解】由一元二次方程的定義得解得故選:C.【點睛】本題考查了一元二次方程的定義,熟記定義是解題關鍵.7、C【分析】根據(jù)中心對稱圖形的概念判斷即可.【詳解】解:A、不是中心對稱圖形,故此選項不符合題意;B、不是中心對稱圖形,故此選項不符合題意;C、是中心對稱圖形,故此選項符合題意;D、不是中心對稱圖形,故此選項不符合題意.故選:C.【點睛】本題考查了中心對稱圖形的識別,熟練掌握概念是解題的關鍵.8、C【解析】根據(jù)中心對稱圖形的概念,對各選項分析判斷即可得解.【詳解】解:A、是中心對稱圖形,故本選項不符合題意;
B、是中心對稱圖形,故本選項不符合題意;
C、不是中心對稱圖形,故本選項符合題意;
D、是中心對稱圖形,故本選項不符合題意.故選:C.【點睛】本題考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.9、B【解析】列表如下:紅紅藍紅紫藍紫紫共有9種情況,其中配成紫色的有3種,所以恰能配成紫色的概率=故選B.10、A【分析】根據(jù)位似比為,可得,從而得:CE=DE=12,進而求得OC=6,即可求解.【詳解】∵等腰與等腰是以點為位似中心的位似圖形,位似比為,∴,即:DE=3BC=12,∴CE=DE=12,∴,解得:OC=6,∴OE=6+12=18,∴點的坐標是:.故選A.【點睛】本題主要考查位似圖形的性質(zhì),掌握位似圖形的位似比等于相似比,是解題的關鍵.二、填空題(每小題3分,共24分)11、相交【分析】由圓的半徑為4,圓心O到直線l的距離為2,利用直線和圓的位置關系,圓的半徑大于直線到圓距離,則直線l與O的位置關系是相交.【詳解】解:∵⊙O的半徑為4,圓心O到直線L的距離為2,
∵4>2,即:d<r,
∴直線L與⊙O的位置關系是相交.
故答案為:相交.【點睛】本題考查知道知識點是圓與直線的位置關系,若d<r,則直線與圓相交;若d>r,則直線與圓相離;若d=r,則直線與圓相切.12、(﹣4,6)【分析】根據(jù)兩個點關于原點對稱時,它們的坐標符號相反可得答案.【詳解】點P(4,﹣6)關于原點對稱的點的坐標是(﹣4,6),故答案為:(﹣4,6).【點睛】本題考查了一點關于原點對稱的問題,橫縱坐標取相反數(shù)就是對稱點的坐標.13、.【解析】∵將拋物線向左平移2個單位,再向上平移1個單位,∴拋物線的頂點(0,0)也同樣向左平移2個單位,再向上平移1個單位,得到新拋物線的的頂點(-2,1).∴平移后得到的拋物線的解析式為.14、⊙O上或⊙O內(nèi)【分析】直接利用反證法的基本步驟得出答案.【詳解】解:用反證法證明命題“若⊙O的半徑為r,點P到圓心的距離為d,且d>r,則點P在⊙O的外部”,
首先應假設:若⊙O的半徑為r,點P到圓心的距離為d,且d>r,則點P在⊙O上或⊙O內(nèi).
故答案為:在⊙O上或⊙O內(nèi).【點睛】此題主要考查了反證法,正確掌握反證法的解題方法是解題關鍵.15、1【分析】根據(jù)一元二次方程的解的定義,把x=3代入x2+nx﹣12=0中可得到關于n的方程,然后解此方程即可.【詳解】把x=3代入x2+nx﹣12=0,得9+3n﹣12=0,解得n=1.故答案是:1.【點睛】本題考查一元二次方程解得概念,使方程左右兩邊相等的未知數(shù)的值叫做方程的解.16、337【分析】利用一元二次方程根與系數(shù)的關系,得出有關p,q的式子,再利用兩個根都是質(zhì)數(shù),可分析得出結(jié)果.【詳解】解:x1+x2=,x1x2==287q=7×41×q,x1和x2都是質(zhì)數(shù),則只有x1和x2是7和41,而q=1,所以7+41=,p=336,所以p+q=337,故答案為:337.【點睛】此題考查了一元二次方程根與系數(shù)的關系以及質(zhì)數(shù)的概念,題目比較典型.17、m<8【分析】對于反比例函數(shù):當k>0時,圖象在第一、三象限;當k<0時,圖象在第二、四象限.【詳解】由題意得,解得故答案為:【點睛】本題考查的是反比例函數(shù)的性質(zhì),本題屬于基礎應用題,只需學生熟練掌握反比例函數(shù)的性質(zhì),即可完成.18、,【分析】根據(jù)兩角對應相等的兩個三角形相似即可判斷.【詳解】解:∵,∴∠ABD=∠DBC,∵∠DAE=∠DBC,∴∠DAE=∠ABD,∵∠ADE=∠ADB,∴△ADE∽△BDA,∵∠DAE=∠EBC,∠AED=∠BEC,∴△AED∽△BEC,故答案為△CBE,△BDA.【點睛】本題考查相似三角形的判定,圓周角定理等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.三、解答題(共66分)19、(1)2;(2)2;(3)(2,2),(6,﹣2)或(﹣6,﹣2)【分析】(1)由拋物線的解析式先求出點A,B的坐標,再證△AOC∽△COB,利用相似三角形的性質(zhì)可求出CO的長;(2)先求出拋物線的解析式,再設出點D的坐標(m,m2﹣m﹣2),用含m的代數(shù)式表示出△BCD的面積,利用函數(shù)的性質(zhì)求出其最大值;(3)分類討論,分三種情況由平移規(guī)律可輕松求出點P的三個坐標.【詳解】(1)在拋物線y=a(x+2)(x﹣4)中,當y=0時,x1=﹣2,x2=4,∴A(﹣2,0),B(4,0),∴AO=2,BO=4,∵∠ACO=∠CBO,∠AOC=∠COB=90°,∴△AOC∽△COB,∴,即,∴CO=2;(2)由(1)知,CO=2,∴C(0,﹣2)將C(0,﹣2)代入y=a(x+2)(x﹣4),得,a=,∴拋物線解析式為:y=x2﹣x﹣2,如圖1,連接OD,設D(m,m2﹣m﹣2),則S△BCD=S△OCD+S△OBD﹣S△BOC=×2m+×4(﹣m2+m+2)﹣×4×2=﹣m2+2m=﹣(m﹣2)2+2,根據(jù)二次函數(shù)的圖象及性質(zhì)可知,當m=2時,△BCD的面積有最大值2;(3)如圖2﹣1,當四邊形ACBP為平行四邊形時,由平移規(guī)律可知,點C向右平移4個單位長度,再向上平移2個單位長度得到點B,所以點A向右平移4個單位長度,再向上平移2個單位長度得到點P,因為A(﹣2,0),所以P1(2,2);同理,在圖2﹣2,圖2﹣3中,可由平移規(guī)律可得P2(6,﹣2),P3(﹣6,﹣2);綜上所述,當以點A、C、B、P為頂點的四邊形是平行四邊形時,點P的坐標為(2,2),(6,﹣2),P3(﹣6,﹣2).【點睛】本題考查了相似三角形的判定與性質(zhì),待定系數(shù)法求二次函數(shù)的解析式,三角形的面積及平移規(guī)律等,解題關鍵是熟知平行四邊形的性質(zhì)及熟練運用平移規(guī)律.20、-4【分析】首先計算乘方,然后從左向右依次計算,求出算式的值是多少即可.【詳解】解::|1﹣|+(2019﹣50)0﹣()﹣2=﹣1+1﹣4=﹣4【點睛】此題主要考查實數(shù)的運算,解題的關鍵是熟知實數(shù)的性質(zhì).21、(1)A(﹣1,0),B(3,0);(2)存在合適的點P,坐標為(4,5)或(﹣2,5).【解析】試題分析:(1)由二次函數(shù)y=(x+m)2+k的頂點坐標為M(1,﹣4)可得解析式為:,解方程:可得點A、B的坐標;(2)設點P的縱坐標為,由△PAB與△MAB同底,且S△PAB=S△MAB,可得:,從而可得=,結(jié)合點P在拋物線的圖象上,可得=5,由此得到:,解方程即可得到點P的坐標.試題解析:(1)∵拋物線解析式為y=(x+m)2+k的頂點為M(1,﹣4)∴,當y=0時,(x﹣1)2﹣4=0,解得x1=3,x2=﹣1,∴A(﹣1,0),B(3,0);(2)∵△PAB與△MAB同底,且S△PAB=S△MAB,∴,即=,又∵點P在y=(x﹣1)2﹣4的圖象上,∴yP≥﹣4,∴=5,則,解得:,∴存在合適的點P,坐標為(4,5)或(﹣2,5).22、(1)x1=,x2=(2)m<【分析】(1)令m=1,用公式法求出一元二次方程的根即可;(2)根據(jù)方程有兩個不相等的實數(shù)根,計算根的判別式得關于m的不等式,求解不等式即可.【詳解】(1)當m=1時,方程為x2+x﹣1=1.△=12﹣4×1×(﹣1)=5>1,∴x,∴x1,x2.(2)∵方程有兩個不相等的實數(shù)根,∴△>1,即12﹣4×1×(m﹣1)=1﹣4m+4=5﹣4m>1,∴m.【點睛】本題考查了一元二次方程的解法、根的判別式.一元二次方程根的判別式△=b2﹣4ac.23、(1);(2)該公司完成全部運輸任務最快需要50天;(3)每天至少增加50輛卡車.【分析】(1)根據(jù)“平均每天的工作量×工作時間=工作總量”即可得出結(jié)論;(2)根據(jù)“工作總量÷平均每天的工作量=工作時間”即可得出結(jié)論;(3)先求出30天后剩余的工作量,然后利用剩余10天每天的工作量÷每輛汽車每天的工作量即可求出需要多少輛汽車,從而求出結(jié)論.【詳解】解:(1)由題意得:,變形,得;(2)當時,,答:該公司完成全部運輸任務最快需要50天.(3)輛,輛答:每天至少增加50輛卡車.【點睛】此題考查的是反比例函數(shù)的應用,掌握實際問題中的等量關系是解決此題的關鍵.24、(1)m=1,k=1,b=-1;(1);(3)-1<x<0或x>1.【解析】試題分析:(1)先由反比例函數(shù)上的點A(1,1)求出m,再由點B(﹣1,n)求出n,則由直線經(jīng)過點A、B,得二元一次方程組,求得m、k、b;(1)△AOB的面積=△BOC的面積+△AOC的面積;(3)由圖象直接寫出不等式的解集.試題解析:(1)由題意得:,m=1,當x=-1時,,∴B(-1,-1),∴,解得,綜上可得,m=1,k=1,b=-1;(1)如圖,設一次函數(shù)與y軸交于C點,當x=0時,y=-1,∴C(0,-1),∴;(3)由圖可知,-1<x<0或x>1.考點:反比例函數(shù)與一次函數(shù)的交點問題.25、(1)點B的坐標為(1,0).(2)①點P的坐標為(4,21)或(-4,5).②線段QD長度的最大值為.【分析】(1)由拋物線的對稱性直接得點B的坐標.(2)①用待定系數(shù)法求出拋物線的解析式,從而可得點C的坐標,得到,設出點P的坐標,根據(jù)列式求解即可求得點P的坐標.②用待定系數(shù)法求出直線AC的解析式,由點Q在線段AC上,可設點Q的坐標為(q,-q-3),從而由QD⊥x軸交拋物線于點D,得點D的坐標為(q,q2+2q-3),從而線段QD等于兩點縱坐標之差,列出函數(shù)關系式應用二次函數(shù)最值原理求解.【詳解】解:(1)∵A、B兩點關于對稱軸對稱,且A點的坐標為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年中外合作研發(fā)協(xié)議
- 2024年人力資源與雇傭合同
- 小學班主任心理輔導經(jīng)驗交流發(fā)言稿
- 2024年化工生產(chǎn)設備采購與安裝合同
- 電子產(chǎn)品制造廠施工方案
- 2024年住房轉(zhuǎn)讓協(xié)議:補償與賠償責任詳解
- 臥式自動翻洗過濾機相關項目投資計劃書范本
- 2024年二手房買賣合同中的付款方式與時間
- (2024版)融合車聯(lián)網(wǎng)技術的出租車承包合同協(xié)議書
- 2024年大數(shù)據(jù)中心信息安全運維合同
- 公司組織機構(gòu)管理制度
- 四年級數(shù)學上冊 第4章《運算律》單元測評必刷卷(北師大版)
- 期末綜合素養(yǎng)評價一(試題)-2024-2025學年三年級上冊科學教科版
- 期中測試卷(試題)-2024-2025學年數(shù)學五年級上冊北師大版
- (新版)特種設備安全管理取證考試題庫(濃縮500題)
- 高二語文上學期期中模擬試卷03(解析版)
- 教學能力大賽“教案”【決賽獲獎】-
- 諾貝爾獎介紹-英文幻燈片課件
- 公司信息化調(diào)研情況匯報(4篇)
- 養(yǎng)豬合伙協(xié)議合同模板
- 球墨鑄鐵管、鋼管頂管穿路施工方案
評論
0/150
提交評論