江蘇省蘇州市常熟一中學(xué)2024屆中考一模數(shù)學(xué)試題含解析 - 副本_第1頁
江蘇省蘇州市常熟一中學(xué)2024屆中考一模數(shù)學(xué)試題含解析 - 副本_第2頁
江蘇省蘇州市常熟一中學(xué)2024屆中考一模數(shù)學(xué)試題含解析 - 副本_第3頁
江蘇省蘇州市常熟一中學(xué)2024屆中考一模數(shù)學(xué)試題含解析 - 副本_第4頁
江蘇省蘇州市常熟一中學(xué)2024屆中考一模數(shù)學(xué)試題含解析 - 副本_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

江蘇省蘇州市常熟一中學(xué)2024屆中考一模數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列計算正確的是()A.a(chǎn)3?a3=a9B.(a+b)2=a2+b2C.a(chǎn)2÷a2=0D.(a2)3=a62.港珠澳大橋目前是全世界最長的跨海大橋,其主體工程“海中橋隧”全長35578米,數(shù)據(jù)35578用科學(xué)記數(shù)法表示為()A.35.578×103 B.3.5578×104C.3.5578×105 D.0.35578×1053.已知am=2,an=3,則a3m+2n的值是()A.24 B.36 C.72 D.64.長度單位1納米=10A.25.1×10-6米B.C.2.51×105米D.5.如圖,點A、B、C在圓O上,若∠OBC=40°,則∠A的度數(shù)為()A.40° B.45° C.50° D.55°6.如圖,⊙O的直徑AB垂直于弦CD,垂足為E.若,AC=3,則CD的長為A.6 B. C. D.37.根據(jù)《天津市北大港濕地自然保護(hù)總體規(guī)劃(2017﹣2025)》,2018年將建立養(yǎng)殖業(yè)退出補(bǔ)償機(jī)制,生態(tài)補(bǔ)水78000000m1.將78000000用科學(xué)記數(shù)法表示應(yīng)為()A.780×105B.78×106C.7.8×107D.0.78×1088.在平面直角坐標(biāo)系中,函數(shù)的圖象經(jīng)過()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限9.將一根圓柱形的空心鋼管任意放置,它的主視圖不可能是()A. B. C. D.10.下列四個式子中,正確的是()A.=±9 B.﹣=6 C.()2=5 D.=411.某校舉行“漢字聽寫比賽”,5個班級代表隊的正確答題數(shù)如圖.這5個正確答題數(shù)所組成的一組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是()A.10,15 B.13,15 C.13,20 D.15,1512.若0<m<2,則關(guān)于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情況是()A.無實數(shù)根B.有兩個正根C.有兩個根,且都大于﹣3mD.有兩個根,其中一根大于﹣m二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點D是BC上一動點,連接AD,將△ACD沿AD折疊,點C落在點E處,連接DE交AB于點F,當(dāng)△DEB是直角三角形時,DF的長為_____.14.二次函數(shù)的圖象如圖,若一元二次方程有實數(shù)根,則的最大值為___15.如圖,在△ABC中,AB=AC,AH⊥BC,垂足為點H,如果AH=BC,那么sin∠BAC的值是____.16.已知,直接y=kx+b(k>0,b>0)與x軸、y軸交A、B兩點,與雙曲線y=(x>0)交于第一象限點C,若BC=2AB,則S△AOB=________.17.在平面直角坐標(biāo)系xOy中,將拋物線y=3(x+2)2-1平移后得到拋物線y=3x2+2.請你寫出一種平移方法.答:________.18.從﹣2,﹣1,2,0這四個數(shù)中任取兩個不同的數(shù)作為點的坐標(biāo),該點不在第三象限的概率是_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)已知AC,EC分別為四邊形ABCD和EFCG的對角線,點E在△ABC內(nèi),∠CAE+∠CBE=1.(1)如圖①,當(dāng)四邊形ABCD和EFCG均為正方形時,連接BF.i)求證:△CAE∽△CBF;ii)若BE=1,AE=2,求CE的長;(2)如圖②,當(dāng)四邊形ABCD和EFCG均為矩形,且時,若BE=1,AE=2,CE=3,求k的值;(3)如圖③,當(dāng)四邊形ABCD和EFCG均為菱形,且∠DAB=∠GEF=45°時,設(shè)BE=m,AE=n,CE=p,試探究m,n,p三者之間滿足的等量關(guān)系.(直接寫出結(jié)果,不必寫出解答過程)20.(6分)為提高節(jié)水意識,小申隨機(jī)統(tǒng)計了自己家7天的用水量,并分析了第3天的用水情況,將得到的數(shù)據(jù)進(jìn)行整理后,繪制成如圖所示的統(tǒng)計圖.(單位:升)(1)求這7天內(nèi)小申家每天用水量的平均數(shù)和中位數(shù);(2)求第3天小申家洗衣服的水占這一天總用水量的百分比;(3)請你根據(jù)統(tǒng)計圖中的信息,給小申家提出一條合理的節(jié)約用水建議,并估算采用你的建議后小申家一個月(按30天計算)的節(jié)約用水量.21.(6分)如圖1,拋物線y1=ax1﹣x+c與x軸交于點A和點B(1,0),與y軸交于點C(0,),拋物線y1的頂點為G,GM⊥x軸于點M.將拋物線y1平移后得到頂點為B且對稱軸為直線l的拋物線y1.(1)求拋物線y1的解析式;(1)如圖1,在直線l上是否存在點T,使△TAC是等腰三角形?若存在,請求出所有點T的坐標(biāo);若不存在,請說明理由;(3)點P為拋物線y1上一動點,過點P作y軸的平行線交拋物線y1于點Q,點Q關(guān)于直線l的對稱點為R,若以P,Q,R為頂點的三角形與△AMG全等,求直線PR的解析式.22.(8分)全民學(xué)習(xí)、終身學(xué)習(xí)是學(xué)習(xí)型社會的核心內(nèi)容,努力建設(shè)學(xué)習(xí)型家庭也是一個重要組成部分.為了解“學(xué)習(xí)型家庭”情況,對部分家庭五月份的平均每天看書學(xué)習(xí)時間進(jìn)行了一次抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,解答下列問題:本次抽樣調(diào)查了個家庭;將圖①中的條形圖補(bǔ)充完整;學(xué)習(xí)時間在2~2.5小時的部分對應(yīng)的扇形圓心角的度數(shù)是度;若該社區(qū)有家庭有3000個,請你估計該社區(qū)學(xué)習(xí)時間不少于1小時的約有多少個家庭?23.(8分)△ABC中,AB=AC,D為BC的中點,以D為頂點作∠MDN=∠B.如圖(1)當(dāng)射線DN經(jīng)過點A時,DM交AC邊于點E,不添加輔助線,寫出圖中所有與△ADE相似的三角形.如圖(2),將∠MDN繞點D沿逆時針方向旋轉(zhuǎn),DM,DN分別交線段AC,AB于E,F(xiàn)點(點E與點A不重合),不添加輔助線,寫出圖中所有的相似三角形,并證明你的結(jié)論.在圖(2)中,若AB=AC=10,BC=12,當(dāng)△DEF的面積等于△ABC的面積的時,求線段EF的長.24.(10分)如圖,△DEF是由△ABC通過一次旋轉(zhuǎn)得到的,請用直尺和圓規(guī)畫出旋轉(zhuǎn)中心.25.(10分)如圖,菱形ABCD的邊長為20cm,∠ABC=120°,對角線AC,BD相交于點O,動點P從點A出發(fā),以4cm/s的速度,沿A→B的路線向點B運(yùn)動;過點P作PQ∥BD,與AC相交于點Q,設(shè)運(yùn)動時間為t秒,0<t<1.(1)設(shè)四邊形PQCB的面積為S,求S與t的關(guān)系式;(2)若點Q關(guān)于O的對稱點為M,過點P且垂直于AB的直線l交菱形ABCD的邊AD(或CD)于點N,當(dāng)t為何值時,點P、M、N在一直線上?(3)直線PN與AC相交于H點,連接PM,NM,是否存在某一時刻t,使得直線PN平分四邊形APMN的面積?若存在,求出t的值;若不存在,請說明理由.26.(12分)(問題情境)張老師給愛好學(xué)習(xí)的小軍和小俊提出這樣的一個問題:如圖1,在△ABC中,AB=AC,點P為邊BC上任一點,過點P作PD⊥AB,PE⊥AC,垂足分別為D,E,過點C作CF⊥AB,垂足為F,求證:PD+PE=CF.小軍的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.小俊的證明思路是:如圖2,過點P作PG⊥CF,垂足為G,可以證得:PD=GF,PE=CG,則PD+PE=CF.[變式探究]如圖3,當(dāng)點P在BC延長線上時,其余條件不變,求證:PD﹣PE=CF;請運(yùn)用上述解答中所積累的經(jīng)驗和方法完成下列兩題:[結(jié)論運(yùn)用]如圖4,將矩形ABCD沿EF折疊,使點D落在點B上,點C落在點C′處,點P為折痕EF上的任一點,過點P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值;[遷移拓展]圖5是一個航模的截面示意圖.在四邊形ABCD中,E為AB邊上的一點,ED⊥AD,EC⊥CB,垂足分別為D、C,且AD?CE=DE?BC,AB=2dm,AD=3dm,BD=dm.M、N分別為AE、BE的中點,連接DM、CN,求△DEM與△CEN的周長之和.27.(12分)某超市對今年“元旦”期間銷售A、B、C三種品牌的綠色雞蛋情況進(jìn)行了統(tǒng)計,并繪制如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖.根據(jù)圖中信息解答下列問題:該超市“元旦”期間共銷售個綠色雞蛋,A品牌綠色雞蛋在扇形統(tǒng)計圖中所對應(yīng)的扇形圓心角是度;補(bǔ)全條形統(tǒng)計圖;如果該超市的另一分店在“元旦”期間共銷售這三種品牌的綠色雞蛋1500個,請你估計這個分店銷售的B種品牌的綠色雞蛋的個數(shù)?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D.【解析】試題分析:A、原式=a6,不符合題意;B、原式=a2+2ab+b2,不符合題意;C、原式=1,不符合題意;D、原式=a6,符合題意,故選D考點:整式的混合運(yùn)算2、B【解析】

科學(xué)計數(shù)法是a×,且,n為原數(shù)的整數(shù)位數(shù)減一.【詳解】解:35578=3.5578×,故選B.【點睛】本題主要考查的是利用科學(xué)計數(shù)法表示較大的數(shù),屬于基礎(chǔ)題型.理解科學(xué)計數(shù)法的表示方法是解題的關(guān)鍵.3、C【解析】試題解析:∵am=2,an=3,

∴a3m+2n

=a3m?a2n

=(am)3?(an)2

=23×32

=8×9

=1.故選C.4、D【解析】先將25100用科學(xué)記數(shù)法表示為2.51×104,再和10-9相乘,等于2.51×10-5米.故選D5、C【解析】

根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理求得∠BOC=100°,再利用圓周角定理得到∠A=12【詳解】∵OB=OC,

∴∠OBC=∠OCB.

又∠OBC=40°,

∴∠OBC=∠OCB=40°,

∴∠BOC=180°-2×40°=100°,

∴∠A=12【點睛】考查了圓周角定理.在同圓或等圓中,一條弧所對的圓周角是它所對的圓心角的一半.6、D【解析】

解:因為AB是⊙O的直徑,所以∠ACB=90°,又⊙O的直徑AB垂直于弦CD,,所以在Rt△AEC中,∠A=30°,又AC=3,所以CE=AB=,所以CD=2CE=3,故選D.【點睛】本題考查圓的基本性質(zhì);垂經(jīng)定理及解直角三角形,綜合性較強(qiáng),難度不大.7、C【解析】

科學(xué)記數(shù)法記數(shù)時,主要是準(zhǔn)確把握標(biāo)準(zhǔn)形式a×10n即可.【詳解】解:78000000=7.8×107.故選C.【點睛】科學(xué)記數(shù)法的形式是a×10n,其中1≤|a|<10,n是整數(shù),若這個數(shù)是大于10的數(shù),則n比這個數(shù)的整數(shù)位數(shù)少1.8、A【解析】【分析】一次函數(shù)y=kx+b的圖象經(jīng)過第幾象限,取決于k和b.當(dāng)k>0,b>O時,圖象過一、二、三象限,據(jù)此作答即可.【詳解】∵一次函數(shù)y=3x+1的k=3>0,b=1>0,∴圖象過第一、二、三象限,故選A.【點睛】一次函數(shù)y=kx+b的圖象經(jīng)過第幾象限,取決于x的系數(shù)和常數(shù)項.9、A【解析】試題解析:∵一根圓柱形的空心鋼管任意放置,∴不管鋼管怎么放置,它的三視圖始終是,,,主視圖是它們中一個,∴主視圖不可能是.故選A.10、D【解析】

A、表示81的算術(shù)平方根;B、先算-6的平方,然后再求?的值;C、利用完全平方公式計算即可;D、=.【詳解】A、=9,故A錯誤;B、-=?=-6,故B錯誤;C、()2=2+2+3=5+2,故C錯誤;D、==4,故D正確.故選D.【點睛】本題主要考查的是實數(shù)的運(yùn)算,掌握算術(shù)平方根、平方根和二次根式的性質(zhì)以及完全平方公式是解題的關(guān)鍵.11、D【解析】

將五個答題數(shù),從小打到排列,5個數(shù)中間的就是中位數(shù),出現(xiàn)次數(shù)最多的是眾數(shù).【詳解】將這五個答題數(shù)排序為:10,13,15,15,20,由此可得中位數(shù)是15,眾數(shù)是15,故選D.【點睛】本題考查中位數(shù)和眾數(shù)的概念,熟記概念即可快速解答.12、A【解析】

先整理為一般形式,用含m的式子表示出根的判別式△,再結(jié)合已知條件判斷△的取值范圍即可.【詳解】方程整理為,△,∵,∴,∴△,∴方程沒有實數(shù)根,故選A.【點睛】本題考查了一元二次方程根的判別式,當(dāng)△>0,方程有兩個不相等的實數(shù)根;當(dāng)△=0,方程有兩個相等的實數(shù)根;當(dāng)△<0,方程沒有實數(shù)根.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、或【解析】試題分析:如圖4所示;點E與點C′重合時.在Rt△ABC中,BC==4.由翻折的性質(zhì)可知;AE=AC=3、DC=DE.則EB=2.設(shè)DC=ED=x,則BD=4﹣x.在Rt△DBE中,DE2+BE2=DB2,即x2+22=(4﹣x)2.解得:x=.∴DE=.如圖2所示:∠EDB=90時.由翻折的性質(zhì)可知:AC=AC′,∠C=∠C′=90°.∵∠C=∠C′=∠CDC′=90°,∴四邊形ACDC′為矩形.又∵AC=AC′,∴四邊形ACDC′為正方形.∴CD=AC=3.∴DB=BC﹣DC=4﹣3=4.∵DE∥AC,∴△BDE∽△BCA.∴,即.解得:DE=.點D在CB上運(yùn)動,∠DBC′<90°,故∠DBC′不可能為直角.考點:翻折變換(折疊問題).14、3【解析】試題解析::∵拋物線的開口向上,頂點縱坐標(biāo)為-3,∴a>1.-=-3,即b2=12a,∵一元二次方程ax2+bx+m=1有實數(shù)根,∴△=b2-4am≥1,即12a-4am≥1,即12-4m≥1,解得m≤3,∴m的最大值為3,15、【解析】

過點B作BD⊥AC于D,設(shè)AH=BC=2x,根據(jù)等腰三角形三線合一的性質(zhì)可得BH=CH=BC=x,利用勾股定理列式表示出AC,再根據(jù)三角形的面積列方程求出BD,然后根據(jù)銳角的正弦=對邊:斜邊求解即可.【詳解】如圖,過點B作BD⊥AC于D,設(shè)AH=BC=2x,∵AB=AC,AH⊥BC,∴BH=CH=BC=x,根據(jù)勾股定理得,AC==x,S△ABC=BC?AH=AC?BD,即?2x?2x=?x?BD,解得BC=x,所以,sin∠BAC=.故答案為.16、【解析】

根據(jù)題意可設(shè)出點C的坐標(biāo),從而得到OA和OB的長,進(jìn)而得到△AOB的面積即可.【詳解】∵直接y=kx+b與x軸、y軸交A、B兩點,與雙曲線y=交于第一象限點C,若BC=2AB,設(shè)點C的坐標(biāo)為(c,)∴OA=0.5c,OB==,∴S△AOB===【點睛】此題主要考查反比例函數(shù)的圖像,解題的關(guān)鍵是根據(jù)題意設(shè)出C點坐標(biāo)進(jìn)行求解.17、答案不唯一【解析】分析:把y改寫成頂點式,進(jìn)而解答即可.詳解:y先向右平移2個單位長度,再向上平移3個單位得到拋物線.故答案為y先向右平移2個單位長度,再向上平移3個單位得到拋物線.點睛:本題考查了二次函數(shù)圖象與幾何變換:先把二次函數(shù)的解析式配成頂點式為y=a(x-)2+,然后把拋物線的平移問題轉(zhuǎn)化為頂點的平移問題.18、【解析】

列舉出所有情況,看在第四象限的情況數(shù)占總情況數(shù)的多少即可.【詳解】如圖:共有12種情況,在第三象限的情況數(shù)有2種,

故不再第三象限的共10種,

不在第三象限的概率為,

故答案為.【點睛】本題考查了樹狀圖法的知識,解題的關(guān)鍵是列出樹狀圖求出概率.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)i)證明見試題解析;ii);(2);(3).【解析】

(1)i)由∠ACE+∠ECB=45°,∠BCF+∠ECB=45°,得到∠ACE=∠BCF,又由于,故△CAE∽△CBF;ii)由,得到BF=,再由△CAE∽△CBF,得到∠CAE=∠CBF,進(jìn)一步可得到∠EBF=1°,從而有,解得;(2)連接BF,同理可得:∠EBF=1°,由,得到,,故,從而,得到,代入解方程即可;(3)連接BF,同理可得:∠EBF=1°,過C作CH⊥AB延長線于H,可得:,,故,從而有.【詳解】解:(1)i)∵∠ACE+∠ECB=45°,∠BCF+∠ECB=45°,∴∠ACE=∠BCF,又∵,∴△CAE∽△CBF;ii)∵,∴BF=,∵△CAE∽△CBF,∴∠CAE=∠CBF,又∵∠CAE+∠CBE=1°,∴∠CBF+∠CBE=1°,即∠EBF=1°,∴,解得;(2)連接BF,同理可得:∠EBF=1°,∵,∴,,∴,∴,,∴,∴,解得;(3)連接BF,同理可得:∠EBF=1°,過C作CH⊥AB延長線于H,可得:,,∴,∴.【點睛】本題考查相似三角形的判定與性質(zhì);正方形的性質(zhì);矩形的性質(zhì);菱形的性質(zhì).20、(1)平均數(shù)為800升,中位數(shù)為800升;(2)12.5%;(3)小申家沖廁所的用水量較大,可以將洗衣服的水留到?jīng)_廁所,采用以上建議,一個月估計可以節(jié)約用水3000升.【解析】試題分析:(1)根據(jù)平均數(shù)和中位數(shù)的定義求解可得;(2)用洗衣服的水量除以第3天的用水總量即可得;(3)根據(jù)條形圖給出合理建議均可,如:將洗衣服的水留到?jīng)_廁所.試題解析:解:(1)這7天內(nèi)小申家每天用水量的平均數(shù)為(815+780+800+785+790+825+805)÷7=800(升),將這7天的用水量從小到大重新排列為:780、785、790、800、805、815、825,∴用水量的中位數(shù)為800升;(2)×100%=12.5%.答:第3天小申家洗衣服的水占這一天總用水量的百分比為12.5%;(3)小申家沖廁所的用水量較大,可以將洗衣服的水留到?jīng)_廁所,采用以上建議,每天可節(jié)約用水100升,一個月估計可以節(jié)約用水100×30=3000升.21、(1)y1=-x1+x-;(1)存在,T(1,),(1,),(1,﹣);(3)y=﹣x+或y=﹣.【解析】

(1)應(yīng)用待定系數(shù)法求解析式;(1)設(shè)出點T坐標(biāo),表示△TAC三邊,進(jìn)行分類討論;(3)設(shè)出點P坐標(biāo),表示Q、R坐標(biāo)及PQ、QR,根據(jù)以P,Q,R為頂點的三角形與△AMG全等,分類討論對應(yīng)邊相等的可能性即可.【詳解】解:(1)由已知,c=,將B(1,0)代入,得:a﹣=0,解得a=﹣,拋物線解析式為y1=x1-x+,∵拋物線y1平移后得到y(tǒng)1,且頂點為B(1,0),∴y1=﹣(x﹣1)1,即y1=-x1+x-;(1)存在,如圖1:拋物線y1的對稱軸l為x=1,設(shè)T(1,t),已知A(﹣3,0),C(0,),過點T作TE⊥y軸于E,則TC1=TE1+CE1=11+()1=t1﹣t+,TA1=TB1+AB1=(1+3)1+t1=t1+16,AC1=,當(dāng)TC=AC時,t1﹣t+=,解得:t1=,t1=;當(dāng)TA=AC時,t1+16=,無解;當(dāng)TA=TC時,t1﹣t+=t1+16,解得t3=﹣;當(dāng)點T坐標(biāo)分別為(1,),(1,),(1,﹣)時,△TAC為等腰三角形;(3)如圖1:設(shè)P(m,),則Q(m,),∵Q、R關(guān)于x=1對稱∴R(1﹣m,),①當(dāng)點P在直線l左側(cè)時,PQ=1﹣m,QR=1﹣1m,∵△PQR與△AMG全等,∴當(dāng)PQ=GM且QR=AM時,m=0,∴P(0,),即點P、C重合,∴R(1,﹣),由此求直線PR解析式為y=﹣x+,當(dāng)PQ=AM且QR=GM時,無解;②當(dāng)點P在直線l右側(cè)時,同理:PQ=m﹣1,QR=1m﹣1,則P(1,﹣),R(0,﹣),PQ解析式為:y=﹣;∴PR解析式為:y=﹣x+或y=﹣.【點睛】本題是代數(shù)幾何綜合題,考查了二次函數(shù)性質(zhì)、三角形全等和等腰三角形判定,熟練掌握相關(guān)知識,應(yīng)用數(shù)形結(jié)合和分類討論的數(shù)學(xué)思想進(jìn)行解題是關(guān)鍵.22、(1)200;(2)見解析;(3)36;(4)該社區(qū)學(xué)習(xí)時間不少于1小時的家庭約有2100個.【解析】

(1)根據(jù)1.5~2小時的圓心角度數(shù)求出1.5~2小時所占的百分比,再用1.5~2小時的人數(shù)除以所占的百分比,即可得出本次抽樣調(diào)查的總家庭數(shù);(2)用抽查的總?cè)藬?shù)乘以學(xué)習(xí)0.5-1小時的家庭所占的百分比求出學(xué)習(xí)0.5-1小時的家庭數(shù),再用總?cè)藬?shù)減去其它家庭數(shù),求出學(xué)習(xí)2-2.5小時的家庭數(shù),從而補(bǔ)全統(tǒng)計圖;(3)用360°乘以學(xué)習(xí)時間在2~2.5小時所占的百分比,即可求出學(xué)習(xí)時間在2~2.5小時的部分對應(yīng)的扇形圓心角的度數(shù);(4)用該社區(qū)所有家庭數(shù)乘以學(xué)習(xí)時間不少于1小時的家庭數(shù)所占的百分比即可得出答案.【詳解】解:(1)本次抽樣調(diào)查的家庭數(shù)是:30÷=200(個);故答案為200;(2)學(xué)習(xí)0.5﹣1小時的家庭數(shù)有:200×=60(個),學(xué)習(xí)2﹣2.5小時的家庭數(shù)有:200﹣60﹣90﹣30=20(個),補(bǔ)圖如下:(3)學(xué)習(xí)時間在2~2.5小時的部分對應(yīng)的扇形圓心角的度數(shù)是:360×=36°;故答案為36;(4)根據(jù)題意得:3000×=2100(個).答:該社區(qū)學(xué)習(xí)時間不少于1小時的家庭約有2100個.【點睛】本題考查條形統(tǒng)計圖、扇形統(tǒng)計圖及相關(guān)計算.在扇形統(tǒng)計圖中,每部分占總部分的百分比等于該部分所對應(yīng)的扇形圓心角的度數(shù)與360°的比.23、(1)△ABD,△ACD,△DCE(2)△BDF∽△CED∽△DEF,證明見解析;(3)4.【解析】

(1)根據(jù)等腰三角形的性質(zhì)以及相似三角形的判定得出△ADE∽△ABD∽△ACD∽△DCE,同理可得:△ADE∽△ACD.△ADE∽△DCE.(2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性質(zhì)得出,從而得出△BDF∽△CED∽△DEF.(3)利用△DEF的面積等于△ABC的面積的,求出DH的長,從而利用S△DEF的值求出EF即可【詳解】解:(1)圖(1)中與△ADE相似的有△ABD,△ACD,△DCE.(2)△BDF∽△CED∽△DEF,證明如下:∵∠B+∠BDF+∠BFD=30°,∠EDF+∠BDF+∠CDE=30°,又∵∠EDF=∠B,∴∠BFD=∠CDE.∵AB=AC,∴∠B=∠C.∴△BDF∽△CED.∴.∵BD=CD,∴,即.又∵∠C=∠EDF,∴△CED∽△DEF.∴△BDF∽△CED∽△DEF.(3)連接AD,過D點作DG⊥EF,DH⊥BF,垂足分別為G,H.∵AB=AC,D是BC的中點,∴AD⊥BC,BD=BC=1.在Rt△ABD中,AD2=AB2﹣BD2,即AD2=102﹣3,∴AD=2.∴S△ABC=?BC?AD=×3×2=42,S△DEF=S△ABC=×42=3.又∵?AD?BD=?AB?DH,∴.∵△BDF∽△DEF,∴∠DFB=∠EFD.∵DH⊥BF,DG⊥EF,∴∠DHF=∠DGF.又∵DF=DF,∴△DHF≌△DGF(AAS).∴DH=DG=.∵S△DEF=·EF·DG=·EF·=3,∴EF=4.【點睛】本題考查了和相似有關(guān)的綜合性題目,用到的知識點有三角形相似的判定和性質(zhì)、等腰三角形的性質(zhì)以及勾股定理的運(yùn)用,靈活運(yùn)用相似三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵,解答時,要仔細(xì)觀察圖形、選擇合適的判定方法,注意數(shù)形結(jié)合思想的運(yùn)用.24、見解析【解析】試題分析:首先根據(jù)旋轉(zhuǎn)的性質(zhì),找到兩組對應(yīng)點,連接這兩組對應(yīng)點;然后作連接成的兩條線段的垂直平分線,兩垂直平分線的交點即為旋轉(zhuǎn)中心,據(jù)此解答即可.解:如圖所示,點P即為所求作的旋轉(zhuǎn)中心.25、(1)S=﹣2(0<t<1);(2);(3)見解析.【解析】

(1)如圖1,根據(jù)S=S△ABC-S△APQ,代入可得S與t的關(guān)系式;

(2)設(shè)PM=x,則AM=2x,可得AP=x=4t,計算x的值,根據(jù)直角三角形30度角的性質(zhì)可得AM=2PM=,根據(jù)AM=AO+OM,列方程可得t的值;

(3)存在,通過畫圖可知:N在CD上時,直線PN平分四邊形APMN的面積,根據(jù)面積相等可得MG=AP,由AM=AO+OM,列式可得t的值.【詳解】解:(1)如圖1,∵四邊形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=60°,AC⊥BD,∴∠OAB=30°,∵AB=20,∴OB=10,AO=10,由題意得:AP=4t,∴PQ=2t,AQ=2t,∴S=S△ABC﹣S△APQ,=,=,=﹣2t2+100(0<t<1);(2)如圖2,在Rt△APM中,AP=4t,∵點Q關(guān)于O的對稱點為M,∴OM=OQ,設(shè)PM=x,則AM=2x,∴AP=x=4t,∴x=,∴AM=2PM=,∵AM=AO+OM,∴=10+10﹣2t,t=;答:當(dāng)t為秒時,點P、M、N在一直線上;(3)存在,如圖3,∵直線PN平分四邊形APMN的面積,∴S△APN=S△PMN,過M作MG⊥PN于G,∴,∴MG=AP,易得△APH≌△MGH,∴AH=HM=t,∵AM=AO+OM,同理可知:OM=OQ=10﹣2t,t=10=10﹣2t,t=.答:當(dāng)t為秒時,使得直線PN平分四邊形APMN的面積.【點睛】考查了全等三角形的判定與性質(zhì),對稱的性質(zhì),三角形和四邊形的面積,二次根式的化簡等知識點,計算量大,解答本題的關(guān)鍵是熟練掌握動點運(yùn)動時所構(gòu)成的三角形各邊的關(guān)系.26、小軍的證明:見解析;小俊的證明:見解析;[變式探究]見解析;[結(jié)論運(yùn)用]PG+PH的值為1;[遷移拓展](6+2)dm【解析】

小軍的證明:連接AP,利用面積法即可證得;小俊的證明:過點P作PG⊥CF,先證明四邊形PDFG為矩形,再證明△PGC≌△CEP,即可得到答案;[變式探究]小軍的證明思路:連接AP,根據(jù)S△ABC=S△ABP﹣S△ACP,即可得到答案;小俊的證明思路:過點C,作CG⊥DP,先證明四邊形CFDG是矩形,再證明△CGP≌△CEP即可得到答案;[結(jié)論運(yùn)用]過點E作EQ⊥BC,先根據(jù)矩形的性質(zhì)求出BF,根據(jù)翻折及勾股定理求出DC,證得四邊形EQCD是矩形,得出BE=BF即可得到答案;[遷移拓展]延長AD,BC交于點F,作BH⊥AF,證明△ADE∽△BCE得到FA=FB,設(shè)DH=x,利用勾股定理求出x得到BH=6,再根據(jù)∠ADE=∠BCE=90°,且M,N分別為AE,BE的中點即可得到答案.【詳解】小軍的證明:連接AP,如圖②∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP+S△ACP,∴AB×CF=AB×PD+AC×PE,∵AB=AC,∴CF=PD+PE.小俊的證明:過點P作PG⊥CF,如圖2,∵PD⊥AB,CF⊥AB,PG⊥FC,∴∠CFD=∠FDG=∠FGP=90°,∴四邊形PDFG為矩形,∴DP=FG,∠DPG=90°,∴∠CGP=90°,∵PE⊥AC,∴∠CEP=90°,∴∠PGC=∠CEP,∵∠BDP=∠DPG=90°,∴PG∥AB,∴∠GPC=∠B,∵AB=AC,∴∠B=∠ACB,∴∠GPC=∠ECP,在△PGC和△CEP中,∴△PGC≌△CEP,∴CG=PE,∴CF=CG+FG=PE+PD;[變式探究]小軍的證明思路:連接AP,如圖③,∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP﹣S△ACP,∴AB×CF=AB×PD﹣AC×PE,∵AB=AC,∴CF=PD﹣PE;小俊的證明思

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論