浙江省寧波市李興貴中學2023-2024學年中考數(shù)學仿真試卷含解析_第1頁
浙江省寧波市李興貴中學2023-2024學年中考數(shù)學仿真試卷含解析_第2頁
浙江省寧波市李興貴中學2023-2024學年中考數(shù)學仿真試卷含解析_第3頁
浙江省寧波市李興貴中學2023-2024學年中考數(shù)學仿真試卷含解析_第4頁
浙江省寧波市李興貴中學2023-2024學年中考數(shù)學仿真試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省寧波市李興貴中學2023-2024學年中考數(shù)學仿真試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,AB為⊙O的直徑,C,D為⊙O上的兩點,若AB=14,BC=1.則∠BDC的度數(shù)是()A.15° B.30° C.45° D.60°2.統(tǒng)計學校排球隊員的年齡,發(fā)現(xiàn)有12、13、14、15等四種年齡,統(tǒng)計結果如下表:年齡(歲)12131415人數(shù)(個)2468根據(jù)表中信息可以判斷該排球隊員年齡的平均數(shù)、眾數(shù)、中位數(shù)分別為()A.13、15、14 B.14、15、14 C.13.5、15、14 D.15、15、153.以x為自變量的二次函數(shù)y=x2﹣2(b﹣2)x+b2﹣1的圖象不經(jīng)過第三象限,則實數(shù)b的取值范圍是()A.b≥1.25 B.b≥1或b≤﹣1 C.b≥2 D.1≤b≤24.二次函數(shù)的圖象如圖所示,則反比例函數(shù)與一次函數(shù)在同一坐標系中的大致圖象是()A. B. C. D.5.一組數(shù)據(jù)是4,x,5,10,11共五個數(shù),其平均數(shù)為7,則這組數(shù)據(jù)的眾數(shù)是()A.4 B.5 C.10 D.116.函數(shù)y=x2+bx+c與y=x的圖象如圖所示,有以下結論:①b2﹣4c>1;②b+c+1=1;③3b+c+6=1;④當1<x<3時,x2+(b﹣1)x+c<1.其中正確的個數(shù)為A.1 B.2 C.3 D.47.如圖,AB∥CD,直線EF與AB、CD分別相交于E、F,AM⊥EF于點M,若∠EAM=10°,那么∠CFE等于()A.80° B.85° C.100° D.170°8.如圖,小巷左右兩側是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,頂端距離地面2米,那么小巷的寬度為()A.0.7米 B.1.5米 C.2.2米 D.2.4米9.-3的相反數(shù)是()A. B.3 C. D.-310.若,,則的值是()A.2 B.﹣2 C.4 D.﹣411.已知函數(shù)y=的圖象如圖,當x≥﹣1時,y的取值范圍是()A.y<﹣1 B.y≤﹣1 C.y≤﹣1或y>0 D.y<﹣1或y≥012.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結論:①abc>0;②b<a+c;③4a+2b+c>0;④2c–3b<0;⑤a+b>n(an+b)(n≠1),其中正確的結論有()A.2個 B.3個 C.4個 D.5個二、填空題:(本大題共6個小題,每小題4分,共24分.)13.二次函數(shù)y=(x﹣2m)2+1,當m<x<m+1時,y隨x的增大而減小,則m的取值范圍是_____.14.如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,將Rt△AOB繞點O順時針旋轉90°后得Rt△FOE,將線段EF繞點E逆時針旋轉90°后得線段ED,分別以O,E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是_____.15.當﹣4≤x≤2時,函數(shù)y=﹣(x+3)2+2的取值范圍為_____________.16.一個凸邊形的內角和為720°,則這個多邊形的邊數(shù)是__________________17.如圖所示的網(wǎng)格是正方形網(wǎng)格,點P到射線OA的距離為m,點P到射線OB的距離為n,則m__________n.(填“>”,“=”或“<”)18.在今年的春節(jié)黃金周中,全國零售和餐飲企業(yè)實現(xiàn)銷售額約9260億元,比去年春節(jié)黃金周增長10.2%,將9260億用科學記數(shù)法表示為_____________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在一筆直的海岸線l上有A、B兩個碼頭,A在B的正東方向,一艘小船從A碼頭沿它的北偏西60°的方向行駛了20海里到達點P處,此時從B碼頭測得小船在它的北偏東45°的方向.求此時小船到B碼頭的距離(即BP的長)和A、B兩個碼頭間的距離(結果都保留根號).20.(6分)如圖,AD是等腰△ABC底邊BC上的高,點O是AC中點,延長DO到E,使AE∥BC,連接AE.求證:四邊形ADCE是矩形;①若AB=17,BC=16,則四邊形ADCE的面積=.②若AB=10,則BC=時,四邊形ADCE是正方形.21.(6分)許昌芙蓉湖位于許昌市水系建設總體規(guī)劃中部,上游接納清泥河來水,下游為鹿鳴湖等水系供水,承擔著承上啟下的重要作用,是利用有限的水資源、形成良好的水生態(tài)環(huán)境打造生態(tài)宜居城市的重要部分.某校課外興趣小組想測量位于芙蓉湖兩端的A,B兩點之間的距離他沿著與直線AB平行的道路EF行走,走到點C處,測得∠ACF=45°,再向前走300米到點D處,測得∠BDF=60°.若直線AB與EF之間的距離為200米,求A,B兩點之間的距離(結果保留一位小數(shù))22.(8分)2018年4月12日上午,新中國歷史上最大規(guī)模的海上閱兵在南海海域隆重舉行,中國人解放軍海軍多艘戰(zhàn)艦、多架戰(zhàn)機和1萬余名官兵參加了海上閱兵式,已知戰(zhàn)艦和戰(zhàn)機總數(shù)是124,戰(zhàn)數(shù)的3倍比戰(zhàn)機數(shù)的2倍少8.問有多少艘戰(zhàn)艦和多少架戰(zhàn)機參加了此次閱兵.23.(8分)某中學九年級甲、乙兩班商定舉行一次遠足活動,、兩地相距10千米,甲班從地出發(fā)勻速步行到地,乙班從地出發(fā)勻速步行到地.兩班同時出發(fā),相向而行.設步行時間為小時,甲、乙兩班離地的距離分別為千米、千米,、與的函數(shù)關系圖象如圖所示,根據(jù)圖象解答下列問題:直接寫出、與的函數(shù)關系式;求甲、乙兩班學生出發(fā)后,幾小時相遇?相遇時乙班離地多少千米?甲、乙兩班相距4千米時所用時間是多少小時?24.(10分)如圖,AB是⊙O的直徑,C是弧AB的中點,弦CD與AB相交于E.若∠AOD=45°,求證:CE=ED;(2)若AE=EO,求tan∠AOD的值.25.(10分)樓房AB后有一假山,其坡度為i=1:,山坡坡面上E點處有一休息亭,測得假山坡腳C與樓房水平距離BC=30米,與亭子距離CE=18米,小麗從樓房頂測得E點的俯角為45°,求樓房AB的高.(注:坡度i是指坡面的鉛直高度與水平寬度的比)26.(12分)圖1是一輛吊車的實物圖,圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉動點A離地面BD的高度AH為3.4m.當起重臂AC長度為9m,張角∠HAC為118°時,求操作平臺C離地面的高度(結果保留小數(shù)點后一位:參考數(shù)據(jù):sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)27.(12分)(1)如圖1,正方形ABCD中,點E,F(xiàn)分別在邊CD,AD上,AE⊥BF于點G,求證:AE=BF;(2)如圖2,矩形ABCD中,AB=2,BC=3,點E,F(xiàn)分別在邊CD,AD上,AE⊥BF于點M,探究AE與BF的數(shù)量關系,并證明你的結論;(3)在(2)的基礎上,若AB=m,BC=n,其他條件不變,請直接寫出AE與BF的數(shù)量關系;.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

只要證明△OCB是等邊三角形,可得∠CDB=∠COB即可解決問題.【詳解】如圖,連接OC,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB是等邊三角形,∴∠COB=60°,∴∠CDB=∠COB=30°,故選B.【點睛】本題考查圓周角定理,等邊三角形的判定等知識,解題的關鍵是學會利用數(shù)形結合的首先解決問題,屬于中考??碱}型.2、B【解析】

根據(jù)加權平均數(shù)、眾數(shù)、中位數(shù)的計算方法求解即可.【詳解】,15出現(xiàn)了8次,出現(xiàn)的次數(shù)最多,故眾數(shù)是15,從小到大排列后,排在10、11兩個位置的數(shù)是14,14,故中位數(shù)是14.故選B.【點睛】本題考查了平均數(shù)、眾數(shù)與中位數(shù)的意義.數(shù)據(jù)x1、x2、……、xn的加權平均數(shù):(其中w1、w2、……、wn分別為x1、x2、……、xn的權數(shù)).一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù).中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個數(shù)(或最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù).3、A【解析】∵二次函數(shù)y=x2-2(b-2)x+b2-1的圖象不經(jīng)過第三象限,a=1>0,∴Δ≤0或拋物線與x軸的交點的橫坐標均大于等于0.當Δ≤0時,[-2(b-2)]2-4(b2-1)≤0,解得b≥.當拋物線與x軸的交點的橫坐標均大于等于0時,設拋物線與x軸的交點的橫坐標分別為x1,x2,則x1+x2=2(b-2)>0,Δ=[-2(b-2)]2-4(b2-1)>0,無解,∴此種情況不存在.∴b≥.4、D【解析】

根據(jù)拋物線和直線的關系分析.【詳解】由拋物線圖像可知,所以反比例函數(shù)應在二、四象限,一次函數(shù)過原點,應在二、四象限.故選D【點睛】考核知識點:反比例函數(shù)圖象.5、B【解析】試題分析:(4+x+3+30+33)÷3=7,解得:x=3,根據(jù)眾數(shù)的定義可得這組數(shù)據(jù)的眾數(shù)是3.故選B.考點:3.眾數(shù);3.算術平均數(shù).6、B【解析】分析:∵函數(shù)y=x2+bx+c與x軸無交點,∴b2﹣4c<1;故①錯誤。當x=1時,y=1+b+c=1,故②錯誤。∵當x=3時,y=9+3b+c=3,∴3b+c+6=1。故③正確?!弋?<x<3時,二次函數(shù)值小于一次函數(shù)值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<1。故④正確。綜上所述,正確的結論有③④兩個,故選B。7、C【解析】

根據(jù)題意,求出∠AEM,再根據(jù)AB∥CD,得出∠AEM與∠CFE互補,求出∠CFE.【詳解】∵AM⊥EF,∠EAM=10°∴∠AEM=80°又∵AB∥CD∴∠AEM+∠CFE=180°∴∠CFE=100°.故選C.【點睛】本題考查三角形內角和與兩條直線平行內錯角相等.8、C【解析】

在直角三角形中利用勾股定理計算出直角邊,即可求出小巷寬度.【詳解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故選C.【點睛】本題考查勾股定理的運用,利用梯子長度不變找到斜邊是關鍵.9、B【解析】

根據(jù)相反數(shù)的定義與方法解答.【詳解】解:-3的相反數(shù)為.故選:B.【點睛】本題考查相反數(shù)的定義與求法,熟練掌握方法是關鍵.10、D【解析】因為,所以,因為,故選D.11、C【解析】試題分析:根據(jù)反比例函數(shù)的性質,再結合函數(shù)的圖象即可解答本題.解:根據(jù)反比例函數(shù)的性質和圖象顯示可知:此函數(shù)為減函數(shù),x≥-1時,在第三象限內y的取值范圍是y≤-1;在第一象限內y的取值范圍是y>1.故選C.考點:本題考查了反比例函數(shù)的性質點評:此類試題屬于難度一般的試題,考生在解答此類試題時一定要注意分析反比例函數(shù)的基本性質和知識,反比例函數(shù)y=的圖象是雙曲線,當k>1時,圖象在一、三象限,在每個象限內y隨x的增大而減?。划攌<1時,圖象在二、四象限,在每個象限內,y隨x的增大而增大12、B【解析】

①觀察圖象可知a<0,b>0,c>0,由此即可判定①;②當x=﹣1時,y=a﹣b+c由此可判定②;③由對稱知,當x=2時,函數(shù)值大于0,即y=4a+2b+c>0,由此可判定③;④當x=3時函數(shù)值小于0,即y=9a+3b+c<0,且x=﹣=1,可得a=﹣,代入y=9a+3b+c<0即可判定④;⑤當x=1時,y的值最大.此時,y=a+b+c,當x=n時,y=an2+bn+c,由此即可判定⑤.【詳解】①由圖象可知:a<0,b>0,c>0,abc<0,故此選項錯誤;②當x=﹣1時,y=a﹣b+c<0,即b>a+c,故此選項錯誤;③由對稱知,當x=2時,函數(shù)值大于0,即y=4a+2b+c>0,故此選項正確;④當x=3時函數(shù)值小于0,y=9a+3b+c<0,且x=﹣=1即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故此選項正確;⑤當x=1時,y的值最大.此時,y=a+b+c,而當x=n時,y=an2+bn+c,所以a+b+c>an2+bn+c,故a+b>an2+bn,即a+b>n(an+b),故此選項正確.∴③④⑤正確.故選B.【點睛】本題主要考查了拋物線的圖象與二次函數(shù)系數(shù)之間的關系,熟知拋物線的圖象與二次函數(shù)系數(shù)之間的關系是解決本題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、m>1【解析】由條件可知二次函數(shù)對稱軸為x=2m,且開口向上,由二次函數(shù)的性質可知在對稱軸的左側時y隨x的增大而減小,可求得m+1<2m,即m>1.故答案為m>1.點睛:本題主要考查二次函數(shù)的性質,掌握當拋物線開口向下時,在對稱軸右側y隨x的增大而減小是解題的關鍵.14、8﹣π【解析】分析:如下圖,過點D作DH⊥AE于點H,由此可得∠DHE=∠AOB=90°,由旋轉的性質易得DE=EF=AB,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,結合∠ABO+∠BAO=90°可得∠BAO=∠DEH,從而可證得△DEH≌△BAO,即可得到DH=BO=2,再由勾股定理求得AB的長,即可由S陰影=S扇形AOF+S△OEF+S△ADE-S扇形DEF即可求得陰影部分的面積.詳解:如下圖,過點D作DH⊥AE于點H,∴∠DHE=∠AOB=90°,∵OA=3,OB=2,∴AB=,由旋轉的性質結合已知條件易得:DE=EF=AB=,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,又∵∠ABO+∠BAO=90°,∴∠BAO=∠DEH,∴△DEH≌△BAO,∴DH=BO=2,∴S陰影=S扇形AOF+S△OEF+S△ADE-S扇形DEF==.故答案為:.點睛:作出如圖所示的輔助線,利用旋轉的性質證得△DEH≌△BAO,由此得到DH=BO=2,從而將陰影部分的面積轉化為:S陰影=S扇形AOF+S△OEF+S△ADE-S扇形DEF來計算是解答本題的關鍵.15、-23≤y≤2【解析】

先根據(jù)a=-1判斷出拋物線的開口向下,故有最大值,可知對稱軸x=-3,再根據(jù)-4≤x≤2,可知當x=-3時y最大,把x=2時y最小代入即可得出結論.【詳解】解:∵a=-1,

∴拋物線的開口向下,故有最大值,

∵對稱軸x=-3,

∴當x=-3時y最大為2,

當x=2時y最小為-23,

∴函數(shù)y的取值范圍為-23≤y≤2,故答案為:-23≤y≤2.【點睛】本題考查二次函數(shù)的性質,掌握拋物線的開口方向、對稱軸以及增減性是解題關鍵.16、1【解析】

設這個多邊形的邊數(shù)是n,根據(jù)多邊形的內角和公式:,列方程計算即可.【詳解】解:設這個多邊形的邊數(shù)是n根據(jù)多邊形內角和公式可得解得.故答案為:1.【點睛】此題考查的是根據(jù)多邊形的內角和,求邊數(shù),掌握多邊形內角和公式是解決此題的關鍵.17、>【解析】

由圖像可知在射線OP上有一個特殊點Q,點Q到射線OA的距離QD=2,點Q到射線OB的距離QC=1,于是可知∠AOP>∠BOP,利用銳角三角函數(shù)sin∠AOP>【詳解】由題意可知:找到特殊點Q,如圖所示:設點Q到射線OA的距離QD,點Q到射線OB的距離QC由圖可知QD=2,∴sin∠AOP=QDOP∴sin∴m∴m>n【點睛】本題考查了點到線的距離,熟知在直角三角形中利用三角函數(shù)來解角和邊的關系是解題關鍵.18、9.26×1011【解析】試題解析:9260億=9.26×1011故答案為:9.26×1011點睛:科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值大于1時,n是正數(shù);當原數(shù)的絕對值小于1時,n是負數(shù).三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、小船到B碼頭的距離是10海里,A、B兩個碼頭間的距離是(10+10)海里【解析】試題分析:過P作PM⊥AB于M,求出∠PBM=45°,∠PAM=30°,求出PM,即可求出BM、AM、BP.試題解析:如圖:過P作PM⊥AB于M,則∠PMB=∠PMA=90°,∵∠PBM=90°﹣45°=45°,∠PAM=90°﹣60°=30°,AP=20,∴PM=AP=10,AM=PM=,∴∠BPM=∠PBM=45°,∴PM=BM=10,AB=AM+MB=,∴BP==,即小船到B碼頭的距離是海里,A、B兩個碼頭間的距離是()海里.考點:解直角三角形的應用-方向角問題.20、(1)見解析;(2)①1;②.【解析】試題分析:(1)根據(jù)平行四邊形的性質得出四邊形ADCE是平行四邊形,根據(jù)垂直推出∠ADC=90°,根據(jù)矩形的判定得出即可;(2)①求出DC,根據(jù)勾股定理求出AD,根據(jù)矩形的面積公式求出即可;②要使ADCE是正方形,只需要AC⊥DE,即∠DOC=90°,只需要OD2+OC2=DC2,即可得到BC的長.試題解析:(1)證明:∵AE∥BC,∴∠AEO=∠CDO.又∵∠AOE=∠COD,OA=OC,∴△AOE≌△COD,∴OE=OD,而OA=OC,∴四邊形ADCE是平行四邊形.∵AD是BC邊上的高,∴∠ADC=90°.∴□ADCE是矩形.(2)①解:∵AD是等腰△ABC底邊BC上的高,BC=16,AB=17,∴BD=CD=8,AB=AC=17,∠ADC=90°,由勾股定理得:AD===12,∴四邊形ADCE的面積是AD×DC=12×8=1.②當BC=時,DC=DB=.∵ADCE是矩形,∴OD=OC=2.∵OD2+OC2=DC2,∴∠DOC=90°,∴AC⊥DE,∴ADCE是正方形.點睛:本題考查了平行四邊形的判定,矩形的判定和性質,等腰三角形的性質,勾股定理的應用,能綜合運用定理進行推理和計算是解答此題的關鍵,比較典型,難度適中.21、215.6米.【解析】

過A點做EF的垂線,交EF于M點,過B點做EF的垂線,交EF于N點,根據(jù)Rt△ACM和三角函數(shù)求出CM、DN,然后根據(jù)即可求出A、B兩點間的距離.【詳解】解:過A點做EF的垂線,交EF于M點,過B點做EF的垂線,交EF于N點在Rt△ACM中,∵,∴AM=CM=200米,又∵CD=300米,所以米,在Rt△BDN中,∠BDF=60°,BN=200米∴米,∴米即A,B兩點之間的距離約為215.6米.【點睛】本題主要考查三角函數(shù),正確做輔助線是解題的關鍵.22、有48艘戰(zhàn)艦和76架戰(zhàn)機參加了此次閱兵.【解析】

設有x艘戰(zhàn)艦,y架戰(zhàn)機參加了此次閱兵,根據(jù)題意列出方程組解答即可.【詳解】設有x艘戰(zhàn)艦,y架戰(zhàn)機參加了此次閱兵,根據(jù)題意,得,解這個方程組,得,答:有48艘戰(zhàn)艦和76架戰(zhàn)機參加了此次閱兵.【點睛】此題考查二元一次方程組的應用,關鍵是根據(jù)題意列出等量關系進行解答.23、(1)y1=4x,y2=-5x+1.(2)km.(3)h.【解析】

(1)由圖象直接寫出函數(shù)關系式;(2)若相遇,甲乙走的總路程之和等于兩地的距離.【詳解】(1)根據(jù)圖可以得到甲2.5小時,走1千米,則每小時走4千米,則函數(shù)關系是:y1=4x,乙班從B地出發(fā)勻速步行到A地,2小時走了1千米,則每小時走5千米,則函數(shù)關系式是:y2=?5x+1.(2)由圖象可知甲班速度為4km/h,乙班速度為5km/h,設甲、乙兩班學生出發(fā)后,x小時相遇,則4x+5x=1,解得x=.當x=時,y2=?5×+1=,∴相遇時乙班離A地為km.(3)甲、乙兩班首次相距4千米,即兩班走的路程之和為6km,故4x+5x=6,解得x=h.∴甲、乙兩班首次相距4千米時所用時間是h.24、(1)見解析;(2)tan∠AOD=.【解析】

(1)作DF⊥AB于F,連接OC,則△ODF是等腰直角三角形,得出OC=OD=DF,由垂徑定理得出∠COE=90°,證明△DEF∽△CEO得出,即可得出結論;(2)由題意得OE=OA=OC,同(1)得△DEF∽△CEO,得出,設⊙O的半徑為2a(a>0),則OD=2a,EO=a,設EF=x,則DF=2x,在Rt△ODF中,由勾股定理求出x=a,得出DF=a,OF=EF+EO=a,由三角函數(shù)定義即可得出結果.【詳解】(1)證明:作DF⊥AB于F,連接OC,如圖所示:則∠DFE=90°,∵∠AOD=45°,∴△ODF是等腰直角三角形,∴OC=OD=DF,∵C是弧AB的中點,∴OC⊥AB,∴∠COE=90°,∵∠DEF=∠CEO,∴△DEF∽△CEO,∴,∴CE=ED;(2)如圖所示:∵AE=EO,∴OE=OA=OC,同(1)得:,△DEF∽△CEO,∴,設⊙O的半徑為2a(a>0),則OD=2a,EO=a,設EF=x,則DF=2x,在Rt△ODF中,由勾股定理得:(2x)2+(x+a)2=(2a)2,解得:x=a,或x=﹣a(舍去),∴DF=a,OF=EF+EO=a,∴.【點睛】本題考查了等腰直角三角形的判定與性質、相似三角形的判定與性質、勾股定理、垂徑定理、三角函數(shù)等知識,熟練掌握相似三角形的判定與性質、勾股定理是關鍵.25、(39+9)米.【解析】

過點E作EF⊥BC的延長線于F,EH⊥AB于點H,根據(jù)CE=20米,坡度為i=1:,分別求出EF、CF的長度,在Rt△AEH中求出AH,繼而可得樓房AB的高.【詳解】解:過點E作EF⊥BC的延長線于F,EH⊥AB于點H,在Rt△CEF中,∵=tan∠ECF,∴∠ECF=30°,∴EF=CE=10米,CF=10米,∴BH=EF=10米,HE=BF=BC+CF=(25+10)米,在Rt△AHE中,∵∠HAE=45°,∴AH=HE=(25+10)米,∴AB=AH+HB=(35+10)米.答:樓房AB的高為(35+10)米.【點睛】本題考查解直角三角形的應用-仰角俯角問題;坡度坡角問題,掌握概念正確計算是本題的解題關鍵.26、操作平臺C離地面的高度為7.6m.【解析】分析:作CE⊥BD于F,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論