版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第第頁(yè)專題04指對(duì)冪函數(shù)及函數(shù)與方程一、知識(shí)速覽二、考點(diǎn)速覽
知識(shí)點(diǎn)1根式與指數(shù)冪1、根式(1)一般地,如果SKIPIF1<0,那么x叫做a的n次方根,其中SKIPIF1<0,且SKIPIF1<0。式子SKIPIF1<0叫做根式,這里n叫做根指數(shù),a叫做被開方數(shù).(2)SKIPIF1<0的SKIPIF1<0次方根的表示當(dāng)n是奇數(shù)時(shí),SKIPIF1<0,SKIPIF1<0的值僅有一個(gè),記為SKIPIF1<0當(dāng)n是偶數(shù),=1\*GB3①SKIPIF1<0時(shí),SKIPIF1<0的有兩個(gè)值,且互為相反數(shù),記為SKIPIF1<0;=2\*GB3②SKIPIF1<0時(shí),SKIPIF1<0不存在(3)根式的性質(zhì)(SKIPIF1<0,且SKIPIF1<0):SKIPIF1<0;SKIPIF1<02、分?jǐn)?shù)指數(shù)冪(1)正分?jǐn)?shù)指數(shù)冪:規(guī)定:SKIPIF1<0SKIPIF1<0SKIPIF1<0(2)負(fù)分?jǐn)?shù)指數(shù)冪:規(guī)定:SKIPIF1<0SKIPIF1<0SKIPIF1<0(3)性質(zhì):0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義3、指數(shù)冪的運(yùn)算性質(zhì)(1)無(wú)理數(shù)指數(shù)冪:一般地,無(wú)理數(shù)指數(shù)冪SKIPIF1<0(SKIPIF1<0,SKIPIF1<0為無(wú)理數(shù))是一個(gè)確定的實(shí)數(shù).有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)同樣適用于無(wú)理數(shù)指數(shù)冪.(2)指數(shù)冪的運(yùn)算性質(zhì)①SKIPIF1<0.②SKIPIF1<0SKIPIF1<0SKIPIF1<0.③SKIPIF1<0SKIPIF1<0SKIPIF1<0.知識(shí)點(diǎn)2指數(shù)函數(shù)及其性質(zhì)1、指數(shù)函數(shù)的概念一般地,函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)叫做指數(shù)函數(shù),其中指數(shù)x是自變量,定義域是R,a是指數(shù)函數(shù)的底數(shù).2、指數(shù)函數(shù)的圖象與性質(zhì)SKIPIF1<0SKIPIF1<0圖象圖像特征在SKIPIF1<0軸的上方,過(guò)定點(diǎn)SKIPIF1<0當(dāng)SKIPIF1<0逐漸增大時(shí),圖象逐漸上升當(dāng)SKIPIF1<0逐漸增大時(shí),圖象逐漸下降性質(zhì)定義域SKIPIF1<0值域SKIPIF1<0單調(diào)性在SKIPIF1<0上是增函數(shù)在SKIPIF1<0上是減函數(shù)奇偶性非奇非偶函數(shù)范圍當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;3、指數(shù)函數(shù)的常用技巧(1)當(dāng)?shù)讛?shù)大小不定時(shí),必須分“SKIPIF1<0”和“SKIPIF1<0”兩種情況討論;(2)指數(shù)函數(shù)的圖象與底數(shù)大小的比較如圖是指數(shù)函數(shù)(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0;(4)SKIPIF1<0的圖象,底數(shù)SKIPIF1<0與1的之間的大小關(guān)系為SKIPIF1<0;規(guī)律:在SKIPIF1<0軸右(左)側(cè)圖象越高(低),其底數(shù)越大。(3)指數(shù)函數(shù)SKIPIF1<0與SKIPIF1<0的圖象關(guān)于SKIPIF1<0軸對(duì)稱。知識(shí)點(diǎn)3對(duì)數(shù)與對(duì)數(shù)運(yùn)算1、對(duì)數(shù)的概念與性質(zhì)(1)對(duì)數(shù)的概念:如果ax=N(a>0,且a≠1),那么數(shù)x叫做以a為底數(shù)N的對(duì)數(shù),記作x=logaN,其中a叫做對(duì)數(shù)的底數(shù),N叫做真數(shù),logaN叫做對(duì)數(shù)式。(2)對(duì)數(shù)的性質(zhì)對(duì)數(shù)式與指數(shù)式的互化:ax=N?x=logaN(a>0,且a≠1);=1\*GB3①loga1=0,=2\*GB3②logaa=1,=3\*GB3③alogaN=N,=4\*GB3④logaaN=N(a>0,且a≠1).指數(shù)式與對(duì)數(shù)式的關(guān)系2、對(duì)數(shù)的的運(yùn)算法則如果a>0,且a≠1,M>0,N>0=1\*GB3①loga(M·N)=logaM+logaN=2\*GB3②logaeq\f(M,N)=logaM-logaN=3\*GB3③logaMn=nlogaM(n∈R)3、換底公式(1)logab=eq\f(logcb,logca)(a>0,且a≠1,c>0,且c≠1,b>0)選用換底公式時(shí),一般選用e或10作為底數(shù)。(2)換底公式的三個(gè)重要結(jié)論(1)logab=eq\f(1,logba);(2)logambn=eq\f(n,m)logab;(3)logab·logbc·logcd=logad.知識(shí)點(diǎn)4對(duì)數(shù)函數(shù)及其性質(zhì)1、對(duì)數(shù)函數(shù)的概念(1)定義:函數(shù)SKIPIF1<0SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0)叫做對(duì)數(shù)函數(shù),其中x是自變量,定義域?yàn)镾KIPIF1<0.(2)特殊的對(duì)數(shù)函數(shù)=1\*GB3①常用對(duì)數(shù)函數(shù):以10為底的對(duì)數(shù)函數(shù)SKIPIF1<0.=2\*GB3②自然對(duì)數(shù)函數(shù):以無(wú)理數(shù)e為底的對(duì)數(shù)函數(shù)SKIPIF1<0.2、對(duì)數(shù)函數(shù)的圖象與性質(zhì)圖象a>10<a<1性質(zhì)定義域:(0,+∞)值域:R當(dāng)x=1時(shí),y=0,即過(guò)定點(diǎn)(1,0)當(dāng)0<x<1時(shí),y<0;當(dāng)x>1時(shí),y>0當(dāng)0<x<1時(shí),y>0;當(dāng)x>1時(shí),y<0在(0,+∞)上為增函數(shù)在(0,+∞)上為減函數(shù)3、對(duì)數(shù)函數(shù)圖象的常用結(jié)論(1)函數(shù)y=logax與y=log1a(2)對(duì)數(shù)函數(shù)的圖象與底數(shù)大小的關(guān)系如圖,作直線y=1,則該直線與四個(gè)函數(shù)圖象交點(diǎn)的橫坐標(biāo)為相應(yīng)的底數(shù),故0<c<d<1<a<b.由此我們可得到以下規(guī)律:在第一象限內(nèi)從左到右底數(shù)逐漸增大.知識(shí)點(diǎn)5冪函數(shù)及其性質(zhì)1、冪函數(shù)的定義:一般地,函數(shù)y=xα叫做冪函數(shù),其中x是自變量,α是常數(shù).(1)冪函數(shù)的特征:xα的系數(shù)是1;xα的底數(shù)x是自變量;xα的指數(shù)α為常數(shù).只有滿足這三個(gè)條件,才是冪函數(shù).對(duì)于形如y=(2x)α,y=2x5,y=xα+6等的函數(shù)都不是冪函數(shù).(2)冪函數(shù)的圖象:同一坐標(biāo)系中,冪函數(shù)y=x,y=x2,y=x3,y=x-1,y=x12、冪函數(shù)的性質(zhì)(1)所有的冪函數(shù)在(0,+∞)上都有定義,并且圖象都過(guò)點(diǎn)(1,1);(2)如果α>0,那么冪函數(shù)的圖象過(guò)原點(diǎn),并且在區(qū)間[0,+∞)上單調(diào)遞增;(3)如果α<0,那么冪函數(shù)的圖象在區(qū)間(0,+∞)上單調(diào)遞減,在第一象限內(nèi),當(dāng)x從右邊趨向于原點(diǎn)時(shí),圖象在y軸右方無(wú)限接近y軸,當(dāng)x從原點(diǎn)趨向于+∞時(shí),圖象在x軸上方無(wú)限接近x軸;(4)在(1,+∞)上,隨冪指數(shù)的逐漸增大,圖象越來(lái)越靠近y軸.2、二次函數(shù)的圖象和性質(zhì)函數(shù)y=ax2+bx+c(a>0)y=ax2+bx+c(a<0)圖象(拋物線)定義域R值域eq\b\lc\[\rc\)(\a\vs4\al\co1(\f(4ac-b2,4a),+∞))eq\b\lc\(\rc\](\a\vs4\al\co1(-∞,\f(4ac-b2,4a)))對(duì)稱軸x=-eq\f(b,2a)頂點(diǎn)坐標(biāo)eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(b,2a),\f(4ac-b2,4a)))奇偶性當(dāng)b=0時(shí)是偶函數(shù),當(dāng)b≠0時(shí)是非奇非偶函數(shù)單調(diào)性在eq\b\lc\(\rc\](\a\vs4\al\co1(-∞,-\f(b,2a)))上是減函數(shù);在eq\b\lc\[\rc\)(\a\vs4\al\co1(-\f(b,2a),+∞))上是增函數(shù)在eq\b\lc\(\rc\](\a\vs4\al\co1(-∞,-\f(b,2a)))上是增函數(shù);在eq\b\lc\[\rc\)(\a\vs4\al\co1(-\f(b,2a),+∞))上是減函數(shù)知識(shí)點(diǎn)6函數(shù)零點(diǎn)與二分法1、函數(shù)零點(diǎn)的定義(1)函數(shù)零點(diǎn)的概念:對(duì)于函數(shù)y=f(x)(x∈D),把使f(x)=0的實(shí)數(shù)x叫做函數(shù)y=f(x)(x∈D)的零點(diǎn).(2)函數(shù)零點(diǎn)與方程實(shí)數(shù)解的關(guān)系方程f(x)=0有實(shí)數(shù)根?函數(shù)y=f(x)的圖象與x軸有交點(diǎn)?函數(shù)y=f(x)有零點(diǎn).【注意】函數(shù)的零點(diǎn)不是函數(shù)y=f(x)的圖象與x軸的交點(diǎn),而是交點(diǎn)的橫坐標(biāo),也就是說(shuō)函數(shù)的零點(diǎn)不是一個(gè)點(diǎn),而是一個(gè)數(shù).2、函數(shù)零點(diǎn)存在定理(1)定理:如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)·f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個(gè)c也就是方程f(x)=0的根.(2)兩個(gè)重要推論推論1:函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的圖象是一條連續(xù)不斷的曲線,SKIPIF1<0,且SKIPIF1<0具有單調(diào)性,則函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)只有一個(gè)零點(diǎn).推論2:函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的圖象是一條連續(xù)不斷的曲線,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)有零點(diǎn),且函數(shù)SKIPIF1<0具有單調(diào)性,則SKIPIF1<03、二分法(1)二分法的定義:對(duì)于在區(qū)間[a,b]上連續(xù)不斷且f(a)f(b)<0的函數(shù)y=f(x),通過(guò)不斷地把函數(shù)f(x)的零點(diǎn)所在的區(qū)間一分為二,使區(qū)間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的方法叫做二分法.(2)給定精確度SKIPIF1<0,用二分法求函數(shù)SKIPIF1<0零點(diǎn)SKIPIF1<0的近似值的步驟=1\*GB3①確定零點(diǎn)SKIPIF1<0的初始區(qū)間SKIPIF1<0,驗(yàn)證SKIPIF1<0=2\*GB3②求區(qū)間SKIPIF1<0的中點(diǎn)SKIPIF1<0=3\*GB3③計(jì)算SKIPIF1<0,進(jìn)一步確定零點(diǎn)所在的區(qū)間:若SKIPIF1<0(此時(shí)SKIPIF1<0),則SKIPIF1<0就是函數(shù)的零點(diǎn);若SKIPIF1<0(此時(shí)SKIPIF1<0),則令SKIPIF1<0;若SKIPIF1<0(此時(shí)SKIPIF1<0),則令SKIPIF1<0.=4\*GB3④判斷是否達(dá)到精確度SKIPIF1<0:若SKIPIF1<0,則得到零點(diǎn)近似值SKIPIF1<0(或SKIPIF1<0);否則重復(fù)(2)~(4)【注意】初始區(qū)間的確定要包含函數(shù)的變號(hào)零點(diǎn);一、指對(duì)冪與對(duì)數(shù)式運(yùn)算1、指數(shù)冪運(yùn)算的一般原則(1)指數(shù)冪的運(yùn)算首先將根式統(tǒng)一為分?jǐn)?shù)指數(shù)冪,以便利用法則計(jì)算;(2)先乘除后加減,負(fù)指數(shù)冪化成正指數(shù)冪的倒數(shù);(3)底數(shù)為負(fù)數(shù),先確定符號(hào);底數(shù)為小數(shù),先化成分?jǐn)?shù);底數(shù)是帶分?jǐn)?shù)的,先化成假分?jǐn)?shù);(4)運(yùn)算結(jié)果不能同時(shí)包含根號(hào)和分?jǐn)?shù)指數(shù),也不能既有分母又含有負(fù)指數(shù)。2、對(duì)數(shù)混合運(yùn)算的一般原則(1)將真數(shù)和底數(shù)化成指數(shù)冪形式,使真數(shù)和底數(shù)最簡(jiǎn),用公式SKIPIF1<0化簡(jiǎn)合并;(2)利用換底公式將不同底的對(duì)數(shù)式轉(zhuǎn)化為同底的對(duì)數(shù)式;(3)將同底對(duì)數(shù)的和、差、倍運(yùn)算轉(zhuǎn)化為同底對(duì)數(shù)真數(shù)的積、商、冪;(4)如果對(duì)數(shù)的真數(shù)可以寫成幾個(gè)因數(shù)或因式的相乘除的形式,一般改寫成幾個(gè)對(duì)數(shù)相加減的形式,然后進(jìn)行化簡(jiǎn)合并;(5)對(duì)數(shù)真數(shù)中的小數(shù)一般要化成分?jǐn)?shù),分?jǐn)?shù)一般寫成對(duì)數(shù)相減的形式。3、對(duì)數(shù)運(yùn)算中的幾個(gè)運(yùn)算技巧(1)SKIPIF1<0的應(yīng)用技巧:在對(duì)數(shù)運(yùn)算中如果出現(xiàn)SKIPIF1<0和SKIPIF1<0,則一般利用提公因式、平方差公式、完全平方公式等使之出現(xiàn)SKIPIF1<0,再應(yīng)用公式SKIPIF1<0進(jìn)行化簡(jiǎn);(2)SKIPIF1<0的應(yīng)用技巧:對(duì)數(shù)運(yùn)算過(guò)程中如果出現(xiàn)兩個(gè)對(duì)數(shù)相乘且兩個(gè)對(duì)數(shù)的底數(shù)與真數(shù)位置顛倒,則可用公式SKIPIF1<0化簡(jiǎn);(3)指對(duì)互化的轉(zhuǎn)化技巧:對(duì)于將指數(shù)恒等式SKIPIF1<0作為已知條件,求函數(shù)SKIPIF1<0的值的問題,通常設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,將SKIPIF1<0值帶入函數(shù)SKIPIF1<0求解?!镜淅?】計(jì)算(1)SKIPIF1<0.(2)SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)2【解析】(1)SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0(2)原式SKIPIF1<0SKIPIF1<0SKIPIF1<0=2【典例2】化簡(jiǎn)求值:(1)SKIPIF1<0;(2)SKIPIF1<0【答案】(1)SKIPIF1<0;(2)1【解析】(1)原式=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0.(2)原式=SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.【典例3】計(jì)算(1)SKIPIF1<0.(2)SKIPIF1<0.【答案】(1)9;(2)5【解析】(1)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0;(2)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.二、指數(shù)型復(fù)合函數(shù)的值域1、形如(,且)的函數(shù)求值域換元法:令,將求原函數(shù)的值域轉(zhuǎn)化為求的值域,但要注意“新元”的范圍2、形如(,且)的函數(shù)求值域換元法:令,先求出的值域,再利用的單調(diào)性求出的值域。【典例1】已知指數(shù)函數(shù)SKIPIF1<0的圖像經(jīng)過(guò)點(diǎn)SKIPIF1<0.(1)求SKIPIF1<0的值;(2)當(dāng)SKIPIF1<0時(shí),求函數(shù)SKIPIF1<0的值域.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【解析】(1)∵函數(shù)SKIPIF1<0的圖像經(jīng)過(guò)點(diǎn)SKIPIF1<0,∴SKIPIF1<0,得SKIPIF1<0.(2)令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的值域?yàn)镾KIPIF1<0.【典例2】已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)當(dāng)SKIPIF1<0,且SKIPIF1<0時(shí),求函數(shù)SKIPIF1<0的值域;(2)若函數(shù)SKIPIF1<0在SKIPIF1<0的最小值為SKIPIF1<0,求實(shí)數(shù)SKIPIF1<0的值;【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【解析】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;令SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的值域?yàn)镾KIPIF1<0.(2)令SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,對(duì)稱軸為SKIPIF1<0;當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,解得:SKIPIF1<0(舍);當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,解得:SKIPIF1<0(舍)或SKIPIF1<0;當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,解得:SKIPIF1<0(舍);綜上所述:SKIPIF1<0.三、對(duì)數(shù)型復(fù)合函數(shù)的值域1、形如(,且)的函數(shù)求值域換元法:令,先求出的值域,再利用的單調(diào)性,再求出的值域。2、形如(,且)的函數(shù)的值域換元法:令,先求出的值域,再利用的單調(diào)性,求出的值域。【典例1】已知函數(shù)SKIPIF1<0且SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0的值域;(2)若SKIPIF1<0在SKIPIF1<0上的最大值大于SKIPIF1<0,求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【解析】(1)由SKIPIF1<0得:SKIPIF1<0,則SKIPIF1<0的定義域?yàn)镾KIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào)),SKIPIF1<0,則SKIPIF1<0的值域?yàn)镾KIPIF1<0.(2)SKIPIF1<0;令SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的值域?yàn)镾KIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0(舍);當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0;綜上所述:實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.【典例2】已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0的取值范圍;(2)當(dāng)SKIPIF1<0時(shí),求函數(shù)SKIPIF1<0的值域.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【解析】(1)設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0;(2)由(1)得,當(dāng)SKIPIF1<0,SKIPIF1<0,所以函數(shù)可轉(zhuǎn)化為SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取最小值為SKIPIF1<0,當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0取最大值為SKIPIF1<0,即當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取最小值為SKIPIF1<0,當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0取最大值為SKIPIF1<0,即函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0.四、指對(duì)冪比較大小的常見方法1、單調(diào)性法:當(dāng)兩個(gè)數(shù)都是指數(shù)冪或?qū)?shù)式時(shí),可將其看成某個(gè)指數(shù)函數(shù)、對(duì)數(shù)函數(shù)或冪函數(shù)的函數(shù)值,然后利用該函數(shù)的單調(diào)性比較;2、作差法、作商法:(1)一般情況下,作差或者作商,可處理底數(shù)不一樣的對(duì)數(shù)比大小;(2)作差或作商的難點(diǎn)在于后續(xù)變形處理,注意此處的常見技巧與方法;3、中間值法或1/0比較法:比較多個(gè)數(shù)的大小時(shí),先利用“0”“1”作為分界點(diǎn),然后再各部分內(nèi)再利用函數(shù)的性質(zhì)比較大?。?、估值法:(1)估算要比較大小的兩個(gè)值所在的大致區(qū)間;(2)可以對(duì)區(qū)間使用二分法(或利用指對(duì)轉(zhuǎn)化)尋找合適的中間值;5、構(gòu)造函數(shù),運(yùn)用函數(shù)的單調(diào)性比較:構(gòu)造函數(shù),觀察總結(jié)“同構(gòu)”規(guī)律,很多時(shí)候三個(gè)數(shù)比較大小,可能某一個(gè)數(shù)會(huì)被可以的隱藏了“同構(gòu)”規(guī)律,所以可能優(yōu)先從結(jié)構(gòu)最接近的的兩個(gè)數(shù)規(guī)律(1)對(duì)于抽象函數(shù),可以借助中心對(duì)稱、軸對(duì)稱、周期等性質(zhì)來(lái)“去除f()外衣”比較大?。唬?)有解析式函數(shù),可以通過(guò)函數(shù)性質(zhì)或者求導(dǎo)等,尋找函數(shù)的單調(diào)性、對(duì)稱性,比較大小。6、放縮法:(1)對(duì)數(shù),利用單調(diào)性,放縮底數(shù),或者放縮真數(shù);(2)指數(shù)和冪函數(shù)結(jié)合來(lái)放縮;(3)利用均值不等式的不等關(guān)系進(jìn)行放縮;(4)“數(shù)值逼近”是指一些無(wú)從下手的數(shù)據(jù),如果分析會(huì)發(fā)現(xiàn)非常接近某些整數(shù)(主要是整數(shù)多一些),那么可以用該“整數(shù)”為變量,構(gòu)造四舍五入函數(shù)關(guān)系?!镜淅?】已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【解析】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,因?yàn)镾KIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故選:A.【典例2】已知SKIPIF1<0,則()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【解析】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:A【典例3】若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則a,b,c的大小關(guān)系為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】由題意:SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0.又SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故選:B.五、函數(shù)零點(diǎn)個(gè)數(shù)的判斷方法1、直接法:直接求零點(diǎn),令SKIPIF1<0,如果能求出解,則有幾個(gè)不同的解就有幾個(gè)零點(diǎn).2、定理法:利用零點(diǎn)存在定理,函數(shù)的圖象在區(qū)間SKIPIF1<0上是連續(xù)不斷的曲線,且SKIPIF1<0,結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性)才能確定函數(shù)有多少個(gè)零點(diǎn).3、圖象法:(1)單個(gè)函數(shù)圖象:利用圖象交點(diǎn)的個(gè)數(shù),畫出函數(shù)SKIPIF1<0的圖象,函數(shù)SKIPIF1<0的圖象與SKIPIF1<0軸交點(diǎn)的個(gè)數(shù)就是函數(shù)SKIPIF1<0的零點(diǎn)個(gè)數(shù);(2)兩個(gè)函數(shù)圖象:將函數(shù)SKIPIF1<0拆成兩個(gè)函數(shù)SKIPIF1<0和SKIPIF1<0的差,根據(jù)SKIPIF1<0,則函數(shù)SKIPIF1<0的零點(diǎn)個(gè)數(shù)就是函數(shù)SKIPIF1<0和SKIPIF1<0的圖象的交點(diǎn)個(gè)數(shù)4、性質(zhì)法:利用函數(shù)性質(zhì),若能確定函數(shù)的單調(diào)性,則其零點(diǎn)個(gè)數(shù)不難得到;若所考查的函數(shù)是周期函數(shù),則只需解決在一個(gè)周期內(nèi)的零點(diǎn)的個(gè)數(shù)【典例1】函數(shù)SKIPIF1<0的零點(diǎn)個(gè)數(shù)為()A.0B.1C.2D.3【典例2】已知函數(shù)SKIPIF1<0滿足SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上的零點(diǎn)個(gè)數(shù)為.【典例3】已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0,SKIPIF1<0的零點(diǎn)個(gè)數(shù)()A.3個(gè)B.5個(gè)C.10個(gè)D.9個(gè)易錯(cuò)點(diǎn)1指數(shù)與對(duì)數(shù)函數(shù)中忽略對(duì)底數(shù)的討論點(diǎn)撥:指數(shù)與對(duì)數(shù)函數(shù)問題中,其底數(shù)若不是確定的數(shù)值,需要對(duì)底數(shù)分a>1或0<a<1兩種情況進(jìn)行討論。【典例1】若指數(shù)函數(shù)SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度智能設(shè)備研發(fā)工程師聘用合同
- 生鮮果蔬冷藏服務(wù)合同
- 互聯(lián)網(wǎng)軟件開發(fā)及服務(wù)合同
- 海鮮市場(chǎng)交易合同
- 汽車零部件生產(chǎn)及供應(yīng)合同
- 云計(jì)算數(shù)據(jù)中心運(yùn)營(yíng)維護(hù)合同
- 環(huán)保水處理技術(shù)研發(fā)與應(yīng)用合同
- 投資擔(dān)保借款合同
- 文化遺產(chǎn)保護(hù)與傳承合作合同
- 半導(dǎo)體整流器件精密測(cè)試儀表可行性研究報(bào)告申請(qǐng)備案
- 如何構(gòu)建高效課堂課件
- 徐金桂行政法與行政訴訟法新講義
- 瀝青拌合設(shè)備結(jié)構(gòu)認(rèn)知
- GB/T 13234-2018用能單位節(jié)能量計(jì)算方法
- (課件)肝性腦病
- 北師大版五年級(jí)上冊(cè)數(shù)學(xué)教學(xué)課件第5課時(shí) 人民幣兌換
- 工程回訪記錄單
- 高考物理二輪專題課件:“配速法”解決擺線問題
- 檢驗(yàn)科生物安全風(fēng)險(xiǎn)評(píng)估報(bào)告
- 京頤得移動(dòng)門診產(chǎn)品輸液
- 如何做一名合格的帶教老師PPT精選文檔
評(píng)論
0/150
提交評(píng)論