版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
陜西省西安市碑林區(qū)西北工大附中2024屆中考數(shù)學(xué)適應(yīng)性模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.小明同學(xué)在學(xué)習(xí)了全等三角形的相關(guān)知識后發(fā)現(xiàn),只用兩把完全相同的長方形直尺就可以作出一個角的平分線.如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點P,小明說:“射線OP就是∠BOA的角平分線.”他這樣做的依據(jù)是()A.角的內(nèi)部到角的兩邊的距離相等的點在角的平分線上B.角平分線上的點到這個角兩邊的距離相等C.三角形三條角平分線的交點到三條邊的距離相等D.以上均不正確2.如圖,在下列條件中,不能判定直線a與b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°3.如圖是由一些相同的小正方體組成的幾何體的三視圖,則組成這個幾何體的小正方體個數(shù)最多為()A.7 B.8 C.9 D.104.如圖,有一些點組成形如四邊形的圖案,每條“邊”(包括頂點)有n(n>1)個點.當(dāng)n=2018時,這個圖形總的點數(shù)S為()A.8064 B.8067 C.8068 D.80725.如圖所示,在方格紙上建立的平面直角坐標(biāo)系中,將△ABC繞點O按順時針方向旋轉(zhuǎn)90°,得到△A′B′O,則點A′的坐標(biāo)為()A.(3,1) B.(3,2) C.(2,3) D.(1,3)6.如果關(guān)于x的分式方程有負(fù)分?jǐn)?shù)解,且關(guān)于x的不等式組的解集為x<-2,那么符合條件的所有整數(shù)a的積是()A.-3 B.0 C.3 D.97.將直線y=﹣x+a的圖象向右平移2個單位后經(jīng)過點A(3,3),則a的值為()A.4B.﹣4C.2D.﹣28.某校九年級(1)班全體學(xué)生實驗考試的成績統(tǒng)計如下表:成績(分)24252627282930人數(shù)(人)2566876根據(jù)上表中的信息判斷,下列結(jié)論中錯誤的是()A.該班一共有40名同學(xué)B.該班考試成績的眾數(shù)是28分C.該班考試成績的中位數(shù)是28分D.該班考試成績的平均數(shù)是28分9.a(chǎn)、b是實數(shù),點A(2,a)、B(3,b)在反比例函數(shù)y=﹣的圖象上,則()A.a(chǎn)<b<0 B.b<a<0 C.a(chǎn)<0<b D.b<0<a10.如圖,正方形被分割成四部分,其中I、II為正方形,III、IV為長方形,I、II的面積之和等于III、IV面積之和的2倍,若II的邊長為2,且I的面積小于II的面積,則I的邊長為()A.4 B.3 C. D.11.實數(shù)a在數(shù)軸上的位置如圖所示,則化簡后為()A.7 B.﹣7 C.2a﹣15 D.無法確定12.已知關(guān)于x的方程恰有一個實根,則滿足條件的實數(shù)a的值的個數(shù)為()A.1 B.2 C.3 D.4二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在△OAB中,C是AB的中點,反比例函數(shù)y=(k>0)在第一象限的圖象經(jīng)過A,C兩點,若△OAB面積為6,則k的值為_____.14.如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c過A,B,C三點,點A的坐標(biāo)是(3,0),點C的坐標(biāo)是(0,-3),動點P在拋物線上.b=_________,c=_________,點B的坐標(biāo)為_____________;(直接填寫結(jié)果)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標(biāo);若不存在,說明理由;過動點P作PE垂直y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長度最短時,求出點P的坐標(biāo).15.如圖,在?ABCD中,AD=2,AB=4,∠A=30°,以點A為圓心,AD的長為半徑畫弧交AB于點E,連接CE,則陰影部分的面積是▲(結(jié)果保留π).16.正多邊形的一個外角是,則這個多邊形的內(nèi)角和的度數(shù)是___________________.17.拋物線y=ax2+bx+c的頂點為D(-1,2),與x軸的一個交點A在點(-3,1)和(-2,1)之間,其部分圖象如圖,則以下結(jié)論:①b2-4ac<1;②當(dāng)x>-1時y隨x增大而減??;③a+b+c<1;④若方程ax2+bx+c-m=1沒有實數(shù)根,則m>2;
⑤3a+c<1.其中,正確結(jié)論的序號是________________.18.閱讀下面材料:在數(shù)學(xué)課上,老師提出利用尺規(guī)作圖完成下面問題:已知:∠ACB是△ABC的一個內(nèi)角.求作:∠APB=∠ACB.小明的做法如下:如圖①作線段AB的垂直平分線m;②作線段BC的垂直平分線n,與直線m交于點O;③以點O為圓心,OA為半徑作△ABC的外接圓;④在弧ACB上取一點P,連結(jié)AP,BP.所以∠APB=∠ACB.老師說:“小明的作法正確.”請回答:(1)點O為△ABC外接圓圓心(即OA=OB=OC)的依據(jù)是_____;(2)∠APB=∠ACB的依據(jù)是_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某化妝品店老板到廠家選購A、B兩種品牌的化妝品,若購進(jìn)A品牌的化妝品5套,B品牌的化妝品6套,需要950元;若購進(jìn)A品牌的化妝品3套,B品牌的化妝品2套,需要450元.(1)求A、B兩種品牌的化妝品每套進(jìn)價分別為多少元?(2)若銷售1套A品牌的化妝品可獲利30元,銷售1套B品牌的化妝品可獲利20元;根據(jù)市場需求,店老板決定購進(jìn)這兩種品牌化妝品共50套,且進(jìn)貨價錢不超過4000元,應(yīng)如何選擇進(jìn)貨方案,才能使賣出全部化妝品后獲得最大利潤,最大利潤是多少?20.(6分)九年級學(xué)生到距離學(xué)校6千米的百花公園去春游,一部分學(xué)生步行前往,20分鐘后另一部分學(xué)生騎自行車前往,設(shè)(分鐘)為步行前往的學(xué)生離開學(xué)校所走的時間,步行學(xué)生走的路程為千米,騎自行車學(xué)生騎行的路程為千米,關(guān)于的函數(shù)圖象如圖所示.(1)求關(guān)于的函數(shù)解析式;(2)步行的學(xué)生和騎自行車的學(xué)生誰先到達(dá)百花公園,先到了幾分鐘?21.(6分)隨著“互聯(lián)網(wǎng)+”時代的到來,一種新型打車方式受到大眾歡迎,該打車方式的總費用由里程費和耗時費組成,其中里程費按x元/公里計算,耗時費按y元/分鐘計算(總費用不足9元按9元計價).小明、小剛兩人用該打車方式出行,按上述計價規(guī)則,其打車總費用、行駛里程數(shù)與打車時間如表:時間(分鐘)里程數(shù)(公里)車費(元)小明8812小剛121016(1)求x,y的值;(2)如果小華也用該打車方式,打車行駛了11公里,用了14分鐘,那么小華的打車總費用為多少?22.(8分)根據(jù)圖中給出的信息,解答下列問題:放入一個小球水面升高,,放入一個大球水面升高;如果要使水面上升到50,應(yīng)放入大球、小球各多少個?23.(8分)據(jù)城市速遞報道,我市一輛高為2.5米的客車,卡在快速路引橋上高為2.55米的限高桿的上端,已知引橋的坡角∠ABC為14°,請結(jié)合示意圖,用你學(xué)過的知識通過數(shù)據(jù)說明客車不能通過的原因.(參考數(shù)據(jù):sin14°=0.24,cos14°=0.97,tan14°=0.25)24.(10分)已知拋物線的開口向上頂點為P(1)若P點坐標(biāo)為(4,一1),求拋物線的解析式;(2)若此拋物線經(jīng)過(4,一1),當(dāng)-1≤x≤2時,求y的取值范圍(用含a的代數(shù)式表示)(3)若a=1,且當(dāng)0≤x≤1時,拋物線上的點到x軸距離的最大值為6,求b的值25.(10分)如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于點D,O為AB上一點,經(jīng)過點A,D的⊙O分別交AB,AC于點E,F(xiàn),連接OF交AD于點G.求證:BC是⊙O的切線;設(shè)AB=x,AF=y(tǒng),試用含x,y的代數(shù)式表示線段AD的長;若BE=8,sinB=,求DG的長,26.(12分)如圖,⊙O是△ABC的外接圓,BC為⊙O的直徑,點E為△ABC的內(nèi)心,連接AE并延長交⊙O于D點,連接BD并延長至F,使得BD=DF,連接CF、BE.(1)求證:DB=DE;(2)求證:直線CF為⊙O的切線;(3)若CF=4,求圖中陰影部分的面積.27.(12分)為營造“安全出行”的良好交通氛圍,實時監(jiān)控道路交迸,某市交管部門在路口安裝的高清攝像頭如圖所示,立桿MA與地面AB垂直,斜拉桿CD與AM交于點C,橫桿DE∥AB,攝像頭EF⊥DE于點E,AC=55米,CD=3米,EF=0.4米,∠CDE=162°.求∠MCD的度數(shù);求攝像頭下端點F到地面AB的距離.(精確到百分位)
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
過兩把直尺的交點C作CF⊥BO與點F,由題意得CE⊥AO,因為是兩把完全相同的長方形直尺,可得CE=CF,再根據(jù)角的內(nèi)部到角的兩邊的距離相等的點在這個角的平分線上可得OP平分∠AOB【詳解】如圖所示:過兩把直尺的交點C作CF⊥BO與點F,由題意得CE⊥AO,∵兩把完全相同的長方形直尺,∴CE=CF,∴OP平分∠AOB(角的內(nèi)部到角的兩邊的距離相等的點在這個角的平分線上),故選A.【點睛】本題主要考查了基本作圖,關(guān)鍵是掌握角的內(nèi)部到角的兩邊的距離相等的點在這個角的平分線上這一判定定理.2、C【解析】
解:A.∵∠1與∠2是直線a,b被c所截的一組同位角,∴∠1=∠2,可以得到a∥b,∴不符合題意B.∵∠2與∠3是直線a,b被c所截的一組內(nèi)錯角,∴∠2=∠3,可以得到a∥b,∴不符合題意,C.∵∠3與∠5既不是直線a,b被任何一條直線所截的一組同位角,內(nèi)錯角,∴∠3=∠5,不能得到a∥b,∴符合題意,D.∵∠3與∠4是直線a,b被c所截的一組同旁內(nèi)角,∴∠3+∠4=180°,可以得到a∥b,∴不符合題意,故選C.【點睛】本題考查平行線的判定,難度不大.3、C【解析】
主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】根據(jù)三視圖知,該幾何體中小正方體的分布情況如下圖所示:所以組成這個幾何體的小正方體個數(shù)最多為9個,故選C.【點睛】考查了三視圖判定幾何體,關(guān)鍵是對三視圖靈活運用,體現(xiàn)了對空間想象能力的考查.4、C【解析】分析:本題重點注意各個頂點同時在兩條邊上,計算點的個數(shù)時,不要把頂點重復(fù)計算了.詳解:此題中要計算點的個數(shù),可以類似周長的計算方法進(jìn)行,但應(yīng)注意各個頂點重復(fù)了一次.如當(dāng)n=2時,共有S2=4×2﹣4=4;當(dāng)n=3時,共有S3=4×3﹣4,…,依此類推,即Sn=4n﹣4,當(dāng)n=2018時,S2018=4×2018﹣4=1.故選C.點睛:本題考查了圖形的變化類問題,關(guān)鍵是通過歸納與總結(jié),得到其中的規(guī)律.5、D【解析】
解決本題抓住旋轉(zhuǎn)的三要素:旋轉(zhuǎn)中心O,旋轉(zhuǎn)方向順時針,旋轉(zhuǎn)角度90°,通過畫圖得A′.【詳解】由圖知A點的坐標(biāo)為(-3,1),根據(jù)旋轉(zhuǎn)中心O,旋轉(zhuǎn)方向順時針,旋轉(zhuǎn)角度90°,畫圖,從而得A′點坐標(biāo)為(1,3).故選D.6、D【解析】解:,由①得:x≤2a+4,由②得:x<﹣2,由不等式組的解集為x<﹣2,得到2a+4≥﹣2,即a≥﹣3,分式方程去分母得:a﹣3x﹣3=1﹣x,把a=﹣3代入整式方程得:﹣3x﹣6=1﹣x,即,符合題意;把a=﹣2代入整式方程得:﹣3x﹣5=1﹣x,即x=﹣3,不合題意;把a=﹣1代入整式方程得:﹣3x﹣4=1﹣x,即,符合題意;把a=0代入整式方程得:﹣3x﹣3=1﹣x,即x=﹣2,不合題意;把a=1代入整式方程得:﹣3x﹣2=1﹣x,即,符合題意;把a=2代入整式方程得:﹣3x﹣1=1﹣x,即x=1,不合題意;把a=3代入整式方程得:﹣3x=1﹣x,即,符合題意;把a=4代入整式方程得:﹣3x+1=1﹣x,即x=0,不合題意,∴符合條件的整數(shù)a取值為﹣3;﹣1;1;3,之積為1.故選D.7、A【解析】
直接根據(jù)“左加右減”的原則求出平移后的解析式,然后把A(3,3)代入即可求出a的值.【詳解】由“右加左減”的原則可知,將直線y=-x+b向右平移2個單位所得直線的解析式為:y=-x+b+2,把A(3,3)代入,得3=-3+b+2,解得b=4.故選A.【點睛】本題考查了一次函數(shù)圖象的平移,一次函數(shù)圖象的平移規(guī)律是:①y=kx+b向左平移m個單位,是y=k(x+m)+b,向右平移m個單位是y=k(x-m)+b,即左右平移時,自變量x左加右減;②y=kx+b向上平移n個單位,是y=kx+b+n,向下平移n個單位是y=kx+b-n,即上下平移時,b的值上加下減.8、D【解析】
直接利用眾數(shù)、中位數(shù)、平均數(shù)的求法分別分析得出答案.【詳解】解:A、該班一共有2+5+6+6+8+7+6=40名同學(xué),故此選項正確,不合題意;B、該班考試成績的眾數(shù)是28分,此選項正確,不合題意;C、該班考試成績的中位數(shù)是:第20和21個數(shù)據(jù)的平均數(shù),為28分,此選項正確,不合題意;D、該班考試成績的平均數(shù)是:(24×2+25×5+26×6+27×6+28×8+29×7+30×6)÷40=27.45(分),故選項D錯誤,符合題意.故選D.【點睛】此題主要考查了眾數(shù)、中位數(shù)、平均數(shù)的求法,正確把握相關(guān)定義是解題關(guān)鍵.9、A【解析】解:∵,∴反比例函數(shù)的圖象位于第二、四象限,在每個象限內(nèi),y隨x的增大而增大,∵點A(2,a)、B(3,b)在反比例函數(shù)的圖象上,∴a<b<0,故選A.10、C【解析】
設(shè)I的邊長為x,根據(jù)“I、II的面積之和等于III、IV面積之和的2倍”列出方程并解方程即可.【詳解】設(shè)I的邊長為x根據(jù)題意有解得或(舍去)故選:C.【點睛】本題主要考查一元二次方程的應(yīng)用,能夠根據(jù)題意列出方程是解題的關(guān)鍵.11、C【解析】
根據(jù)數(shù)軸上點的位置判斷出a﹣4與a﹣11的正負(fù),原式利用二次根式性質(zhì)及絕對值的代數(shù)意義化簡,去括號合并即可得到結(jié)果.【詳解】解:根據(jù)數(shù)軸上點的位置得:5<a<10,∴a﹣4>0,a﹣11<0,則原式=|a﹣4|﹣|a﹣11|=a﹣4+a﹣11=2a﹣15,故選:C.【點睛】此題考查了二次根式的性質(zhì)與化簡,以及實數(shù)與數(shù)軸,熟練掌握運算法則是解本題的關(guān)鍵.12、C【解析】
先將原方程變形,轉(zhuǎn)化為整式方程后得2x2-3x+(3-a)=1①.由于原方程只有一個實數(shù)根,因此,方程①的根有兩種情況:(1)方程①有兩個相等的實數(shù)根,此二等根使x(x-2)≠1;(2)方程①有兩個不等的實數(shù)根,而其中一根使x(x-2)=1,另外一根使x(x-2)≠1.針對每一種情況,分別求出a的值及對應(yīng)的原方程的根.【詳解】去分母,將原方程兩邊同乘x(x﹣2),整理得2x2﹣3x+(3﹣a)=1.①方程①的根的情況有兩種:(1)方程①有兩個相等的實數(shù)根,即△=9﹣3×2(3﹣a)=1.解得a=.當(dāng)a=時,解方程2x2﹣3x+(﹣+3)=1,得x1=x2=.(2)方程①有兩個不等的實數(shù)根,而其中一根使原方程分母為零,即方程①有一個根為1或2.(i)當(dāng)x=1時,代入①式得3﹣a=1,即a=3.當(dāng)a=3時,解方程2x2﹣3x=1,x(2x﹣3)=1,x1=1或x2=1.4.而x1=1是增根,即這時方程①的另一個根是x=1.4.它不使分母為零,確是原方程的唯一根.(ii)當(dāng)x=2時,代入①式,得2×3﹣2×3+(3﹣a)=1,即a=5.當(dāng)a=5時,解方程2x2﹣3x﹣2=1,x1=2,x2=﹣.x1是增根,故x=﹣為方程的唯一實根;因此,若原分式方程只有一個實數(shù)根時,所求的a的值分別是,3,5共3個.故選C.【點睛】考查了分式方程的解法及增根問題.由于原分式方程去分母后,得到一個含有字母的一元二次方程,所以要分情況進(jìn)行討論.理解分式方程產(chǎn)生增根的原因及一元二次方程解的情況從而正確進(jìn)行分類是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、4【解析】
分別過點、點作的垂線,垂足分別為點、點,根據(jù)是的中點得到為的中位線,然后設(shè),,,根據(jù),得到,最后根據(jù)面積求得,從而求得.【詳解】分別過點、點作的垂線,垂足分別為點、點,如圖點為的中點,為的中位線,,,,,,,,,.故答案為:.【點睛】本題考查了反比例函數(shù)的比例系數(shù)的幾何意義及三角形的中位線定理,關(guān)鍵是正確作出輔助線,掌握在反比例函數(shù)的圖象上任意一點象坐標(biāo)軸作垂線,這一點和垂足以及坐標(biāo)原點所構(gòu)成的三角形的面積是,且保持不變.14、(1),,(-1,0);(2)存在P的坐標(biāo)是或;(1)當(dāng)EF最短時,點P的坐標(biāo)是:(,)或(,)【解析】
(1)將點A和點C的坐標(biāo)代入拋物線的解析式可求得b、c的值,然后令y=0可求得點B的坐標(biāo);(2)分別過點C和點A作AC的垂線,將拋物線與P1,P2兩點先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A與拋物線的交點坐標(biāo)即可;(1)連接OD.先證明四邊形OEDF為矩形,從而得到OD=EF,然后根據(jù)垂線段最短可求得點D的縱坐標(biāo),從而得到點P的縱坐標(biāo),然后由拋物線的解析式可求得點P的坐標(biāo).【詳解】解:(1)∵將點A和點C的坐標(biāo)代入拋物線的解析式得:,解得:b=﹣2,c=﹣1,∴拋物線的解析式為.∵令,解得:,,∴點B的坐標(biāo)為(﹣1,0).故答案為﹣2;﹣1;(﹣1,0).(2)存在.理由:如圖所示:①當(dāng)∠ACP1=90°.由(1)可知點A的坐標(biāo)為(1,0).設(shè)AC的解析式為y=kx﹣1.∵將點A的坐標(biāo)代入得1k﹣1=0,解得k=1,∴直線AC的解析式為y=x﹣1,∴直線CP1的解析式為y=﹣x﹣1.∵將y=﹣x﹣1與聯(lián)立解得,(舍去),∴點P1的坐標(biāo)為(1,﹣4).②當(dāng)∠P2AC=90°時.設(shè)AP2的解析式為y=﹣x+b.∵將x=1,y=0代入得:﹣1+b=0,解得b=1,∴直線AP2的解析式為y=﹣x+1.∵將y=﹣x+1與聯(lián)立解得=﹣2,=1(舍去),∴點P2的坐標(biāo)為(﹣2,5).綜上所述,P的坐標(biāo)是(1,﹣4)或(﹣2,5).(1)如圖2所示:連接OD.由題意可知,四邊形OFDE是矩形,則OD=EF.根據(jù)垂線段最短,可得當(dāng)OD⊥AC時,OD最短,即EF最短.由(1)可知,在Rt△AOC中,∵OC=OA=1,OD⊥AC,∴D是AC的中點.又∵DF∥OC,∴DF=OC=,∴點P的縱坐標(biāo)是,∴,解得:x=,∴當(dāng)EF最短時,點P的坐標(biāo)是:(,)或(,).15、3【解析】
過D點作DF⊥AB于點F.∵AD=1,AB=4,∠A=30°,∴DF=AD?sin30°=1,EB=AB﹣AE=1.∴陰影部分的面積=平行四邊形ABCD的面積-扇形ADE面積-三角形CBE的面積=4×故答案為:3-16、540°【解析】
根據(jù)多邊形的外角和為360°,因此可以求出多邊形的邊數(shù)為360°÷72°=5,根據(jù)多邊形的內(nèi)角和公式(n-2)·180°,可得(5-2)×180°=540°.考點:多邊形的內(nèi)角和與外角和17、②③④⑤【解析】試題解析:∵二次函數(shù)與x軸有兩個交點,∴b2-4ac>1,故①錯誤,觀察圖象可知:當(dāng)x>-1時,y隨x增大而減小,故②正確,∵拋物線與x軸的另一個交點為在(1,1)和(1,1)之間,∴x=1時,y=a+b+c<1,故③正確,∵當(dāng)m>2時,拋物線與直線y=m沒有交點,∴方程ax2+bx+c-m=1沒有實數(shù)根,故④正確,∵對稱軸x=-1=-,∴b=2a,∵a+b+c<1,∴3a+c<1,故⑤正確,故答案為②③④⑤.18、①線段垂直平分線上的點與這條線段兩個端點的距離相等;②等量代換同弧所對的圓周角相等【解析】
(1)根據(jù)線段的垂直平分線的性質(zhì)定理以及等量代換即可得出結(jié)論.
(2)根據(jù)同弧所對的圓周角相等即可得出結(jié)論.【詳解】(1)如圖2中,∵M(jìn)N垂直平分AB,EF垂直平分BC,∴OA=OB,OB=OC(線段垂直平分線上的點與這條線段兩個端點的距離相等),∴OA=OB=OC(等量代換)故答案是:(2)∵,∴∠APB=∠ACB(同弧所對的圓周角相等).故答案是:(1)線段垂直平分線上的點與這條線段兩個端點的距離相等和等量代換;(2)同弧所對的圓周角相等.【點睛】考查作圖-復(fù)雜作圖、線段的垂直平分線的性質(zhì)、三角形的外心等知識,解題的關(guān)鍵是熟練掌握三角形外心的性質(zhì).三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)A、B兩種品牌得化妝品每套進(jìn)價分別為100元,75元;(2)A種品牌得化妝品購進(jìn)10套,B種品牌得化妝品購進(jìn)40套,才能使賣出全部化妝品后獲得最大利潤,最大利潤是1100元【解析】
(1)求A、B兩種品牌的化妝品每套進(jìn)價分別為多少元,可設(shè)A種品牌的化妝品每套進(jìn)價為x元,B種品牌的化妝品每套進(jìn)價為y元.根據(jù)兩種購買方法,列出方程組解方程;(2)根據(jù)題意列出不等式,求出m的范圍,再用代數(shù)式表示出利潤,即可得出答案.【詳解】(1)設(shè)A種品牌的化妝品每套進(jìn)價為x元,B種品牌的化妝品每套進(jìn)價為y元.得解得:,答:A、B兩種品牌得化妝品每套進(jìn)價分別為100元,75元.(2)設(shè)A種品牌得化妝品購進(jìn)m套,則B種品牌得化妝品購進(jìn)(50﹣m)套.根據(jù)題意得:100m+75(50﹣m)≤4000,且50﹣m≥0,解得,5≤m≤10,利潤是30m+20(50﹣m)=1000+10m,當(dāng)m取最大10時,利潤最大,最大利潤是1000+100=1100,所以A種品牌得化妝品購進(jìn)10套,B種品牌得化妝品購進(jìn)40套,才能使賣出全部化妝品后獲得最大利潤,最大利潤是1100元.【點睛】本題考查一元一次不等式組的應(yīng)用,將現(xiàn)實生活中的事件與數(shù)學(xué)思想聯(lián)系起來,讀懂題列出不等式關(guān)系式即可求解.20、;(2)騎自行車的學(xué)生先到達(dá)百花公園,先到了10分鐘.【解析】
(1)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以求得關(guān)于的函數(shù)解析式;(2)根據(jù)函數(shù)圖象中的數(shù)據(jù)和題意可以分別求得步行學(xué)生和騎自行車學(xué)生到達(dá)百花公園的時間,從而可以解答本題.【詳解】解:(1)設(shè)關(guān)于的函數(shù)解析式是,,得,即關(guān)于的函數(shù)解析式是;(2)由圖象可知,步行的學(xué)生的速度為:千米/分鐘,步行同學(xué)到達(dá)百花公園的時間為:(分鐘),當(dāng)時,,得,,答:騎自行車的學(xué)生先到達(dá)百花公園,先到了10分鐘.【點睛】本題考查一次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用一次函數(shù)的性質(zhì)解答.21、(1)x=1,y=;(2)小華的打車總費用為18元.【解析】試題分析:(1)根據(jù)表格內(nèi)容列出關(guān)于x、y的方程組,并解方程組.
(2)根據(jù)里程數(shù)和時間來計算總費用.試題解析:(1)由題意得,解得;(2)小華的里程數(shù)是11km,時間為14min.則總費用是:11x+14y=11+7=18(元).答:總費用是18元.22、詳見解析【解析】
(1)設(shè)一個小球使水面升高x厘米,一個大球使水面升高y厘米,根據(jù)圖象提供的數(shù)據(jù)建立方程求解即可.(1)設(shè)應(yīng)放入大球m個,小球n個,根據(jù)題意列二元一次方程組求解即可.【詳解】解:(1)設(shè)一個小球使水面升高x厘米,由圖意,得2x=21﹣16,解得x=1.設(shè)一個大球使水面升高y厘米,由圖意,得1y=21﹣16,解得:y=2.所以,放入一個小球水面升高1cm,放入一個大球水面升高2cm.(1)設(shè)應(yīng)放入大球m個,小球n個,由題意,得,解得:.答:如果要使水面上升到50cm,應(yīng)放入大球4個,小球6個.23、客車不能通過限高桿,理由見解析【解析】
根據(jù)DE⊥BC,DF⊥AB,得到∠EDF=∠ABC=14°.在Rt△EDF中,根據(jù)cos∠EDF=,求出DF的值,即可判斷.【詳解】∵DE⊥BC,DF⊥AB,∴∠EDF=∠ABC=14°.在Rt△EDF中,∠DFE=90°,∵cos∠EDF=,∴DF=DE?cos∠EDF=2.55×cos14°≈2.55×0.97≈2.1.∵限高桿頂端到橋面的距離DF為2.1米,小于客車高2.5米,∴客車不能通過限高桿.【點睛】考查解直角三角形,選擇合適的銳角三角函數(shù)是解題的關(guān)鍵.24、(1);(2)1-4a≤y≤4+5a;(3)b=2或-10.【解析】
(1)將P(4,-1)代入,可求出解析式
(2)將(4,-1)代入求得:b=-4a-1,再代入對稱軸直線中,可判斷,且開口向上,所以y隨x的增大而減小,再把x=-1,x=2代入即可求得.
(3)觀察圖象可得,當(dāng)0≤x≤1時,拋物線上的點到x軸距離的最大值為6,這些點可能為x=0,x=1,三種情況,再根據(jù)對稱軸在不同位置進(jìn)行討論即可.【詳解】解:(1)由此拋物線頂點為P(4,-1),所以y=a(x-4)2-1=ax2-8ax+16a-1,即16a-1=3,解得a=,b=-8a=-2所以拋物線解析式為:;(2)由此拋物線經(jīng)過點C(4,-1),所以一1=16a+4b+3,即b=-4a-1.因為拋物線的開口向上,則有其對稱軸為直線,而所以當(dāng)-1≤x≤2時,y隨著x的增大而減小當(dāng)x=-1時,y=a+(4a+1)+3=4+5a當(dāng)x=2時,y=4a-2(4a+1)+3=1-4a所以當(dāng)-1≤x≤2時,1-4a≤y≤4+5a;(3)當(dāng)a=1時,拋物線的解析式為y=x2+bx+3∴拋物線的對稱軸為直線由拋物線圖象可知,僅當(dāng)x=0,x=1或x=-時,拋物線上的點可能離x軸最遠(yuǎn)分別代入可得,當(dāng)x=0時,y=3當(dāng)x=1時,y=b+4當(dāng)x=-時,y=-+3①當(dāng)一<0,即b>0時,3≤y≤b+4,由b+4=6解得b=2②當(dāng)0≤-≤1時,即一2≤b≤0時,△=b2-12<0,拋物線與x軸無公共點由b+4=6解得b=2(舍去);③當(dāng),即b<-2時,b+4≤y≤3,由b+4=-6解得b=-10綜上,b=2或-10【點睛】本題考查了二次函數(shù)的性質(zhì),待定系數(shù)法求函數(shù)解析式,以及最值問題,關(guān)鍵是對稱軸在不同的范圍內(nèi),拋物線上的點到x軸距離的最大值的點不同.25、(1)證明見解析;(2)AD=;(3)DG=.【解析】
(1)連接OD,由AD為角平分線得到一對角相等,再由等邊對等角得到一對角相等,等量代換得到內(nèi)錯角相等,進(jìn)而得到OD與AC平行,得到OD與BC垂直,即可得證;
(2)連接DF,由(1)得到BC為圓O的切線,由弦切角等于夾弧所對的圓周角,進(jìn)而得到三角形ABD與三角形ADF相似,由相似得比例,即可表示出AD;
(3)連接EF,設(shè)圓的半徑為r,由sinB的值,利用銳角三角函數(shù)定義求出r的值,由直徑所對的圓周角為直角,得到EF與BC平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024個人抵押借款合同模板
- 2024股權(quán)投資合同范本范文
- 藥物性低血壓的護理
- 蘇州科技大學(xué)天平學(xué)院《統(tǒng)計學(xué)》2022-2023學(xué)年第一學(xué)期期末試卷
- 2024設(shè)備抵押借款合同范例
- 糖尿病的護理及注意事項
- 企業(yè)復(fù)工防疫十項導(dǎo)則考核試卷
- 城市軌道交通的智慧控制與自動化運行技術(shù)研究考核試卷
- 醫(yī)院年終總結(jié)及計劃
- 2024自然人股權(quán)轉(zhuǎn)讓合同范本
- 教師資格考試小學(xué)心理健康面試2024年下半年自測試題及答案解析
- Module10Theweather教學(xué)設(shè)計2024-2025學(xué)年外研版英語八年級上冊
- 英語項目化課程設(shè)計案例
- CTF信息安全競賽理論知識考試題庫大全-上(單選題)
- 醫(yī)院信息系統(tǒng)HIS知識培訓(xùn)一
- 重慶市2024年中考語文真題試卷(A卷)【附答案】
- 2024年GINA哮喘防治指南修訂解讀課件
- CJT152-2016 薄壁不銹鋼卡壓式和溝槽式管件
- 2024新高考英語1卷試題及答案(含聽力原文)
- 餐廳禁煙制度
- 項目轉(zhuǎn)量產(chǎn)管理流程模板
評論
0/150
提交評論