![矩陣運算與性質(zhì)分析_第1頁](http://file4.renrendoc.com/view2/M01/15/2E/wKhkFma0htiAeqRxAADbz9VHaFQ233.jpg)
![矩陣運算與性質(zhì)分析_第2頁](http://file4.renrendoc.com/view2/M01/15/2E/wKhkFma0htiAeqRxAADbz9VHaFQ2332.jpg)
![矩陣運算與性質(zhì)分析_第3頁](http://file4.renrendoc.com/view2/M01/15/2E/wKhkFma0htiAeqRxAADbz9VHaFQ2333.jpg)
![矩陣運算與性質(zhì)分析_第4頁](http://file4.renrendoc.com/view2/M01/15/2E/wKhkFma0htiAeqRxAADbz9VHaFQ2334.jpg)
![矩陣運算與性質(zhì)分析_第5頁](http://file4.renrendoc.com/view2/M01/15/2E/wKhkFma0htiAeqRxAADbz9VHaFQ2335.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
矩陣運算與性質(zhì)分析當(dāng)然可以!以下是根據(jù)“矩陣運算與性質(zhì)分析”標題設(shè)計的20道試題,包括選擇題和填空題,每道題后面都有詳細的序號介紹。1.選擇題1.下列哪個不是矩陣的運算法則?A.加法B.除法C.乘法D.轉(zhuǎn)置(答案:B,序號1)2.若矩陣A為3×2矩陣,矩陣B為2×4矩陣,則矩陣乘法AB的結(jié)果是一個幾行幾列的矩陣?(答案:3行4列,序號2)3.矩陣的轉(zhuǎn)置是指什么操作?A.將矩陣的對角線元素交換B.將矩陣的行列互換C.將矩陣的主對角線元素置為零D.將矩陣的所有元素加一(答案:B,序號3)4.給定矩陣A=\(\begin{bmatrix}1&2\\3&4\end{bmatrix}\),則A的轉(zhuǎn)置是什么?(答案:\(\begin{bmatrix}1&3\\2&4\end{bmatrix}\),序號4)5.對于任意矩陣A和B,一般來說,\(AB\neqBA\)。這種性質(zhì)稱為什么?A.可逆性B.結(jié)合律C.交換律D.分配律(答案:C,序號5)6.若矩陣A=\(\begin{bmatrix}2&1\\4&3\end{bmatrix}\),則\(A^{-1}\)是什么?(答案:\(\begin{bmatrix}3&-1\\-4&2\end{bmatrix}\),序號6)2.填空題7.矩陣的行數(shù)與列數(shù)分別為3和2時,該矩陣的形狀用\(m\timesn\)表示,填寫m和n的值。(答案:3,2,序號7)8.給定矩陣\(A=\begin{bmatrix}2&-1\\3&4\end{bmatrix}\),求\(A^T\)的元素\(a_{21}\)的值。(答案:3,序號8)9.若\(A=\begin{bmatrix}1&2&3\\4&5&6\end{bmatrix}\),求矩陣A的列數(shù)。(答案:3,序號9)10.設(shè)矩陣A和B滿足\(AB=BA\),則稱矩陣A和B是(填空)矩陣。(答案:交換,序號10)11.給定矩陣\(A=\begin{bmatrix}1&2\\3&4\end{bmatrix}\),則\(A^{-1}\)的行列式的值是(填空)。(答案:-2,序號11)3.選擇題12.下列哪個不是矩陣的運算法則?A.加法B.除法C.乘法D.轉(zhuǎn)置(答案:B,序號12)13.若矩陣A為3×2矩陣,矩陣B為2×4矩陣,則矩陣乘法AB的結(jié)果是一個幾行幾列的矩陣?(答案:3行4列,序號13)14.矩陣的轉(zhuǎn)置是指什么操作?A.將矩陣的對角線元素交換B.將矩陣的行列互換C.將矩陣的主對角線元素置為零D.將矩陣的所有元素加一(答案:B,序號14)15.給定矩陣A=\(\begin{bmatrix}1&2\\3&4\end{bmatrix}\),則A的轉(zhuǎn)置是什么?(答案:\(\begin{bmatrix}1&3\\2&4\end{bmatrix}\),序號15)16.對于任意矩陣A和B,一般來說,\(AB\neqBA\)。這種性質(zhì)稱為什么?A.可逆性B.結(jié)合律C.交換律D.分配律(答案:C,序號16)17.若矩陣A=\(\begin{bmatrix}2&1\\4&3\end{bmatrix}\),則\(A^{-1}\)是什么?(答案:\(\begin{bmatrix}3&-1\\-4&2\end{bmatrix}\),序號17)4.填空題18.矩陣的行數(shù)與列數(shù)分別為3和2時,該矩陣的形狀用\(m\timesn\)表示,填寫m和n的值。(答案:3,2,序號18)19.給定矩陣\(A=\begin{bmatrix}2&-1\\3&4\end{bmatrix}\),求\(A^T\)的元素\(a_{21}\)的值。(答案:3,序號19)20.若\(A=\begin{bmatrix}1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二手機器轉(zhuǎn)讓簡單合同范本年
- 施工工程運輸合同范本
- 購買二手房買賣合同范本
- 2025cc直播平臺主播轉(zhuǎn)公會合同
- 二手商品房買賣合同
- 水泥銷售合同范本
- 石料買賣合同
- 2025續(xù)訂勞動合同通知書模板
- 2025建筑企業(yè)流動資金借款合同范本版
- 廣告發(fā)布投放合同
- 《新能源汽車技術(shù)》課件-第二章 動力電池
- 數(shù)字金融 遠程音視頻手機銀行技術(shù)規(guī)范
- 2024屆高考語文一輪復(fù)習(xí):論證思路專練(含答案)
- 四年級學(xué)業(yè)指導(dǎo)模板
- 會議系統(tǒng)設(shè)備維護方案
- 少兒口才培訓(xùn)主持課件
- 餐飲業(yè)績效考核表(店長、前廳領(lǐng)班、吧臺、廚師長、后廚、服務(wù)員、收銀員、庫管、后勤)3
- 中藥炮制學(xué)-第五、六章
- 中國風(fēng)軍令狀誓師大會PPT模板
- 小兒高熱驚厥精品課件
- 2022年電拖實驗報告伍宏淳
評論
0/150
提交評論