2023-2024學年黑龍江省齊齊哈爾市龍沙區(qū)中考數(shù)學模擬預測題含解析_第1頁
2023-2024學年黑龍江省齊齊哈爾市龍沙區(qū)中考數(shù)學模擬預測題含解析_第2頁
2023-2024學年黑龍江省齊齊哈爾市龍沙區(qū)中考數(shù)學模擬預測題含解析_第3頁
2023-2024學年黑龍江省齊齊哈爾市龍沙區(qū)中考數(shù)學模擬預測題含解析_第4頁
2023-2024學年黑龍江省齊齊哈爾市龍沙區(qū)中考數(shù)學模擬預測題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年黑龍江省齊齊哈爾市龍沙區(qū)中考數(shù)學模擬預測題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.體育測試中,小進和小俊進行800米跑測試,小進的速度是小俊的1.25倍,小進比小俊少用了40秒,設小俊的速度是米/秒,則所列方程正確的是()A. B.C. D.2.二次函數(shù)y=(2x-1)2+2的頂點的坐標是()A.(1,2) B.(1,-2) C.(,2)

D.(-,-2)3.根據(jù)北京市統(tǒng)計局發(fā)布的統(tǒng)計數(shù)據(jù)顯示,北京市近五年國民生產總值數(shù)據(jù)如圖1所示,2017年國民生產總值中第一產業(yè)、第二產業(yè)、第三產業(yè)所占比例如圖2所示,根據(jù)以上信息,下列判斷錯誤的是()A.2013年至2017年北京市國民生產總值逐年增加B.2017年第二產業(yè)生產總值為5320億元C.2017年比2016年的國民生產總值增加了10%D.若從2018年開始,每一年的國民生產總值比前一年均增長10%,到2019年的國民生產總值將達到33880億元4.如圖,菱形ABCD的對角線相交于點O,過點D作DE∥AC,且DE=AC,連接CE、OE,連接AE,交OD于點F,若AB=2,∠ABC=60°,則AE的長為()A. B. C. D.5.一個圓錐的底面半徑為,母線長為6,則此圓錐的側面展開圖的圓心角是()A.180° B.150° C.120° D.90°6.下列各圖中a、b、c為三角形的邊長,則甲、乙、丙三個三角形和左側△ABC全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙7.如圖數(shù)軸的A、B、C三點所表示的數(shù)分別為a、b、c.若|a﹣b|=3,|b﹣c|=5,且原點O與A、B的距離分別為4、1,則關于O的位置,下列敘述何者正確?()A.在A的左邊 B.介于A、B之間C.介于B、C之間 D.在C的右邊8.已知a,b為兩個連續(xù)的整數(shù),且a<<b,則a+b的值為()A.7 B.8 C.9 D.109.將一塊直角三角板ABC按如圖方式放置,其中∠ABC=30°,A、B兩點分別落在直線m、n上,∠1=20°,添加下列哪一個條件可使直線m∥n()A.∠2=20° B.∠2=30° C.∠2=45° D.∠2=50°10.一、單選題在某校“我的中國夢”演講比賽中,有7名學生參加了決賽,他們決賽的最終成績各不相同.其中的一名學生想要知道自己能否進入前3名,不僅要了解自己的成績,還要了解這7名學生成績的()A.平均數(shù) B.眾數(shù) C.中位數(shù) D.方差二、填空題(共7小題,每小題3分,滿分21分)11.如圖,長方形紙片ABCD中,AB=4,BC=6,將△ABC沿AC折疊,使點B落在點E處,CE交AD于點F,則△AFC的面積等于___.12.若關于x的函數(shù)與x軸僅有一個公共點,則實數(shù)k的值為.13.關于x的一元二次方程x2+4x﹣k=0有實數(shù)根,則k的取值范圍是__________.14.如圖所示,點C在反比例函數(shù)的圖象上,過點C的直線與x軸、y軸分別交于點A、B,且,已知的面積為1,則k的值為______.15.如圖,點A,B是反比例函數(shù)y=(x>0)圖象上的兩點,過點A,B分別作AC⊥x軸于點C,BD⊥x軸于點D,連接OA,BC,已知點C(2,0),BD=2,S△BCD=3,則S△AOC=__.16.已知拋物線y=x2-x-1與x軸的一個交點為(m,0),則代數(shù)式m2-m+2017的值為____.17.若關于x的方程有增根,則m的值是▲三、解答題(共7小題,滿分69分)18.(10分)如圖,對稱軸為直線的拋物線與x軸相交于A、B兩點,其中A點的坐標為(-3,0).(1)求點B的坐標;(2)已知,C為拋物線與y軸的交點.①若點P在拋物線上,且,求點P的坐標;②設點Q是線段AC上的動點,作QD⊥x軸交拋物線于點D,求線段QD長度的最大值.19.(5分)隨著通訊技術迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷某校數(shù)學興趣小組設計了“你最喜歡的溝通方式”調查問卷每人必選且只選一種,在全校范圍內隨機調查了部分學生,將統(tǒng)計結果繪制了如下兩幅不完整的統(tǒng)計圖,請結合圖中所給的信息解答下列問題:這次統(tǒng)計共抽查了______名學生;在扇形統(tǒng)計圖中,表示“QQ”的扇形圓心角的度數(shù)為______;將條形統(tǒng)計圖補充完整;該校共有1500名學生,請估計該校最喜歡用“微信”進行溝通的學生有多少名.20.(8分)隨著地鐵和共享單車的發(fā)展,“地鐵+單車”已經成為很多市民出行的選擇.李華從文化宮站出發(fā),先乘坐地鐵,準備在離家較近的A,B,C,D,E中的某一站出地鐵,再騎共享單車回家.設他出地鐵的站點與文化宮距離為x(單位:千米),乘坐地鐵的時間(單位:分鐘)是關于x的一次函數(shù),其關系如下表:地鐵站ABCDEX(千米)891011.513(分鐘)1820222528(1)求關于x的函數(shù)表達式;李華騎單車的時間(單位:分鐘)也受x的影響,其關系可以用來描述.請問:李華應選擇在哪一站出地鐵,才能使他從文化宮回到家所需的時間最短?并求出最短時間.21.(10分)如圖,在三個小桶中裝有數(shù)量相同的小球(每個小桶中至少有三個小球),第一次變化:從左邊小桶中拿出兩個小球放入中間小桶中;第二次變化:從右邊小桶中拿出一個小球放入中間小桶中;第三次變化:從中間小桶中拿出一些小球放入右邊小桶中,使右邊小桶中小球個數(shù)是最初的兩倍.(1)若每個小桶中原有3個小球,則第一次變化后,中間小桶中小球個數(shù)是左邊小桶中小球個數(shù)的____倍;(2)若每個小桶中原有a個小球,則第二次變化后中間小桶中有_____個小球(用a表示);(3)求第三次變化后中間小桶中有多少個小球?22.(10分)數(shù)學興趣小組為了解我校初三年級1800名學生的身體健康情況,從初三隨機抽取了若干名學生,將他們按體重(均為整數(shù),單位:kg)分成五組(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計圖.補全條形統(tǒng)計圖,并估計我校初三年級體重介于47kg至53kg的學生大約有多少名.23.(12分)如圖,某校教學樓AB的后面有一建筑物CD,當光線與地面的夾角是22o時,教學樓在建筑物的墻上留下高2m的影子CE;而當光線與地面的夾角是45o時,教學樓頂A在地面上的影子F與墻角C有13m的距離(B、F、C在一條直線上).求教學樓AB的高度;學校要在A、E之間掛一些彩旗,請你求出A、E之間的距離(結果保留整數(shù)).24.(14分)先化簡,再求值:,其中與2,3構成的三邊,且為整數(shù).

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

先分別表示出小進和小俊跑800米的時間,再根據(jù)小進比小俊少用了40秒列出方程即可.【詳解】小進跑800米用的時間為秒,小俊跑800米用的時間為秒,∵小進比小俊少用了40秒,方程是,故選C.【點睛】本題考查了列分式方程解應用題,能找出題目中的相等關系式是解此題的關鍵.2、C【解析】試題分析:二次函數(shù)y=(2x-1)+2即的頂點坐標為(,2)考點:二次函數(shù)點評:本題考查二次函數(shù)的頂點坐標,考生要掌握二次函數(shù)的頂點式與其頂點坐標的關系3、C【解析】

由條形圖與扇形圖中的數(shù)據(jù)及增長率的定義逐一判斷即可得.【詳解】A、由條形圖知2013年至2017年北京市國民生產總值逐年增加,此選項正確;B、2017年第二產業(yè)生產總值為28000×19%=5320億元,此選項正確;C、2017年比2016年的國民生產總值增加了,此選項錯誤;D、若從2018年開始,每一年的國民生產總值比前一年均增長10%,到2019年的國民生產總值將達到2800×(1+10%)2=33880億元,此選項正確;故選C.【點睛】本題主要考查條形統(tǒng)計圖與扇形統(tǒng)計圖,解題的關鍵是根據(jù)條形統(tǒng)計圖與扇形統(tǒng)計圖得出具體數(shù)據(jù).4、C【解析】在菱形ABCD中,OC=AC,AC⊥BD,∴DE=OC,∵DE∥AC,∴四邊形OCED是平行四邊形,∵AC⊥BD,∴平行四邊形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴△ABC為等邊三角形,∴AD=AB=AC=2,OA=AC=1,在矩形OCED中,由勾股定理得:CE=OD=,在Rt△ACE中,由勾股定理得:AE=;故選C.點睛:本題考查了菱形的性質,先求出四邊形OCED是平行四邊形,再根據(jù)菱形的對角線互相垂直求出∠COD=90°,證明四邊形OCED是矩形,再根據(jù)菱形的性質得出AC=AB,再根據(jù)勾股定理得出AE的長度即可.5、B【解析】

解:,解得n=150°.故選B.考點:弧長的計算.6、B【解析】分析:根據(jù)三角形全等的判定方法得出乙和丙與△ABC全等,甲與△ABC不全等.詳解:乙和△ABC全等;理由如下:在△ABC和圖乙的三角形中,滿足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和圖丙的三角形中,滿足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲與△ABC全等;故選B.點睛:本題考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.7、C【解析】分析:由A、B、C三點表示的數(shù)之間的關系結合三點在數(shù)軸上的位置即可得出b=a+3,c=b+5,再根據(jù)原點O與A、B的距離分別為1、1,即可得出a=±1、b=±1,結合a、b、c間的關系即可求出a、b、c的值,由此即可得出結論.解析:∵|a﹣b|=3,|b﹣c|=5,∴b=a+3,c=b+5,∵原點O與A、B的距離分別為1、1,∴a=±1,b=±1,∵b=a+3,∴a=﹣1,b=﹣1,∵c=b+5,∴c=1.∴點O介于B、C點之間.故選C.點睛:本題考查了數(shù)值以及絕對值,解題的關鍵是確定a、b、c的值.本題屬于基礎題,難度不大,解決該題型題目時,根據(jù)數(shù)軸上點的位置關系分別找出各點代表的數(shù)是關鍵.8、A【解析】∵9<11<16,∴,即,∵a,b為兩個連續(xù)的整數(shù),且,∴a=3,b=4,∴a+b=7,故選A.9、D【解析】

根據(jù)平行線的性質即可得到∠2=∠ABC+∠1,即可得出結論.【詳解】∵直線EF∥GH,

∴∠2=∠ABC+∠1=30°+20°=50°,

故選D.【點睛】本題考查了平行線的性質,熟練掌握平行線的性質是解題的關鍵.10、C【解析】

由于其中一名學生想要知道自己能否進入前3名,共有7名選手參加,故應根據(jù)中位數(shù)的意義分析.【詳解】由于總共有7個人,且他們的成績各不相同,第4的成績是中位數(shù),要判斷是否進入前3名,故應知道中位數(shù)的多少.故選C.【點睛】此題主要考查統(tǒng)計的有關知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)、方差等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當?shù)倪\用.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

由矩形的性質可得AB=CD=4,BC=AD=6,AD//BC,由平行線的性質和折疊的性質可得∠DAC=∠ACE,可得AF=CF,由勾股定理可求AF的長,即可求△AFC的面積.【詳解】解:四邊形ABCD是矩形,,,折疊,在中,,,.故答案為:.【點睛】本題考查了翻折變換,矩形的性質,勾股定理,利用勾股定理求AF的長是本題的關鍵.12、0或-1?!窘馕觥坑捎跊]有交待是二次函數(shù),故應分兩種情況:當k=0時,函數(shù)是一次函數(shù),與x軸僅有一個公共點。當k≠0時,函數(shù)是二次函數(shù),若函數(shù)與x軸僅有一個公共點,則有兩個相等的實數(shù)根,即。綜上所述,若關于x的函數(shù)與x軸僅有一個公共點,則實數(shù)k的值為0或-1。13、k≥﹣1【解析】分析:根據(jù)方程的系數(shù)結合根的判別式△≥0,即可得出關于k的一元一次不等式,解之即可得出結論.詳解:∵關于x的一元二次方程x2+1x-k=0有實數(shù)根,∴△=12-1×1×(-k)=16+1k≥0,解得:k≥-1.故答案為k≥-1.點睛:本題考查了根的判別式,牢記“當△≥0時,方程有實數(shù)根”是解題的關鍵.14、1【解析】

根據(jù)題意可以設出點A的坐標,從而以得到點C和點B的坐標,再根據(jù)的面積為1,即可求得k的值.【詳解】解:設點A的坐標為,過點C的直線與x軸,y軸分別交于點A,B,且,的面積為1,點,點B的坐標為,,解得,,故答案為:1.【點睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義、一次函數(shù)圖象上點的坐標特征、反比例函數(shù)圖象上點的坐標特征,解題關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答.15、1.【解析】

由三角形BCD為直角三角形,根據(jù)已知面積與BD的長求出CD的長,由OC+CD求出OD的長,確定出B的坐標,代入反比例解析式求出k的值,利用反比例函數(shù)k的幾何意義求出三角形AOC面積即可.【詳解】∵BD⊥CD,BD=2,∴S△BCD=BD?CD=2,即CD=2.∵C(2,0),即OC=2,∴OD=OC+CD=2+2=1,∴B(1,2),代入反比例解析式得:k=10,即y=,則S△AOC=1.故答案為1.【點睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義,以及反比例函數(shù)圖象上點的坐標特征,熟練掌握反比例函數(shù)k的幾何意義是解答本題的關鍵.16、1【解析】

把點(m,0)代入y=x2﹣x﹣1,求出m2﹣m=1,代入即可求出答案.【詳解】∵二次函數(shù)y=x2﹣x﹣1的圖象與x軸的一個交點為(m,0),∴m2﹣m﹣1=0,∴m2﹣m=1,∴m2﹣m+2017=1+2017=1.故答案為:1.【點睛】本題考查了拋物線與x軸的交點問題,求代數(shù)式的值的應用,解答此題的關鍵是求出m2﹣m=1,難度適中.17、1.【解析】方程兩邊都乘以最簡公分母(x-2),把分式方程化為整式方程,再根據(jù)分式方程的增根就是使最簡公分母等于1的未知數(shù)的值求出x的值,然后代入進行計算即可求出m的值:方程兩邊都乘以(x-2)得,2-x-m=2(x-2).∵分式方程有增根,∴x-2=1,解得x=2.∴2-2-m=2(2-2),解得m=1.三、解答題(共7小題,滿分69分)18、(1)點B的坐標為(1,0).(2)①點P的坐標為(4,21)或(-4,5).②線段QD長度的最大值為.【解析】

(1)由拋物線的對稱性直接得點B的坐標.(2)①用待定系數(shù)法求出拋物線的解析式,從而可得點C的坐標,得到,設出點P的坐標,根據(jù)列式求解即可求得點P的坐標.②用待定系數(shù)法求出直線AC的解析式,由點Q在線段AC上,可設點Q的坐標為(q,-q-3),從而由QD⊥x軸交拋物線于點D,得點D的坐標為(q,q2+2q-3),從而線段QD等于兩點縱坐標之差,列出函數(shù)關系式應用二次函數(shù)最值原理求解.【詳解】解:(1)∵A、B兩點關于對稱軸對稱,且A點的坐標為(-3,0),∴點B的坐標為(1,0).(2)①∵拋物線,對稱軸為,經過點A(-3,0),∴,解得.∴拋物線的解析式為.∴B點的坐標為(0,-3).∴OB=1,OC=3.∴.設點P的坐標為(p,p2+2p-3),則.∵,∴,解得.當時;當時,,∴點P的坐標為(4,21)或(-4,5).②設直線AC的解析式為,將點A,C的坐標代入,得:,解得:.∴直線AC的解析式為.∵點Q在線段AC上,∴設點Q的坐標為(q,-q-3).又∵QD⊥x軸交拋物線于點D,∴點D的坐標為(q,q2+2q-3).∴.∵,∴線段QD長度的最大值為.19、(1)100,108°;(2)答案見解析;(3)600人.【解析】

(1)先利用QQ計算出宗人數(shù),再用百分比計算度數(shù);(2)按照扇形圖補充條形圖;(3)利用微信溝通所占百分比計算總人數(shù).【詳解】解:(1)喜歡用電話溝通的人數(shù)為20,所占百分比為20%,∴此次共抽查了:20÷20%=100人.喜歡用QQ溝通所占比例為:,∴QQ的扇形圓心角的度數(shù)為:360°×=108°.(2)喜歡用短信的人數(shù)為:100×5%=5人喜歡用微信的人數(shù)為:100-20-5-30-5=40補充圖形,如圖所示:(3)喜歡用微信溝通所占百分比為:×100%=40%.∴該校共有1500名學生,估計該校最喜歡用“微信”進行溝通的學生有:1500×40%=600人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù).20、(1)y1=2x+2;(2)選擇在B站出地鐵,最短時間為39.5分鐘.【解析】

(1)根據(jù)表格中的數(shù)據(jù),運用待定系數(shù)法,即可求得y1關于x的函數(shù)表達式;(2)設李華從文化宮回到家所需的時間為y,則y=y1+y2=x2-9x+80,根據(jù)二次函數(shù)的性質,即可得出最短時間.【詳解】(1)設y1=kx+b,將(8,18),(9,20),代入y1=kx+b,得:解得所以y1關于x的函數(shù)解析式為y1=2x+2.(2)設李華從文化宮回到家所需的時間為y,則y=y1+y2=2x+2+x2-11x+78=x2-9x+80=(x-9)2+39.5.所以當x=9時,y取得最小值,最小值為39.5,答:李華應選擇在B站出地鐵,才能使他從文化宮回到家所需的時間最短,最短時間為39.5分鐘.【點睛】本題主要考查了二次函數(shù)的應用,解此類題的關鍵是通過題意,確定出二次函數(shù)的解析式,然后確定其最大值最小值,在求二次函數(shù)的最值時,一定要注意自變量x的取值范圍.21、(1)5;(2)(a+3);(3)第三次變化后中間小桶中有2個小球.【解析】

(1)(2)根據(jù)材料中的變化方法解答;(3)設原來每個捅中各有a個小球,根據(jù)第三次變化方法列出方程并解答.【詳解】解:(1)依題意得:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論