![2022-2023學(xué)年上海市實(shí)驗(yàn)中學(xué)數(shù)學(xué)高三上期末統(tǒng)考試題含解析_第1頁](http://file4.renrendoc.com/view12/M0A/06/10/wKhkGWa3-5-AcQ0uAAKxFBSE6XI282.jpg)
![2022-2023學(xué)年上海市實(shí)驗(yàn)中學(xué)數(shù)學(xué)高三上期末統(tǒng)考試題含解析_第2頁](http://file4.renrendoc.com/view12/M0A/06/10/wKhkGWa3-5-AcQ0uAAKxFBSE6XI2822.jpg)
![2022-2023學(xué)年上海市實(shí)驗(yàn)中學(xué)數(shù)學(xué)高三上期末統(tǒng)考試題含解析_第3頁](http://file4.renrendoc.com/view12/M0A/06/10/wKhkGWa3-5-AcQ0uAAKxFBSE6XI2823.jpg)
![2022-2023學(xué)年上海市實(shí)驗(yàn)中學(xué)數(shù)學(xué)高三上期末統(tǒng)考試題含解析_第4頁](http://file4.renrendoc.com/view12/M0A/06/10/wKhkGWa3-5-AcQ0uAAKxFBSE6XI2824.jpg)
![2022-2023學(xué)年上海市實(shí)驗(yàn)中學(xué)數(shù)學(xué)高三上期末統(tǒng)考試題含解析_第5頁](http://file4.renrendoc.com/view12/M0A/06/10/wKhkGWa3-5-AcQ0uAAKxFBSE6XI2825.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.中國(guó)古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個(gè)問題:“三百七十八里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請(qǐng)公仔細(xì)算相還.”意思為有一個(gè)人要走378里路,第一天健步行走,從第二天起腳痛,每天走的路程為前一天的一半,走了六天恰好到達(dá)目的地,請(qǐng)問第二天比第四天多走了()A.96里 B.72里 C.48里 D.24里2.阿基米德(公元前287年—公元前212年)是古希臘偉大的哲學(xué)家、數(shù)學(xué)家和物理學(xué)家,他和高斯、牛頓并列被稱為世界三大數(shù)學(xué)家.據(jù)說,他自己覺得最為滿意的一個(gè)數(shù)學(xué)發(fā)現(xiàn)就是“圓柱內(nèi)切球體的體積是圓柱體積的三分之二,并且球的表面積也是圓柱表面積的三分之二”.他特別喜歡這個(gè)結(jié)論,要求后人在他的墓碑上刻著一個(gè)圓柱容器里放了一個(gè)球,如圖,該球頂天立地,四周碰邊,表面積為的圓柱的底面直徑與高都等于球的直徑,則該球的體積為()A. B. C. D.3.將函數(shù)的圖象先向右平移個(gè)單位長(zhǎng)度,在把所得函數(shù)圖象的橫坐標(biāo)變?yōu)樵瓉淼谋?,縱坐標(biāo)不變,得到函數(shù)的圖象,若函數(shù)在上沒有零點(diǎn),則的取值范圍是()A. B.C. D.4.已知直線:與橢圓交于、兩點(diǎn),與圓:交于、兩點(diǎn).若存在,使得,則橢圓的離心率的取值范圍為()A. B. C. D.5.運(yùn)行如圖程序,則輸出的S的值為()A.0 B.1 C.2018 D.20176.函數(shù),,則“的圖象關(guān)于軸對(duì)稱”是“是奇函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.在中,,,分別為角,,的對(duì)邊,若的面為,且,則()A.1 B. C. D.8.若表示不超過的最大整數(shù)(如,,),已知,,,則()A.2 B.5 C.7 D.89.“學(xué)習(xí)強(qiáng)國(guó)”學(xué)習(xí)平臺(tái)是由中宣部主管,以深入學(xué)習(xí)宣傳習(xí)近平新時(shí)代中國(guó)特色社會(huì)主義思想為主要內(nèi)容,立足全體黨員?面向全社會(huì)的優(yōu)質(zhì)平臺(tái),現(xiàn)日益成為老百姓了解國(guó)家動(dòng)態(tài)?緊跟時(shí)代脈搏的熱門?該款軟件主要設(shè)有“閱讀文章”?“視聽學(xué)習(xí)”兩個(gè)學(xué)習(xí)模塊和“每日答題”?“每周答題”?“專項(xiàng)答題”?“挑戰(zhàn)答題”四個(gè)答題模塊?某人在學(xué)習(xí)過程中,“閱讀文章”不能放首位,四個(gè)答題板塊中有且僅有三個(gè)答題板塊相鄰的學(xué)習(xí)方法有()A.60 B.192 C.240 D.43210.的展開式中的常數(shù)項(xiàng)為()A.-60 B.240 C.-80 D.18011.的展開式中的系數(shù)是()A.160 B.240 C.280 D.32012.我國(guó)數(shù)學(xué)家陳景潤(rùn)在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果,哥德巴赫猜想的內(nèi)容是:每個(gè)大于2的偶數(shù)都可以表示為兩個(gè)素?cái)?shù)的和,例如:,,,那么在不超過18的素?cái)?shù)中隨機(jī)選取兩個(gè)不同的數(shù),其和等于16的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.銳角中,角,,所對(duì)的邊分別為,,,若,則的取值范圍是______.14.某次足球比賽中,,,,四支球隊(duì)進(jìn)入了半決賽.半決賽中,對(duì)陣,對(duì)陣,獲勝的兩隊(duì)進(jìn)入決賽爭(zhēng)奪冠軍,失利的兩隊(duì)爭(zhēng)奪季軍.已知他們之間相互獲勝的概率如下表所示.獲勝概率—0.40.30.8獲勝概率0.6—0.70.5獲勝概率0.70.3—0.3獲勝概率0.20.50.7—?jiǎng)t隊(duì)獲得冠軍的概率為______.15.函數(shù)的值域?yàn)開________.16.在三棱錐中,,,兩兩垂直且,點(diǎn)為的外接球上任意一點(diǎn),則的最大值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若,求不等式的解集;(2)若“,”為假命題,求的取值范圍.18.(12分)設(shè)函數(shù)其中(Ⅰ)若曲線在點(diǎn)處切線的傾斜角為,求的值;(Ⅱ)已知導(dǎo)函數(shù)在區(qū)間上存在零點(diǎn),證明:當(dāng)時(shí),.19.(12分)已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)的切線方程;(2)討論函數(shù)的單調(diào)性.20.(12分)已知圓O經(jīng)過橢圓C:的兩個(gè)焦點(diǎn)以及兩個(gè)頂點(diǎn),且點(diǎn)在橢圓C上.求橢圓C的方程;若直線l與圓O相切,與橢圓C交于M、N兩點(diǎn),且,求直線l的傾斜角.21.(12分)已知函數(shù)(1)求f(x)的單調(diào)遞增區(qū)間;(2)△ABC內(nèi)角A、B、C的對(duì)邊分別為a、b、c,若且A為銳角,a=3,sinC=2sinB,求△ABC的面積.22.(10分)秉持“綠水青山就是金山銀山”的生態(tài)文明發(fā)展理念,為推動(dòng)新能源汽車產(chǎn)業(yè)迅速發(fā)展,有必要調(diào)查研究新能源汽車市場(chǎng)的生產(chǎn)與銷售.下圖是我國(guó)某地區(qū)年至年新能源汽車的銷量(單位:萬臺(tái))按季度(一年四個(gè)季度)統(tǒng)計(jì)制成的頻率分布直方圖.(1)求直方圖中的值,并估計(jì)銷量的中位數(shù);(2)請(qǐng)根據(jù)頻率分布直方圖估計(jì)新能源汽車平均每個(gè)季度的銷售量(同一組數(shù)據(jù)用該組中間值代表),并以此預(yù)計(jì)年的銷售量.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
人每天走的路程構(gòu)成公比為的等比數(shù)列,設(shè)此人第一天走的路程為,計(jì)算,代入得到答案.【詳解】由題意可知此人每天走的路程構(gòu)成公比為的等比數(shù)列,設(shè)此人第一天走的路程為,則,解得,從而可得,故.故選:.【點(diǎn)睛】本題考查了等比數(shù)列的應(yīng)用,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.2、C【解析】
設(shè)球的半徑為R,根據(jù)組合體的關(guān)系,圓柱的表面積為,解得球的半徑,再代入球的體積公式求解.【詳解】設(shè)球的半徑為R,根據(jù)題意圓柱的表面積為,解得,所以該球的體積為.故選:C【點(diǎn)睛】本題主要考查組合體的表面積和體積,還考查了對(duì)數(shù)學(xué)史了解,屬于基礎(chǔ)題.3、A【解析】
根據(jù)y=Acos(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式,根據(jù)定義域求出的范圍,再利用余弦函數(shù)的圖象和性質(zhì),求得ω的取值范圍.【詳解】函數(shù)的圖象先向右平移個(gè)單位長(zhǎng)度,可得的圖象,再將圖象上每個(gè)點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼谋?縱坐標(biāo)不變),得到函數(shù)的圖象,∴周期,若函數(shù)在上沒有零點(diǎn),∴,∴,,解得,又,解得,當(dāng)k=0時(shí),解,當(dāng)k=-1時(shí),,可得,.故答案為:A.【點(diǎn)睛】本題考查函數(shù)y=Acos(ωx+φ)的圖象變換及零點(diǎn)問題,此類問題通常采用數(shù)形結(jié)合思想,構(gòu)建不等關(guān)系式,求解可得,屬于較難題.4、A【解析】
由題意可知直線過定點(diǎn)即為圓心,由此得到坐標(biāo)的關(guān)系,再根據(jù)點(diǎn)差法得到直線的斜率與坐標(biāo)的關(guān)系,由此化簡(jiǎn)并求解出離心率的取值范圍.【詳解】設(shè),且線過定點(diǎn)即為的圓心,因?yàn)?,所以,又因?yàn)?,所以,所以,所以,所以,所以,所以,所?故選:A.【點(diǎn)睛】本題考查橢圓與圓的綜合應(yīng)用,著重考查了橢圓離心率求解以及點(diǎn)差法的運(yùn)用,難度一般.通過運(yùn)用點(diǎn)差法達(dá)到“設(shè)而不求”的目的,大大簡(jiǎn)化運(yùn)算.5、D【解析】
依次運(yùn)行程序框圖給出的程序可得第一次:,不滿足條件;第二次:,不滿足條件;第三次:,不滿足條件;第四次:,不滿足條件;第五次:,不滿足條件;第六次:,滿足條件,退出循環(huán).輸出1.選D.6、B【解析】
根據(jù)函數(shù)奇偶性的性質(zhì),結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】設(shè),若函數(shù)是上的奇函數(shù),則,所以,函數(shù)的圖象關(guān)于軸對(duì)稱.所以,“是奇函數(shù)”“的圖象關(guān)于軸對(duì)稱”;若函數(shù)是上的偶函數(shù),則,所以,函數(shù)的圖象關(guān)于軸對(duì)稱.所以,“的圖象關(guān)于軸對(duì)稱”“是奇函數(shù)”.因此,“的圖象關(guān)于軸對(duì)稱”是“是奇函數(shù)”的必要不充分條件.故選:B.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合函數(shù)奇偶性的性質(zhì)判斷是解決本題的關(guān)鍵,考查推理能力,屬于中等題.7、D【解析】
根據(jù)三角形的面積公式以及余弦定理進(jìn)行化簡(jiǎn)求出的值,然后利用兩角和差的正弦公式進(jìn)行求解即可.【詳解】解:由,得,∵,∴,即即,則,∵,∴,∴,即,則,故選D.【點(diǎn)睛】本題主要考查解三角形的應(yīng)用,結(jié)合三角形的面積公式以及余弦定理求出的值以及利用兩角和差的正弦公式進(jìn)行計(jì)算是解決本題的關(guān)鍵.8、B【解析】
求出,,,,,,判斷出是一個(gè)以周期為6的周期數(shù)列,求出即可.【詳解】解:.,∴,,,同理可得:;;.;,,…….∴.故是一個(gè)以周期為6的周期數(shù)列,則.故選:B.【點(diǎn)睛】本題考查周期數(shù)列的判斷和取整函數(shù)的應(yīng)用.9、C【解析】
四個(gè)答題板塊中選三個(gè)捆綁在一起,和另外一個(gè)答題板塊用插入法.注意按“閱讀文章”分類.【詳解】四個(gè)答題板塊中選三個(gè)捆綁在一起,和另外一個(gè)答題板塊用插入法,由于“閱讀文章”不能放首位,因此不同的方法數(shù)為.故選:C.【點(diǎn)睛】本題考查排列組合的應(yīng)用,考查捆綁法和插入法求解排列問題.對(duì)相鄰問題用捆綁法,不相鄰問題用插入法是解決這類問題的常用方法.10、D【解析】
求的展開式中的常數(shù)項(xiàng),可轉(zhuǎn)化為求展開式中的常數(shù)項(xiàng)和項(xiàng),再求和即可得出答案.【詳解】由題意,中常數(shù)項(xiàng)為,中項(xiàng)為,所以的展開式中的常數(shù)項(xiàng)為:.故選:D【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用和二項(xiàng)式展開式的通項(xiàng)公式,考查學(xué)生計(jì)算能力,屬于基礎(chǔ)題.11、C【解析】
首先把看作為一個(gè)整體,進(jìn)而利用二項(xiàng)展開式求得的系數(shù),再求的展開式中的系數(shù),二者相乘即可求解.【詳解】由二項(xiàng)展開式的通項(xiàng)公式可得的第項(xiàng)為,令,則,又的第為,令,則,所以的系數(shù)是.故選:C【點(diǎn)睛】本題考查二項(xiàng)展開式指定項(xiàng)的系數(shù),掌握二項(xiàng)展開式的通項(xiàng)是解題的關(guān)鍵,屬于基礎(chǔ)題.12、B【解析】
先求出從不超過18的素?cái)?shù)中隨機(jī)選取兩個(gè)不同的數(shù)的所有可能結(jié)果,然后再求出其和等于16的結(jié)果,根據(jù)等可能事件的概率公式可求.【詳解】解:不超過18的素?cái)?shù)有2,3,5,7,11,13,17共7個(gè),從中隨機(jī)選取兩個(gè)不同的數(shù)共有,其和等于16的結(jié)果,共2種等可能的結(jié)果,故概率.故選:B.【點(diǎn)睛】古典概型要求能夠列舉出所有事件和發(fā)生事件的個(gè)數(shù),本題不可以列舉出所有事件但可以用分步計(jì)數(shù)得到,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由余弦定理,正弦定理得出,從而得出,推出的范圍,由余弦函數(shù)的性質(zhì)得出的范圍,再利用二倍角公式化簡(jiǎn),即可得出答案.【詳解】由題意得由正弦定理得化簡(jiǎn)得又為銳角三角形,則,,.故答案為【點(diǎn)睛】本題主要考查了正弦定理和余弦定理的應(yīng)用,屬于中檔題.14、0.18【解析】
根據(jù)表中信息,可得勝C的概率;分類討論B或D進(jìn)入決賽,再計(jì)算A勝B或A勝C的概率即可求解.【詳解】由表中信息可知,勝C的概率為;若B進(jìn)入決賽,B勝D的概率為,則A勝B的概率為;若D進(jìn)入決賽,D勝B的概率為,則A勝D的概率為;由相應(yīng)的概率公式知,則A獲得冠軍的概率為.故答案為:0.18【點(diǎn)睛】本題考查了獨(dú)立事件的概率應(yīng)用,互斥事件的概率求法,屬于基礎(chǔ)題.15、【解析】
利用換元法,得到,利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性和最值,即可得到函數(shù)的值域,得到答案.【詳解】由題意,可得,令,,即,則,當(dāng)時(shí),,當(dāng)時(shí),,即在為增函數(shù),在為減函數(shù),又,,,故函數(shù)的值域?yàn)椋海军c(diǎn)睛】本題主要考查了三角函數(shù)的最值,以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,其中解答中合理利用換元法得到函數(shù),再利用導(dǎo)數(shù)求解函數(shù)的單調(diào)性與最值是解答的關(guān)鍵,著重考查了推理與預(yù)算能力,屬于基礎(chǔ)題.16、【解析】
先根據(jù)三棱錐的幾何性質(zhì),求出外接球的半徑,結(jié)合向量的運(yùn)算,將問題轉(zhuǎn)化為求球體表面一點(diǎn)到外心距離最大的問題,即可求得結(jié)果.【詳解】因?yàn)閮蓛纱怪鼻遥嗜忮F的外接球就是對(duì)應(yīng)棱長(zhǎng)為2的正方體的外接球.且外接球的球心為正方體的體對(duì)角線的中點(diǎn),如下圖所示:容易知外接球半徑為.設(shè)線段的中點(diǎn)為,故可得,故當(dāng)取得最大值時(shí),取得最大值.而當(dāng)在同一個(gè)大圓上,且,點(diǎn)與線段在球心的異側(cè)時(shí),取得最大值,如圖所示:此時(shí),故答案為:.【點(diǎn)睛】本題考查球體的幾何性質(zhì),幾何體的外接球問題,涉及向量的線性運(yùn)算以及數(shù)量積運(yùn)算,屬綜合性困難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1))當(dāng)時(shí),將函數(shù)寫成分段函數(shù),即可求得不等式的解集.(2)根據(jù)原命題是假命題,這命題的否定為真命題,即“,”為真命題,只需滿足即可.【詳解】解:(1)當(dāng)時(shí),由,得.故不等式的解集為.(2)因?yàn)椤埃睘榧倜},所以“,”為真命題,所以.因?yàn)?,所以,則,所以,即,解得,即的取值范圍為.【點(diǎn)睛】本題考查絕對(duì)值不等式的解法,以及絕對(duì)值三角不等式,屬于基礎(chǔ)題.18、(Ⅰ);(Ⅱ)證明見解析【解析】
(Ⅰ)求導(dǎo)得到,,解得答案.(Ⅱ),故,在上單調(diào)遞減,在上單調(diào)遞增,,設(shè),證明函數(shù)單調(diào)遞減,故,得到證明.【詳解】(Ⅰ),故,,故.(Ⅱ),即,存在唯一零點(diǎn),設(shè)零點(diǎn)為,故,即,在上單調(diào)遞減,在上單調(diào)遞增,故,設(shè),則,設(shè),則,單調(diào)遞減,,故恒成立,故單調(diào)遞減.,故當(dāng)時(shí),.【點(diǎn)睛】本題考查了函數(shù)的切線問題,利用導(dǎo)數(shù)證明不等式,轉(zhuǎn)化為函數(shù)的最值是解題的關(guān)鍵.19、(1);(2)當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時(shí),在和上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),在和上單調(diào)遞增,在上單調(diào)遞減.【解析】
(1)根據(jù)導(dǎo)數(shù)的幾何意義求解即可.(2)易得函數(shù)定義域是,且.故分,和與四種情況,分別分析得極值點(diǎn)的關(guān)系進(jìn)而求得原函數(shù)的單調(diào)性即可.【詳解】(1)當(dāng)時(shí),,則切線的斜率為.又,則曲線在點(diǎn)的切線方程是,即.(2)的定義域是..①當(dāng)時(shí),,所以當(dāng)時(shí),;當(dāng)時(shí),,所以在上單調(diào)遞增,在上單調(diào)遞減;②當(dāng)時(shí),,所以當(dāng)和時(shí),;當(dāng)時(shí),,所以在和上單調(diào)遞增,在上單調(diào)遞減;③當(dāng)時(shí),,所以在上恒成立.所以在上單調(diào)遞增;④當(dāng)時(shí),,所以和時(shí),;時(shí),.所以在和上單調(diào)遞增,在上單調(diào)遞減.綜上所述,當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時(shí),在和上單調(diào)遞增,在上單調(diào)遞減;當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),在和上單調(diào)遞增,在上單調(diào)遞減.【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的幾何意義以及含參數(shù)的函數(shù)單調(diào)性討論,需要根據(jù)題意求函數(shù)的極值點(diǎn),再根據(jù)極值點(diǎn)的大小關(guān)系分類討論即可.屬于??碱}.20、(1);(2)或【解析】
(1)先由題意得出,可得出與的等量關(guān)系,然后將點(diǎn)的坐標(biāo)代入橢圓的方程,可求出與的值,從而得出橢圓的方程;(2)對(duì)直線的斜率是否存在進(jìn)行分類討論,當(dāng)直線的斜率不存在時(shí),可求出,然后進(jìn)行檢驗(yàn);當(dāng)直線的斜率存在時(shí),可設(shè)直線的方程為,設(shè)點(diǎn),先由直線與圓相切得出與之間的關(guān)系,再將直線的方程與橢圓的方程聯(lián)立,由韋達(dá)定理,利用弦長(zhǎng)公式并結(jié)合條件得出的值,從而求出直線的傾斜角.【詳解】(1)由題可知圓只能經(jīng)過橢圓的上下頂點(diǎn),所以橢圓焦距等于短軸長(zhǎng),可得,又點(diǎn)在橢圓上,所以,解得,即橢圓的方程為.(2)圓的方程為,當(dāng)直線不存在斜率時(shí),解得,不符合題意;當(dāng)直線存在斜率時(shí),設(shè)其方程為,因?yàn)橹本€與圓相切,所以,即.將直線與橢圓的方程聯(lián)立,得:,判別式,即,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 12古詩三首《示兒》說課稿-2024-2025學(xué)年五年級(jí)語文上冊(cè)統(tǒng)編版001
- 2023六年級(jí)數(shù)學(xué)上冊(cè) 四 人體的奧秘-比說課稿 青島版六三制
- 會(huì)議總包合同范例
- 鋼板橋面面層施工方案
- 供熱公司用工合同范本
- 專業(yè)律師合同范例
- 債務(wù)合約合同范例
- 物業(yè)車輛清潔方案
- 公司聘用文秘合同范例
- 買礦協(xié)議合同范本
- 第八講 發(fā)展全過程人民民主PPT習(xí)概論2023優(yōu)化版教學(xué)課件
- 王崧舟:學(xué)習(xí)任務(wù)群與課堂教學(xué)變革 2022版新課程標(biāo)準(zhǔn)解讀解析資料 57
- 招投標(biāo)現(xiàn)場(chǎng)項(xiàng)目經(jīng)理答辯(完整版)資料
- 運(yùn)動(dòng)競(jìng)賽學(xué)課件
- 重大事故隱患整改臺(tái)賬
- 2022年上海市初中畢業(yè)數(shù)學(xué)課程終結(jié)性評(píng)價(jià)指南
- 高考作文備考-議論文對(duì)比論證 課件14張
- 新華師大版七年級(jí)下冊(cè)初中數(shù)學(xué) 7.4 實(shí)踐與探索課時(shí)練(課后作業(yè)設(shè)計(jì))
- 山東省萊陽市望嵐口礦區(qū)頁巖礦
- 《普通生物學(xué)教案》word版
- 安全生產(chǎn)應(yīng)知應(yīng)會(huì)培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論