版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.正三棱錐底面邊長(zhǎng)為3,側(cè)棱與底面成角,則正三棱錐的外接球的體積為()A. B. C. D.2.將一塊邊長(zhǎng)為的正方形薄鐵皮按如圖(1)所示的陰影部分裁下,然后用余下的四個(gè)全等的等腰三角形加工成一個(gè)正四棱錐形容器,將該容器按如圖(2)放置,若其正視圖為等腰直角三角形,且該容器的容積為,則的值為()A.6 B.8 C.10 D.123.i是虛數(shù)單位,若,則乘積的值是()A.-15 B.-3 C.3 D.154.已知正四面體的棱長(zhǎng)為,是該正四面體外接球球心,且,,則()A. B.C. D.5.直線x-3y+3=0經(jīng)過橢圓x2a2+y2bA.3-1 B.3-12 C.6.記遞增數(shù)列的前項(xiàng)和為.若,,且對(duì)中的任意兩項(xiàng)與(),其和,或其積,或其商仍是該數(shù)列中的項(xiàng),則()A. B.C. D.7.將函數(shù)的圖像向左平移個(gè)單位得到函數(shù)的圖像,則的最小值為()A. B. C. D.8.若函數(shù)的圖象如圖所示,則的解析式可能是()A. B. C. D.9.若復(fù)數(shù)滿足,則的虛部為()A.5 B. C. D.-510.已知向量,,當(dāng)時(shí),()A. B. C. D.11.已知橢圓:的左,右焦點(diǎn)分別為,,過的直線交橢圓于,兩點(diǎn),若,且的三邊長(zhǎng),,成等差數(shù)列,則的離心率為()A. B. C. D.12.已知等差數(shù)列中,,,則數(shù)列的前10項(xiàng)和()A.100 B.210 C.380 D.400二、填空題:本題共4小題,每小題5分,共20分。13.若隨機(jī)變量的分布列如表所示,則______,______.-10114.設(shè),滿足約束條件,若的最大值是10,則________.15.已知,,則與的夾角為.16.設(shè),則除以的余數(shù)是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若恒成立,求的取值范圍.18.(12分)已知函數(shù)(1)若,不等式的解集;(2)若,求實(shí)數(shù)的取值范圍.19.(12分)某校共有學(xué)生2000人,其中男生900人,女生1100人,為了調(diào)查該校學(xué)生每周平均體育鍛煉時(shí)間,采用分層抽樣的方法收集該校100名學(xué)生每周平均體育鍛煉時(shí)間(單位:小時(shí)).(1)應(yīng)抽查男生與女生各多少人?(2)根據(jù)收集100人的樣本數(shù)據(jù),得到學(xué)生每周平均體育鍛煉時(shí)間的頻率分布表:時(shí)間(小時(shí))[0,1](1,2](2,3](3,4](4,5](5,6]頻率0.050.200.300.250.150.05若在樣本數(shù)據(jù)中有38名男學(xué)生平均每周課外體育鍛煉時(shí)間超過2小時(shí),請(qǐng)完成每周平均體育鍛煉時(shí)間與性別的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均體育鍛煉時(shí)間與性別有關(guān)”?男生女生總計(jì)每周平均體育鍛煉時(shí)間不超過2小時(shí)每周平均體育鍛煉時(shí)間超過2小時(shí)總計(jì)附:K2.P(K2≥k0)0.1000.0500.0100.0052.7063.8416.6357.87920.(12分)已知等差數(shù)列和等比數(shù)列的各項(xiàng)均為整數(shù),它們的前項(xiàng)和分別為,且,.(1)求數(shù)列,的通項(xiàng)公式;(2)求;(3)是否存在正整數(shù),使得恰好是數(shù)列或中的項(xiàng)?若存在,求出所有滿足條件的的值;若不存在,說明理由.21.(12分)設(shè)(1)當(dāng)時(shí),求不等式的解集;(2)若,求的取值范圍.22.(10分)在①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題中.若問題中的正整數(shù)存在,求的值;若不存在,說明理由.設(shè)正數(shù)等比數(shù)列的前項(xiàng)和為,是等差數(shù)列,__________,,,,是否存在正整數(shù),使得成立?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
由側(cè)棱與底面所成角及底面邊長(zhǎng)求得正棱錐的高,再利用勾股定理求得球半徑后可得球體積.【詳解】如圖,正三棱錐中,是底面的中心,則是正棱錐的高,是側(cè)棱與底面所成的角,即=60°,由底面邊長(zhǎng)為3得,∴.正三棱錐外接球球心必在上,設(shè)球半徑為,則由得,解得,∴.故選:D.【點(diǎn)睛】本題考查球體積,考查正三棱錐與外接球的關(guān)系.掌握正棱錐性質(zhì)是解題關(guān)鍵.2、D【解析】
推導(dǎo)出,且,,,設(shè)中點(diǎn)為,則平面,由此能表示出該容器的體積,從而求出參數(shù)的值.【詳解】解:如圖(4),為該四棱錐的正視圖,由圖(3)可知,,且,由為等腰直角三角形可知,,設(shè)中點(diǎn)為,則平面,∴,∴,解得.故選:D【點(diǎn)睛】本題考查三視圖和錐體的體積計(jì)算公式的應(yīng)用,屬于中檔題.3、B【解析】,∴,選B.4、A【解析】
如圖設(shè)平面,球心在上,根據(jù)正四面體的性質(zhì)可得,根據(jù)平面向量的加法的幾何意義,重心的性質(zhì),結(jié)合已知求出的值.【詳解】如圖設(shè)平面,球心在上,由正四面體的性質(zhì)可得:三角形是正三角形,,,在直角三角形中,,,,,,因?yàn)闉橹匦?,因此,則,因此,因此,則,故選A.【點(diǎn)睛】本題考查了正四面體的性質(zhì),考查了平面向量加法的幾何意義,考查了重心的性質(zhì),屬于中檔題.5、A【解析】
由直線x-3y+3=0過橢圓的左焦點(diǎn)F,得到左焦點(diǎn)為再由FC=2CA,求得A3【詳解】由題意,直線x-3y+3=0經(jīng)過橢圓的左焦點(diǎn)F,令所以c=3,即橢圓的左焦點(diǎn)為F(-3,0)直線交y軸于C(0,1),所以,OF=因?yàn)镕C=2CA,所以FA=3又由點(diǎn)A在橢圓上,得3a由①②,可得4a2-24所以e2所以橢圓的離心率為e=3故選A.【點(diǎn)睛】本題考查了橢圓的幾何性質(zhì)——離心率的求解,其中求橢圓的離心率(或范圍),常見有兩種方法:①求出a,c,代入公式e=ca;②只需要根據(jù)一個(gè)條件得到關(guān)于a,b,c的齊次式,轉(zhuǎn)化為a,c的齊次式,然后轉(zhuǎn)化為關(guān)于e的方程,即可得6、D【解析】
由題意可得,從而得到,再由就可以得出其它各項(xiàng)的值,進(jìn)而判斷出的范圍.【詳解】解:,或其積,或其商仍是該數(shù)列中的項(xiàng),或者或者是該數(shù)列中的項(xiàng),又?jǐn)?shù)列是遞增數(shù)列,,,,只有是該數(shù)列中的項(xiàng),同理可以得到,,,也是該數(shù)列中的項(xiàng),且有,,或(舍,,根據(jù),,,同理易得,,,,,,,故選:D.【點(diǎn)睛】本題考查數(shù)列的新定義的理解和運(yùn)用,以及運(yùn)算能力和推理能力,屬于中檔題.7、B【解析】
根據(jù)三角函數(shù)的平移求出函數(shù)的解析式,結(jié)合三角函數(shù)的性質(zhì)進(jìn)行求解即可.【詳解】將函數(shù)的圖象向左平移個(gè)單位,得到,此時(shí)與函數(shù)的圖象重合,則,即,,當(dāng)時(shí),取得最小值為,故選:.【點(diǎn)睛】本題主要考查三角函數(shù)的圖象和性質(zhì),利用三角函數(shù)的平移關(guān)系求出解析式是解決本題的關(guān)鍵.8、A【解析】
由函數(shù)性質(zhì),結(jié)合特殊值驗(yàn)證,通過排除法求得結(jié)果.【詳解】對(duì)于選項(xiàng)B,為奇函數(shù)可判斷B錯(cuò)誤;對(duì)于選項(xiàng)C,當(dāng)時(shí),,可判斷C錯(cuò)誤;對(duì)于選項(xiàng)D,,可知函數(shù)在第一象限的圖象無增區(qū)間,故D錯(cuò)誤;故選:A.【點(diǎn)睛】本題考查已知函數(shù)的圖象判斷解析式問題,通過函數(shù)性質(zhì)及特殊值利用排除法是解決本題的關(guān)鍵,難度一般.9、C【解析】
把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.【詳解】由(1+i)z=|3+4i|,得z,∴z的虛部為.故選C.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.10、A【解析】
根據(jù)向量的坐標(biāo)運(yùn)算,求出,,即可求解.【詳解】,.故選:A.【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算、誘導(dǎo)公式、二倍角公式、同角間的三角函數(shù)關(guān)系,屬于中檔題.11、C【解析】
根據(jù)等差數(shù)列的性質(zhì)設(shè)出,,,利用勾股定理列方程,結(jié)合橢圓的定義,求得.再利用勾股定理建立的關(guān)系式,化簡(jiǎn)后求得離心率.【詳解】由已知,,成等差數(shù)列,設(shè),,.由于,據(jù)勾股定理有,即,化簡(jiǎn)得;由橢圓定義知的周長(zhǎng)為,有,所以,所以;在直角中,由勾股定理,,∴離心率.故選:C【點(diǎn)睛】本小題主要考查橢圓離心率的求法,考查橢圓的定義,考查等差數(shù)列的性質(zhì),屬于中檔題.12、B【解析】
設(shè)公差為,由已知可得,進(jìn)而求出的通項(xiàng)公式,即可求解.【詳解】設(shè)公差為,,,,.故選:B.【點(diǎn)睛】本題考查等差數(shù)列的基本量計(jì)算以及前項(xiàng)和,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
首先求得a的值,然后利用均值的性質(zhì)計(jì)算均值,最后求得的值,由方差的性質(zhì)計(jì)算的值即可.【詳解】由題意可知,解得(舍去)或.則,則,由方差的計(jì)算性質(zhì)得.【點(diǎn)睛】本題主要考查分布列的性質(zhì),均值的計(jì)算公式,方差的計(jì)算公式,方差的性質(zhì)等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.14、【解析】
畫出不等式組表示的平面區(qū)域,數(shù)形結(jié)合即可容易求得結(jié)果.【詳解】畫出不等式組表示的平面區(qū)域如下所示:目標(biāo)函數(shù)可轉(zhuǎn)化為與直線平行,數(shù)形結(jié)合可知當(dāng)且僅當(dāng)目標(biāo)函數(shù)過點(diǎn),取得最大值,故可得,解得.故答案為:.【點(diǎn)睛】本題考查由目標(biāo)函數(shù)的最值求參數(shù)值,屬基礎(chǔ)題.15、【解析】
根據(jù)已知條件,去括號(hào)得:,16、1【解析】
利用二項(xiàng)式定理得到,將89寫成1+88,然后再利用二項(xiàng)式定理展開即可.【詳解】,因展開式中后面10項(xiàng)均有88這個(gè)因式,所以除以的余數(shù)為1.故答案為:1【點(diǎn)睛】本題考查二項(xiàng)式定理的綜合應(yīng)用,涉及余數(shù)的問題,解決此類問題的關(guān)鍵是靈活構(gòu)造二項(xiàng)式,并將它展開分析,本題是一道基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
分析:(1)先根據(jù)絕對(duì)值幾何意義將不等式化為三個(gè)不等式組,分別求解,最后求并集,(2)先化簡(jiǎn)不等式為,再根據(jù)絕對(duì)值三角不等式得最小值,最后解不等式得的取值范圍.詳解:(1)當(dāng)時(shí),可得的解集為.(2)等價(jià)于.而,且當(dāng)時(shí)等號(hào)成立.故等價(jià)于.由可得或,所以的取值范圍是.點(diǎn)睛:含絕對(duì)值不等式的解法有兩個(gè)基本方法,一是運(yùn)用零點(diǎn)分區(qū)間討論,二是利用絕對(duì)值的幾何意義求解.法一是運(yùn)用分類討論思想,法二是運(yùn)用數(shù)形結(jié)合思想,將絕對(duì)值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時(shí)強(qiáng)化函數(shù)、數(shù)形結(jié)合與轉(zhuǎn)化化歸思想方法的靈活應(yīng)用,這是命題的新動(dòng)向.18、(1)(2)【解析】
(1)依題意可得,再用零點(diǎn)分段法分類討論可得;(2)依題意可得對(duì)恒成立,根據(jù)絕對(duì)值的幾何意義將絕對(duì)值去掉,分別求出解集,則兩解集的并集為,得到不等式即可解得;【詳解】解:(1)若,,則,即,當(dāng)時(shí),原不等式等價(jià)于,解得當(dāng)時(shí),原不等式等價(jià)于,解得,所以;當(dāng)時(shí),原不等式等價(jià)于,解得;綜上,原不等式的解集為;(2)即,得或,由解得,由解得,要使得的解集為,則解得,故的取值范圍是.【點(diǎn)睛】本題考查絕對(duì)值不等式的解法,著重考查等價(jià)轉(zhuǎn)化思想與分類討論思想的綜合應(yīng)用,屬于中檔題.19、(1)男生人數(shù)為人,女生人數(shù)55人.(2)列聯(lián)表答案見解析,有95%的把握認(rèn)為“該校學(xué)生的每周平均體育鍛煉時(shí)間與性別有關(guān).【解析】
(1)求出男女比例,按比例分配即可;(2)根據(jù)題意結(jié)合頻率分布表,先求出二聯(lián)表中數(shù)值,再結(jié)合公式計(jì)算,利用表格數(shù)據(jù)對(duì)比判斷即可【詳解】(1)因?yàn)槟猩藬?shù):女生人數(shù)=900:1100=9:11,所以男生人數(shù)為,女生人數(shù)100﹣45=55人,(2)由頻率頻率直方圖可知學(xué)生每周平均體育鍛煉時(shí)間超過2小時(shí)的人數(shù)為:(1×0.3+1×0.25+1×0.15+1×0.05)×100=75人,每周平均體育鍛煉時(shí)間超過2小時(shí)的女生人數(shù)為37人,聯(lián)表如下:男生女生總計(jì)每周平均體育鍛煉時(shí)間不超過2小時(shí)71825每周平均體育鍛煉時(shí)間超過2小時(shí)383775總計(jì)4555100因?yàn)?.892>3.841,所以有95%的把握認(rèn)為“該校學(xué)生的每周平均體育鍛煉時(shí)間與性別有關(guān).【點(diǎn)睛】本題考查分層抽樣,獨(dú)立性檢驗(yàn),熟記公式,正確計(jì)算是關(guān)鍵,屬于中檔題.20、(1);(2);(3)存在,1.【解析】
(1)利用基本量法直接計(jì)算即可;(2)利用錯(cuò)位相減法計(jì)算;(3),令可得,,討論即可.【詳解】(1)設(shè)數(shù)列的公差為,數(shù)列的公比為,因?yàn)?,所以,即,解得,或(舍去?所以.(2),,所以,所以.(3)由(1)可得,,所以.因?yàn)槭菙?shù)列或中的一項(xiàng),所以,所以,因?yàn)椋?,又,則或.當(dāng)時(shí),有,即,令.則.當(dāng)時(shí),;當(dāng)時(shí),,即.由,知無整數(shù)解.當(dāng)時(shí),有,即存在使得是數(shù)列中的第2項(xiàng),故存在正整數(shù),使得是數(shù)列中的項(xiàng).【點(diǎn)睛】本題考查數(shù)列的綜合應(yīng)用,涉及到等差、等比數(shù)列的通項(xiàng),錯(cuò)位相減法求數(shù)列的前n項(xiàng)和,數(shù)列中的存在性問題,是一道較為綜合的題.21、(1)(2)【解析】
(1)通過討論的范圍,得到關(guān)于的不等式組,解出取并集即可.(2)去絕對(duì)值將函數(shù)寫成分段函數(shù)形式討論分段函數(shù)的單調(diào)性由恒成立求得結(jié)果.【詳解】解:(1)當(dāng)時(shí),,即或或解之得或,即不等式的解集為.(2)由題意得:當(dāng)時(shí)為減函數(shù),顯然恒成立.當(dāng)時(shí),為增函數(shù),,當(dāng)時(shí),為減函數(shù),綜上所述:使恒成立的的取值范圍為.【點(diǎn)睛】本題考查了解絕對(duì)值不等式問題,考查不等式恒成立問題中求解參數(shù)問題,考查分類討論思想,轉(zhuǎn)化思想,屬于中檔題.22、見解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業(yè)個(gè)人年度工作計(jì)劃
- 冀教版小學(xué)五年級(jí)上冊(cè)數(shù)學(xué)教學(xué)計(jì)劃
- 幼兒教學(xué)計(jì)劃模板
- 年化妝品銷售工作計(jì)劃范文
- 2025年女工個(gè)人工作計(jì)劃范文
- 年度教育工作計(jì)劃
- 2025年辦公室秘書工作計(jì)劃
- 辦公室秘書年度工作計(jì)劃例文
- 美團(tuán)芒果杯 推廣計(jì)劃
- 《氧化還原滴定》課件
- oa系統(tǒng)合同范例
- 《文明禮儀概述培訓(xùn)》課件
- (正式版)HGT 22820-2024 化工安全儀表系統(tǒng)工程設(shè)計(jì)規(guī)范
- 跨文化溝通心理學(xué)智慧樹知到期末考試答案2024年
- 《中華民族共同體概論》考試復(fù)習(xí)題庫(kù)(含答案)
- 標(biāo)準(zhǔn)的指令性目標(biāo)問題解決型案例
- ppt素材――小圖標(biāo) 可直接使用
- 穿越220kV線路施工方案
- 2011辛卯年風(fēng)水布局概述
- 養(yǎng)殖戶糞污污染情況整改報(bào)告2篇
- Q-FT B039-2006汽車產(chǎn)品油漆涂層技術(shù)條件
評(píng)論
0/150
提交評(píng)論