版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
§7.5空間直線、平面的垂直考試要求1.理解空間中直線與直線、直線與平面、平面與平面的垂直關(guān)系.2.掌握直線與平面、平面與平面垂直的判定與性質(zhì),并會(huì)簡(jiǎn)單應(yīng)用.知識(shí)梳理1.直線與平面垂直(1)直線和平面垂直的定義一般地,如果直線l與平面α內(nèi)的任意一條直線都垂直,就說(shuō)直線l與平面α互相垂直.(2)判定定理與性質(zhì)定理文字語(yǔ)言圖形表示符號(hào)表示判定定理如果一條直線與一個(gè)平面內(nèi)的兩條相交直線垂直,那么該直線與此平面垂直eq\b\lc\\rc\}(\a\vs4\al\co1(m?α,n?α,m∩n=P,l⊥m,l⊥n))?l⊥α性質(zhì)定理垂直于同一個(gè)平面的兩條直線平行eq\b\lc\\rc\}(\a\vs4\al\co1(a⊥α,b⊥α))?a∥b2.直線和平面所成的角(1)定義:平面的一條斜線和它在平面上的射影所成的角,叫做這條直線和這個(gè)平面所成的角.一條直線垂直于平面,我們說(shuō)它們所成的角是90°;一條直線和平面平行,或在平面內(nèi),我們說(shuō)它們所成的角是0°.(2)范圍:eq\b\lc\[\rc\](\a\vs4\al\co1(0,\f(π,2))).3.二面角(1)定義:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角.(2)二面角的平面角:如圖,在二面角α-l-β的棱l上任取一點(diǎn)O,以點(diǎn)O為垂足,在半平面α和β內(nèi)分別作垂直于棱l的射線OA和OB,則射線OA和OB構(gòu)成的∠AOB叫做二面角的平面角.(3)二面角的范圍:[0,π].4.平面與平面垂直(1)平面與平面垂直的定義一般地,兩個(gè)平面相交,如果它們所成的二面角是直二面角,就說(shuō)這兩個(gè)平面互相垂直.(2)判定定理與性質(zhì)定理文字語(yǔ)言圖形表示符號(hào)表示判定定理如果一個(gè)平面過(guò)另一個(gè)平面的垂線,那么這兩個(gè)平面垂直eq\b\lc\\rc\}(\a\vs4\al\co1(a?α,a⊥β))?α⊥β性質(zhì)定理兩個(gè)平面垂直,如果一個(gè)平面內(nèi)有一直線垂直于這兩個(gè)平面的交線,那么這條直線與另一個(gè)平面垂直eq\b\lc\\rc\}(\a\vs4\al\co1(α⊥β,α∩β=a,l⊥a,l?β))?l⊥α常用結(jié)論1.三垂線定理平面內(nèi)的一條直線如果和穿過(guò)這個(gè)平面的一條斜線在這個(gè)平面內(nèi)的射影垂直,那么它也和這條斜線垂直.2.三垂線定理的逆定理平面內(nèi)的一條直線如果和穿過(guò)該平面的一條斜線垂直,那么它也和這條斜線在該平面內(nèi)的射影垂直.3.兩個(gè)相交平面同時(shí)垂直于第三個(gè)平面,它們的交線也垂直于第三個(gè)平面.思考辨析判斷下列結(jié)論是否正確(請(qǐng)?jiān)诶ㄌ?hào)中打“√”或“×”)(1)若直線l與平面α內(nèi)的兩條直線都垂直,則l⊥α.()(2)若直線a⊥α,b⊥α,則a∥b.()(3)若兩平面垂直,則其中一個(gè)平面內(nèi)的任意一條直線垂直于另一個(gè)平面.()(4)若α⊥β,a⊥β,則a∥α.()教材改編題1.(多選)下列命題中不正確的是()A.如果直線a不垂直于平面α,那么平面α內(nèi)一定不存在直線垂直于直線aB.如果平面α垂直于平面β,那么平面α內(nèi)一定不存在直線平行于平面βC.如果直線a垂直于平面α,那么平面α內(nèi)一定不存在直線平行于直線aD.如果平面α⊥平面β,那么平面α內(nèi)所有直線都垂直于平面β2.如圖,在正方形SG1G2G3中,E,F(xiàn)分別是G1G2,G2G3的中點(diǎn),D是EF的中點(diǎn),現(xiàn)在沿SE,SF及EF把這個(gè)正方形折成一個(gè)四面體,使G1,G2,G3三點(diǎn)重合,重合后的點(diǎn)記為G,則在四面體S-EFG中必有()A.SG⊥△EFG所在平面B.SD⊥△EFG所在平面C.GF⊥△SEF所在平面D.GD⊥△SEF所在平面3.已知PD垂直于正方形ABCD所在的平面,連接PB,PC,PA,AC,BD,則一定互相垂直的平面有________對(duì).題型一直線與平面垂直的判定與性質(zhì)例1(1)已知l,m是平面α外的兩條不同直線.給出下列三個(gè)論斷:①l⊥m;②m∥α;③l⊥α.以其中的兩個(gè)論斷作為條件,余下的一個(gè)論斷作為結(jié)論,寫(xiě)出一個(gè)正確的命題________.(2)如圖,在三棱柱ABC-A1B1C1中,點(diǎn)B1在底面ABC內(nèi)的射影恰好是點(diǎn)C.①若點(diǎn)D是AC的中點(diǎn),且DA=DB,證明:AB⊥CC1.②已知B1C1=2,B1C=2eq\r(3),求△BCC1的周長(zhǎng).思維升華證明線面垂直的常用方法及關(guān)鍵(1)證明直線和平面垂直的常用方法:①判定定理;②垂直于平面的傳遞性(a∥b,a⊥α?b⊥α);③面面平行的性質(zhì)(a⊥α,α∥β?a⊥β);④面面垂直的性質(zhì).(2)證明線面垂直的關(guān)鍵是證線線垂直,而證明線線垂直則需借助線面垂直的性質(zhì).跟蹤訓(xùn)練1如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是棱CD,A1D1的中點(diǎn).(1)求證:AB1⊥BF;(2)求證:AE⊥BF;(3)棱CC1上是否存在點(diǎn)P,使BF⊥平面AEP?若存在,確定點(diǎn)P的位置,若不存在,說(shuō)明理由.題型二平面與平面垂直的判定與性質(zhì)例2如圖所示,已知在四棱錐P-ABCD中,底面ABCD是矩形,平面PAD⊥底面ABCD且AB=1,PA=AD=PD=2,E為PD的中點(diǎn).(1)求證:平面PCD⊥平面ACE;(2)求點(diǎn)B到平面ACE的距離.思維升華(1)判定面面垂直的方法①面面垂直的定義.②面面垂直的判定定理.(2)面面垂直性質(zhì)的應(yīng)用①面面垂直的性質(zhì)定理是把面面垂直轉(zhuǎn)化為線面垂直的依據(jù),運(yùn)用時(shí)要注意“平面內(nèi)的直線”.②若兩個(gè)相交平面同時(shí)垂直于第三個(gè)平面,則它們的交線也垂直于第三個(gè)平面.跟蹤訓(xùn)練2如圖,在四棱錐P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥平面ABCD,PA⊥AD,E和F分別是CD和PC的中點(diǎn),求證:(1)PA⊥平面ABCD;(2)平面BEF∥平面PAD;(3)平面BEF⊥平面PCD.題型三垂直關(guān)系的綜合應(yīng)用例3如圖,已知ABCD-A1B1C1D1是底面為正方形的長(zhǎng)方體,∠AD1A1=60°,AD1=4,點(diǎn)P是AD1上的動(dòng)點(diǎn).(1)試判斷不論點(diǎn)P在AD1上的任何位置,是否都有平面BPA⊥平面AA1D1D,并證明你的結(jié)論;(2)當(dāng)P為AD1的中點(diǎn)時(shí),求異面直線AA1與B1P所成的角的余弦值;(3)求PB1與平面AA1D1D所成的角的正切值的最大值.思維升華(1)三種垂直的綜合問(wèn)題,一般通過(guò)作輔助線進(jìn)行線線、線面、面面垂直間的轉(zhuǎn)化.(2)對(duì)于線面關(guān)系中的存在性問(wèn)題,首先假設(shè)存在,然后在該假設(shè)條件下,利用線面關(guān)系的相關(guān)定理、性質(zhì)進(jìn)行推理論證.跟蹤訓(xùn)練3如圖,在三棱錐P-ABC中,AB=BC=2,PA=PB=PC=AC=2eq\r(2),O為AC的中點(diǎn).(1)證明:PO⊥平面ABC;(2)若點(diǎn)M在棱BC上,且PM與平面ABC所成角的正切值為eq\r(6),求二面角M-PA-C的平面角的余弦值.課時(shí)精練1.(多選)若平面α,β滿足α⊥β,α∩β=l,P∈α,P?l,則下列命題中是真命題的為()A.過(guò)點(diǎn)P垂直于平面α的直線平行于平面βB.過(guò)點(diǎn)P垂直于直線l的直線在平面α內(nèi)C.過(guò)點(diǎn)P垂直于平面β的直線在平面α內(nèi)D.過(guò)點(diǎn)P且在平面α內(nèi)垂直于l的直線必垂直于平面β2.如圖,在四棱錐P-ABCD中,△PAB與△PBC是正三角形,平面PAB⊥平面PBC,AC⊥BD,則下列結(jié)論不一定成立的是()A.BP⊥AC B.PD⊥平面ABCDC.AC⊥PD D.平面PBD⊥平面ABCD3.如圖,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,則C1在底面ABC上的射影H必在()A.直線AB上B.直線BC上C.直線AC上D.△ABC內(nèi)部4.(多選)如圖,在以下四個(gè)正方體中,直線AB與平面CDE垂直的是()5.(多選)若m,n是兩條不同的直線,α,β,γ是三個(gè)不同的平面,則下列命題錯(cuò)誤的是()A.若m?β,α⊥β,則m⊥αB.若m∥α,n∥α,則m∥nC.若m⊥β,m∥α,則α⊥βD.若α⊥γ,α⊥β,則β⊥γ6.(多選)在長(zhǎng)方體ABCD-A1B1C1D1中,已知B1D與平面ABCD和平面AA1B1B所成的角均為30°,則下列說(shuō)法正確的是()A.AB=eq\r(2)ADB.AB與平面AB1C1D所成的角為30°C.AC=CB1D.B1D與平面BB1C1C所成的角為45°7.如圖所示,在四棱錐P-ABCD中,PA⊥底面ABCD,且底面各邊都相等,M是PC上的一動(dòng)點(diǎn),當(dāng)點(diǎn)M滿足條件:①BM⊥DM,②DM⊥PC,③BM⊥PC中的________時(shí),平面MBD⊥平面PCD(只要填寫(xiě)一個(gè)你認(rèn)為是正確的條件序號(hào)即可).8.在矩形ABCD中,AB<BC,現(xiàn)將△ABD沿矩形的對(duì)角線BD所在的直線進(jìn)行翻折,在翻折的過(guò)程中,給出下列結(jié)論:①存在某個(gè)位置,使得直線AC與直線BD垂直;②存在某個(gè)位置,使得直線AB與直線CD垂直;③存在某個(gè)位置,使得直線AD與直線BC垂直.其中正確結(jié)論的序號(hào)是________.9.如圖所示,在四棱錐P-ABCD中,底面ABCD是∠DAB=60°且邊長(zhǎng)為a的菱形,側(cè)面PAD為正三角形,其所在平面垂直于底面ABCD,若G為AD的中點(diǎn).(1)求證:BG⊥平面PAD;(2)求證:AD⊥PB;(3)若E為BC邊的中點(diǎn),能否在棱PC上找到一點(diǎn)F,使平面DEF⊥平面ABCD?并證明你的結(jié)論.10.如圖,在三棱錐P-ABC中,平面PAC⊥平面PBC,PA⊥平面ABC.(1)求證:BC⊥平面PAC;(2)若AC=BC=PA,求二面角A-PB-C的平面角的大小.11.如圖,正三角形PAD所在平面與正方形ABCD所在平面互相垂直,O為正方形ABCD的中心,M為正方形ABCD內(nèi)一點(diǎn),且滿足MP=MC,則點(diǎn)M的軌跡為()12.(多選)如圖所示,一張A4紙的長(zhǎng)、寬分別為2eq\r(2)a,2a,A,B,C,D分別是其四條邊的中點(diǎn).現(xiàn)將其沿圖中虛線折起,使得P1,P2,P3,P4四點(diǎn)重合為一點(diǎn)P,從而得到一個(gè)多面體.下列關(guān)于該多面體的命題正確的是()A.該多面體是四棱錐B.平面BAD⊥平面BCDC.平面BAC⊥平面ACDD.該多面體外接球的表面積為eq\f(5,4)πa213.(多選)如圖,在正方體ABCD-A1B1C1D1中,點(diǎn)P在線段B1C上運(yùn)動(dòng),則下列說(shuō)法正確的是()A.直線BD1⊥平面A1C1DB.三棱錐P-A1C1D的體積為定值C.異面直線AP與A1D所成角的取值范圍是eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,4),\f(π,2)))D.直線C1P與平面A1C1D所成角的正弦值的最大值為eq\f(\r(6),3)14.如圖,在矩形ABCD中,點(diǎn)E,F(xiàn)分別在線段AB,AD上,AE=EB=AF=eq\f(2,3)FD=4,沿直線EF將△AEF翻折成△A′EF,使平面A′EF⊥平面BEF,則二面角A′-FD-C的平面角的余弦值為_(kāi)_______.15.劉徽注《九章算術(shù)·商功》“斜解立方,得兩塹堵.斜解塹堵,其一為陽(yáng)馬,一為鱉臑.陽(yáng)馬居二,鱉臑居一,不易之率也.合兩鱉臑三而一,驗(yàn)之以棊,其形露矣.”如圖1解釋了由一個(gè)長(zhǎng)方體得到“塹堵”“陽(yáng)馬”“鱉臑”的過(guò)程.塹堵是底
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024橋梁加固工程承包合同范本3篇
- 2024年高端養(yǎng)殖場(chǎng)土地租賃及合作開(kāi)發(fā)合同3篇
- 2024年采沙場(chǎng)租賃協(xié)議3篇
- 2025標(biāo)識(shí)牌生產(chǎn)與安裝一體化工程合同范本3篇
- 2024年網(wǎng)絡(luò)劇制作剪輯師招聘與管理協(xié)議3篇
- 公路車(chē)知識(shí)培訓(xùn)課件
- 《現(xiàn)代物流管理教程》課件
- 2024年采購(gòu)協(xié)議:原材料及產(chǎn)品3篇
- 2024校秋季春季學(xué)期小賣(mài)部飲品及零食供應(yīng)與營(yíng)銷(xiāo)合同3篇
- 鄭州工業(yè)應(yīng)用技術(shù)學(xué)院《互換性與公差配合》2023-2024學(xué)年第一學(xué)期期末試卷
- 職業(yè)安全健康現(xiàn)場(chǎng)檢查記錄表參考范本
- 雨水、排水管道工程質(zhì)量保證措施
- 荒誕派戲劇演示
- 公園景觀改造工程施工組織設(shè)計(jì)方案
- 辦公用品供貨總體服務(wù)方案
- 全國(guó)書(shū)法作品展投稿登記表
- 鏈條功率選用
- 年產(chǎn)30萬(wàn)噸合成氨脫碳工段工藝設(shè)計(jì)
- 塑膠產(chǎn)品成型周期公式及計(jì)算
- (完整版)工地常用英語(yǔ)詞匯
- LM-10Y液晶系列全自動(dòng)振動(dòng)時(shí)效使用說(shuō)明書(shū)
評(píng)論
0/150
提交評(píng)論