新高考壓軸題中函數(shù)的新定義問題 解析版_第1頁
新高考壓軸題中函數(shù)的新定義問題 解析版_第2頁
新高考壓軸題中函數(shù)的新定義問題 解析版_第3頁
新高考壓軸題中函數(shù)的新定義問題 解析版_第4頁
新高考壓軸題中函數(shù)的新定義問題 解析版_第5頁
已閱讀5頁,還剩45頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

=·1·(2)任意x>0,恒有sinhx-kx>0成立,求實數(shù)·1· *(coshx(/=/==sinhx,(coshx(/=/==sinhx,2(coshx(2-1=2×2-1=-1==cosh(2x(;(coshx(2-(sinhx(2=22=-=1;①當k≤1時,由coshx=≥ex?e-x=1,所以F/(x(=coshx-k>0,即F(x)為增函數(shù),此時F(x)>F(0)=0,對任意x>0,sinhx>kx恒成立,滿足題意;x(=sinhx>0,可知G(x)是增函數(shù),0類比雙曲余弦函數(shù)的二倍角公式cosh(n=cosh(2n-1m(,·2·n=cosh(2n-1m(·2· 2024=cosh(22023m(=,設t=22023mt=4或,即t=±ln4,所以m=±,即a1=coshm==2+2.n+1=2a-1,所以an+1=2(coshxn(2-1=cosh(2xn(,則an+1=cosh(xn+1(=cosh(2xn(,1所以a=a1=cosh(x1(=(ex1+e-x1(=4+4=2+2,f(x1(-f(x2(|<f(x1(-f(x2(|<1.1≤x1<x2≤3,則|f(x1(-f(x2(|=+1+1(|=|x1-x2|<2|x1-x2|,·3·<x·3· 則|f(x1(-f(x2(|<3|x1-x2|=3(x2-x1(恒成立,可得3x1-3x2<f(x1(-f(x2(<3x2-3x1,即f(x1(+3x1<f(x2(+3x2,f(x2(-3x2<f(x1(-3x1均恒成立,x(=f/(x(+3,由f(x1(+3x1<f(x2(+3x2可知g(x(在[1,e[內(nèi)單調(diào)遞增,x(≤3[1,e[內(nèi)恒成立;即-3≤f/(x(≤3在[1,e[內(nèi)恒成立,又因為f/(x)=axex-x-1-lnx,即-3≤axex-x-1-lnx≤3,整理得≤a≤,可得≤a≤,令t=x+lnx,t(≥G(e+1(=;e+1e+11=x2,可得|f(x1(-f(x2(|=0<1,符合題意;<x2≤2,①若0<x2-x1≤,則|f(x1(-f(x2(|<2|x1-x2|≤1;②若<x2-x1≤1,則|f(x1(-f(x2(|=|f(x1(-f(1(+f(1(-f(x2(|=|f(x1(-f(1(+f(2(-f(x2(|≤|f(x1(-f(1(|+|f(2(-f(x2(|≤2(x1-1(+2(2-x2(=2-2(x2-x1(<1;·4·f(x1(-f(x2(|<1·4·+的函數(shù)稱為n次置換.滿足對任意i∈f1(f(?f((,記f(i(=f1(i(,f(f(i((=f2(i(,f(f2(i((=f3(i(,?,f(fk-1(i((=fk(i(,i∈A,k∈N+.f(i(=i(;+i(=i(=,,f3(i(=;i(=44當f(i(=當f(i(=444(或f(i(=.2134(或f(i(=2431(或f(i(=23322334(或f(i(=2431(或f(i(=213444(或f(i(=(或f(i(=·5·; +f1(i(k+=?(,即f(i(=ffffffffffffffffffffffffffffffffffffffffffffffffffff【題型訓練-刷模擬】·6··6· (2)已知函數(shù)g(x(=ln(x+1(+x3,設集合P={x(2)(i)對h(x(=ln(x+1(+x3-x(x>-1(求導得出函數(shù)h(x(的單調(diào)性,利用零點存在定理即可求得集合P中元素的個數(shù)為2個;r[,=1+cosx≥0恒成立,所以f(x(在[0,r[上單調(diào)遞增,可得f(x(的值域為[0,r+sinr[,即可得r+sinr≤r,即sinr≤0(r>0(,(2)(i)記函數(shù)h(x(=g(x(-x=ln(x+1(+x3-x(x>-1(,4+9x2(x+1(-4(x+1(9x2(x+1(-4xx(3x+4((3x-1(則h′(x(=4+9x2(x+1(-4(x+1(9x2(x+1(-4xx(3x+4((3x-1(>0得-1<x<0或x>;由h′(x(<0得0<x<;(ii)由(i)得m=x0,假設長度為m的閉區(qū)間D=[a,a+x+x0[+x0[,·7·當-1<a<0時,由(i)得h(x(在(-1,0·7· ∴h(a+x0(=g(a+x0(-(a+x0(>h(x0(=0,,而g(x(顯然在(-1,+∞(單調(diào)遞增,∴g(0(≤g(x(≤g(x0(,由(i)可得g(0(=h(0(+0=0,g(x0(=h(x0(+x0=D,滿足要求. 2=D,若x1f(x1(-f(x2(|≤t|g(x1(-g(x2(|(t>0)成立,則稱函數(shù)y=f(x)與y=g(x)“具有性質(zhì)H,求證x+x>2.得2<x1+x2<4,即|x1+x2|<4,則|x1+x2|?|x1-x2|<4|x1-x2f(x1(-f(x2(|≤2|g(x1(-g(x2(|,·8··8· ,1[與g(x(=“具有性質(zhì)H(t)”,即|2+x-2-x|≤t-,x2,則0<x1+x2<2,0<x1x2<1,即0<x1x2(x1+x2)<2,又函數(shù)f(x(=+2lnx-3與y=g(x)“具有性質(zhì)H(1)”,則|f(x1(-f(x2(|≤|g(x1(-g(x2(|=0,即f(x1(=f(x2(,即+2lnx1-3=+2lnx2-3,令x=t1,x=t2,即+lnt1-3=+lnt2-3,記h(x(=+lnx-3,即h(t1(=h(t2(,因為h/(x(=-+=,要證x+x>2,即證t1+t2>2,不妨設0<t1<1<t2,即證t2>2-t1>1,只需證h(t2(>h(2-t1(,即證h(t1(>h(2-t1(,設H(x(=h(x(-h(2-x(,即H(x(=+lnx---ln(2-x(,因為H/(x(=-+--+-=-≤0,所以函數(shù)y=H(x(在(0,+∞(是減函數(shù),且H(1)=0,又0<t1<1,則H(t1(>H(1(=0,即h(t1(-h(2-t1(>0,則h(t1(>h(2-t1(得證,故x+x>2.·9··9· 故可取f(x)=tanx(.(2)假設有f(x)是集合Z到Q的一個完美對應,(3)f(x(=x3-kx2+1,f/(x(=3x2-2kx=0,得x=0或,f/又f(0)=1<2,故只有極小值f≤-3才滿足題意,即3-k2+1≤-3,k≥3,f/·10·又f(0)=1>-3,故只有極大值f≥2才滿足題意,·10· 即3-k2+1≥2,即k≤-.后對k進行合理分類討論即可.*對于f2(x)=lnx,f(x)=(x>0)是嚴格減函數(shù),則f2(x)在不同點處的切線斜率不同,=-1==tan2x≥0恒成立,且僅當x=0時g/(x)=0,令g1由y=g1(x)的圖象是連續(xù)曲線,且g1(-g1=-1<0,·11·:y-tanx1+x1-a=tan2x1?(x-x1),l2:y-tanx2+x2-a=tan2x2?(x-x2),有相同截距,即-x1tan2x1+tanx1-x1+a=-x2tan2x2+tanx2-x2+a,而x2=-x1·11· 則-x1tan2x1+tanx1-x1=x1tan2x1-tanx1+x1,即x1(1+tan2x1)=tanx1,則有x1=sinx1cosx1,即2x1=sin2x1,令φ(x)=x-sinx,0<x<π,φ/(x)=1-cosx>0,又h(x)在點(t,sint)處的切線方程為y-sint=cost(x-t),即y=xcost+sint-tcost,h(x)在點(s,sins)處的切線方程為y=xcoss+sins-scoss,-t(t,coss=cost且tans=-tant,從而存在n∈N*,使得s=2nπ-t,代入tans-s=tant-t,可得tant-t+nπ=0,則xn=t,即t是數(shù)列{xn{中的項;反之,若t是數(shù)列{xn{中的項,則存在n∈N*,使得xn=t,即tant-t+nπ=0,令s=2nπ-t,則s∈(2π,+∞)且coss=cost,tans-s-(tant-t)=2(t-tant-nπ)=0,即tans-s=tant-t,可得sins-scoss=sint-tcost,所以存在s∈(2π,+∞),使得點(s,sins)與(t,sint)是函數(shù)y=sinx的圖象的一是數(shù)列{xn{中的項”.【點睛】結(jié)論點睛:函數(shù)y=f(x)是區(qū)間D上的可導函數(shù),則曲線y=f(x)在點(x0,f(x0))(x0∈D)方程為:y-f(x0)=f/(x0)(x-x0).(x)=sinx-x2與φ2(x(=ex-x是否具有性質(zhì)φ1-φ2?x0>0?并說明理由.(2)已知函數(shù)f(x(=aex-ln(x+1(與g(x(=ln(x+a(-ex+1具有性質(zhì)f-g?x1>x2.(2)(i)a∈(0,1(∪(1(x)=sinx-x2與φ2(x(=ex-x具有性質(zhì)φ1-φ2?x0>0,理由如下:φ(x)=cosx-2x,令h(x(=φ(x(=cosx-2x,·12·則h/(x(=-sinx-2<0,故φ(x·12· 則φ1(x(在(-∞,x0(上單調(diào)遞增,在(x0,+∞(上單調(diào)遞減,(x)在(-∞,0(上單調(diào)遞減,在(0,+∞(上單調(diào)遞增,(x)=sinx-x2與φ2(x(=ex-x具有性質(zhì)φ1-φ2?x0>0;(2)(i)f(x(=aex-,又x+1>0,故x>-1,當a≤0時,f(x(=aex-<0,此時f(x(沒有極值點,故舍去,當a>0時,令m(x(=f(x(=aex-故f(x(在(-1,+∞(上單調(diào)遞增,g(x(=-ex,x+a>0,故x>-a,故g(x(在(-a,+∞(上單調(diào)遞減,f(0(=ae0-=a-1<0,又x→+∞時,f(x(→+故此時存在x1∈(0,+∞(,使f(x(在(-1,x1(上單調(diào)遞減,在(x1,+∞(上單調(diào)遞增,則f(x(有唯一極值點x1∈(0,+∞(,故此時存在x2∈(0,+∞(,使g(x(在(-a,x2(上單調(diào)遞增,在(x2,+∞(上單調(diào)遞減,則g(x(有唯一極值點x2∈(0,+∞(,x1=x2=此時需滿足x1>x2>0,則ex1>ex2,當a∈(1,+∞(時,f(0(=ae0-=a-1>0,又x→-1時,f(x(→-∞,·13·故此時存在x1∈(-1,0(,使f(x(在(-1,x1(上單調(diào)遞減,在(x1,+∞(上單調(diào)遞增,則f(x(有唯一極值點x1∈(-1,0·13· 當a=1時,有f(0(=ae0-=a-1=0,g(0(=-e0=-1=0,>x2>0,則ex2=>e0=1,故0<x2+a<1,g(x(在(-a,x2(上單調(diào)遞增,在(x2,+∞(上單調(diào)遞減,則g(x1(<g(x2(=ln(x2+a(-ex2+1=ln(x2+a(-+1,則μ(t(=+>0,故μ(t(在(0,1(則g(x2(=lnt-+1<μ(1(=ln1-+1=0,g(x1(+x2<0,g(x1(+x2<g(x2(+x2=ln(x2+a(-ex2+1+x2=ln-ex2+1+x2=1-ex2<0,>|x2|;>x1>x2,則ex2=<e0=1,即x2+a>1,則g(x1(>g(0(=ln(0+a(-e0+1=lna>0,g(x1(+x2>0,g(x1(+x2=ln(x1+a(-ex+1+x2>ln(x2+a(-ex+1+x2=ln-ex1+1+x2=-x2-ex1+1+x2=1-ex1>1-e0=0,·14··14· k*k(3)Tm=+-?3m.=6,=6,k(=pk-pk-1=(p-1(pk-1.于是φ(pq(=pq-1-(p-1(-(q-1(=pq-p-q+1=(p-1((q-1(,m=(5m-3(×3m-1,0+72+?+(5m-3(?3m-1,3T1+72+123+?+(5m-3(?3m,2+?+5?3m-1-(5m-3(?3m,所以-2Tm=-(5m-3(?3m+2,故Tm=+-?3m.(2024·安徽合肥·三模)把滿足任意x,y∈R總有f(x+y(+f(x-y(=2f(x(f(y(的函數(shù)稱為和弦·15··15· f(2(=187令x=n,y=1,n∈N+,則f(n+1(+f(n-1(=2f(n(f(1(=f(n(,2f(n+1(-f(n(=2[2f(n(-f(n-1([,則f(y(+f(-y(=2f(0(f(y(=2f(y(,即f(y(=f(-y(,g(x(是偶函數(shù),x2|=即Cn+1+Cn-1>2Cn,Cn+1>2Cn-Cn-1=Cn+(Cn-Cn-1(>Cn,又g(x(是偶函數(shù),所以有g(shù)(x2(>g(x1(.=,|x2|=將問題轉(zhuǎn)化為判斷Cn=g(的增減性.成立,則稱函數(shù)y=f(x(為增函數(shù)”.·16··16· (3)設g(x(=ex-ln(x+1(-1,若曲線y=g(x(在x=x0處的切線方程為y=0,求x0的值,并證明函數(shù)y=g(x(是增函數(shù)”.故函數(shù)y=cos故任意的s,t∈(0,+∞(,有3s+t-1-(s+t(-a>3s-1-s-a+3t-1-t-a恒成立,s+t-1-3s-1-3t-1>-a恒成立,所以(3s-1((3t-1(>-a恒成立,t則-a≤0,即a≥.x0(=ex0-可得方程的一個解x0=0,x(=ex+>0,故g/(x(在(0,+∞(上是嚴格增函數(shù),所以x0=0是唯一解,設w(s(=g(s+t(-g(s(-g(t(,其中s>0,t>0,ws(=g/(s+t(-g/(s(,由y=g/(x(在(0,+∞(上是嚴格增函數(shù)以及s+t>s>0,得g/(s+t(>g/(s(,即w/(s(=g/(s+t(-g/(s(>0,所以w(s(=g(s+t(-g(s(-g(t(在(0,+∞(上是嚴格增函數(shù),因為s>0,則w(s(>w(0(=g(t(-g(0(-g(t(=0,故g(s+t(>g(s(+g(t(,得證,所以函數(shù)y=g·17··17· 如新環(huán)序號an-m+1對應的是原環(huán)中的a0,?,新環(huán)序號an-1對應的是原環(huán)中的am-2.這就需要用模取余,即f(n+1,m(=(f(n,m(+m(mod(n+1(.·18·f(2,2(=(f(1,2(+2(f(4,2(=(f(3,2(+2(mod4f(6,2(=(f(5,2(+2(mod6=4f(7,2(=(f(6,2(+2(mf(8,2(=(f(7,2(+2(mo·18· ,且0≤t<2k)時推測成立,即f(2k+t,2(=2[(2k+t(mod2k[=2t.k+t+1,2(=(f(2k+t,2(+2(mod(2k+t+1(=(2t+2(mod(2k+t+1(.k-1k+t+1,2(=2t+2=2[(2k+t+1(mod2k[;k-1k+t+1,2(=0,此時2k+t+1=2k+1,即f(2k+1,2(=2(2k+1mod2k+1(.故當n+1=2k+t+1時,推測成立.推測成立.-β|≤1,則稱f(x(和g(x(互為“零點相鄰函數(shù)”.設f(x(=ln(a+x((a∈R(,g(x(=令g(x(=x(x+1(=0,得x1=-1,x2=0,-a-(-1(|≤1,解得1≤a≤3,-a-0|≤1,解得0≤a≤2,(2)h(x(=2x+1-ln(x+a((x>-a),則h/(x(=2-=,令h/(x(=0·19·當-a<x<-a時,h/(x(<0,h(x(單調(diào)遞減,·19· 所以h(x)min=h-a(=2-2a-ln=2+ln2-2a,min>0,h(x(無零點,min<0,又因為h(1(>0,min<0,又因為h(-1(<0,h(1(>0,(3)當x>0,a=1時,f-<0?ln(1+-<0,設t=,則t>0,則ln(1+-<0?ln(1+t(-<0?·1+tln(1+t(-t<0,21+t設F(t(=1+tln(1+t(-t(t>0),則F/(t(=ln(1+t(+2-21+21+t令p(t(=ln(1+t(+2-2、1+t,t>0,則p/(t(=-1=<0所以p(t(在(0,+∞(上單調(diào)遞減,·20· 面積(f2(x(-f1(x((dx,其中(dx=-F(3(的值; (2)y=2x-1∴F(2)-F(3)=?-π=.·21··21· 則切線方程為y-x=2x0(x-x0(,所以切線與軸的交點為B,0(,聯(lián)立?an=令f(x(=-dx2+,F(xiàn)/(x(=f(x(?F(x(=-+C(C為常數(shù)), -f(x1)+m[?[kx2-f(x2)+m[≥0,則稱(k,m)為f(x)f(x)+m≤0.(2)x=-2-2、2為函數(shù)f(x(的一個極大值點,x=-2、2為f(x(的一個極小值點.R,代入k=m=0,得:[kx1-f(x1(+m[?[kx2-f(x2(+m[=f(x1(?f(x2(≥0.·22·x(=(x2+(2+42(x+8+42(ex=(x+22((x+2+22(ex于是可列表如下:·22·x(-∞,-2-2√2(-2-2/2((-2-2/2-2/2(-2/2(-2√2,+∞(f/(x(+0-0+f(x(↗↘↗ ∴x=-2-2、2為函數(shù)f(x(的一個極大值點,x=-2、2為f(x(的一個極小值點.∈R,使得kx0-f(x0(+m>0,則對任意x0'∈R,都有[kx0-f(x0(+m[?[kx0'-f(x0'(+m[≥0.∴對任意x∈R,kx-f(x(+m≥0恒成立.令F(x(=(x2+ax+、2a(ex-kx-m,則F(x(≤0在R上恒成由二次函數(shù)性質(zhì)可知,必存在t0>0使得當x>t0時,x2+ax+、2a>0恒成立,且此時ex>1,∴當x>t0時有F(x(=(x2+ax+、2a(ex-kx-m>x2+ax+、2a-kx-m,由二次函數(shù)性質(zhì)可知,必存在x1>t0使得當x>x1時,F(xiàn)(x(>x2+ax+、2a-kx-m>0.這與F(x(≤0在R上恒成立矛盾.∴對任意x∈R,都有kx-f(x(+m≤00∈R,使得kx0-f(x0(+m>0,根據(jù)和諧數(shù)組的定義轉(zhuǎn)化得存在x0∈R,使得kx0-f(x0(+m>0,設F(x(=(x2+ax+、2a(ex-kx-m,通過二次 0=1,e1=x1+x2+x3,e2=x1x2+x2x3+x1x3,e3=x1x2x3.已知三次函數(shù)f(x(=a0x3+a1x2-e1P2+e2P1-e3P0=0;k(3)若x1+x2+x3=1,x+x+x=2,x+x+x=3,求x+x+x.(3)x+x+x=6.【詳解】(1)證明:f(x(=(x-x1((x-x2((x-x3(·23·=x3-(x1+x2+x3(x2+(x1x2+x2x3+x1x3(x-x1x2x3,0=1=e0,a1=-(x1+x2+x3(=-e1,a2=e2,a3=-e3,·23· (i)由①+②+③得P3-e1P2+e2P1-3e3=P3-e1P2+e2P1-e3P0=0.④+⑤+⑥得Pm-e1Pm-1+e2Pm-2-e3Pm-3=0,1=P1=1,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論