版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
熱點(diǎn)7-4拋物線及其應(yīng)用拋物線是高考數(shù)學(xué)的熱點(diǎn)問題,在高考中選擇題、填空題、解答題都曾出現(xiàn)過,屬于高頻考點(diǎn)。這部分內(nèi)容主要涉及標(biāo)準(zhǔn)方程、幾何性質(zhì)、弦長問題及面積問題等,解題思路和解題步驟相對(duì)固定,在沖刺階段的教學(xué)過程中盡量淡化解題技巧,強(qiáng)調(diào)通性通法,規(guī)范解題步驟?!绢}型1拋物線的定義及概念辨析】滿分技巧1、利用拋物線的定義解決問題,應(yīng)靈活地進(jìn)行拋物線上的點(diǎn)到焦點(diǎn)的距離與到準(zhǔn)線距離的等價(jià)轉(zhuǎn)化.即“看到準(zhǔn)線想到焦點(diǎn),看到焦點(diǎn)想到準(zhǔn)線”.2、注意靈活運(yùn)用拋物線上一點(diǎn)P(x,y)到焦點(diǎn)F的距離|PF|=|x|+eq\f(p,2)或|PF|=|y|+eq\f(p,2).【例1】(2023·廣東廣州·高三天河中學(xué)??茧A段練習(xí))已知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0在拋物線上,且SKIPIF1<0,則SKIPIF1<0點(diǎn)到SKIPIF1<0軸的距離為()A.SKIPIF1<0B.SKIPIF1<0C.2D.1【答案】B【解析】由題意得,SKIPIF1<0,拋物線SKIPIF1<0中SKIPIF1<0,所以SKIPIF1<0,所以所求距離為SKIPIF1<0.故選:B【變式1-1】(2023·全國·高三專題練習(xí))動(dòng)點(diǎn)P到直線SKIPIF1<0的距離減去它到點(diǎn)SKIPIF1<0的距離等于2,則點(diǎn)P的軌跡是()A.直線B.圓C.雙曲線D.拋物線【答案】D【解析】如圖所示,由于動(dòng)點(diǎn)P到直線SKIPIF1<0的距離減去它到點(diǎn)SKIPIF1<0的距離等于2,于是動(dòng)點(diǎn)P在直線SKIPIF1<0的右邊,且動(dòng)點(diǎn)P到直線SKIPIF1<0的距離大于2,因此動(dòng)點(diǎn)P到直線SKIPIF1<0的距離等于它到點(diǎn)SKIPIF1<0的距離,進(jìn)而根據(jù)拋物線的定義,可知點(diǎn)P的軌跡是拋物線.故選:D【變式1-2】(2023·湖南長沙·高三湖南師大附中??茧A段練習(xí))焦點(diǎn)為SKIPIF1<0的拋物線SKIPIF1<0的對(duì)稱軸與準(zhǔn)線交于點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0在拋物線SKIPIF1<0上且在第一象限,在SKIPIF1<0中,SKIPIF1<0,則直線SKIPIF1<0的斜率為()A.SKIPIF1<0B.SKIPIF1<0C.1D.SKIPIF1<0【答案】A【解析】過SKIPIF1<0作準(zhǔn)線的垂線,垂足為SKIPIF1<0,作SKIPIF1<0軸的垂線,垂足為SKIPIF1<0,則由拋物線的定義可得SKIPIF1<0,由SKIPIF1<0,在SKIPIF1<0中由正弦定理可知:SKIPIF1<0,設(shè)SKIPIF1<0的傾斜角為SKIPIF1<0,則SKIPIF1<0,故選:A.【變式1-3】(2023·安徽合肥·合肥一中??寄M預(yù)測(cè))設(shè)O為坐標(biāo)原點(diǎn),F(xiàn)為拋物線C:SKIPIF1<0的焦點(diǎn),直線SKIPIF1<0與拋物線C交于A,B兩點(diǎn),若SKIPIF1<0,則拋物線C的準(zhǔn)線方程為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0或SKIPIF1<0D.SKIPIF1<0或SKIPIF1<0【答案】C【解析】設(shè)直線SKIPIF1<0與SKIPIF1<0軸交點(diǎn)為SKIPIF1<0,由拋物線的對(duì)稱性,易知SKIPIF1<0為直角三角形,且SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,去絕對(duì)值,解得SKIPIF1<0或SKIPIF1<0,所以拋物線的準(zhǔn)線方程為SKIPIF1<0或SKIPIF1<0.故選:C.【變式1-4】(2023·河南·校聯(lián)考二模)設(shè)F為拋物線SKIPIF1<0的焦點(diǎn),點(diǎn)M在C上,點(diǎn)N在準(zhǔn)線l上,且SKIPIF1<0平行于x軸,準(zhǔn)線l與x軸的交點(diǎn)為E,若SKIPIF1<0,則梯形SKIPIF1<0的面積為()A.12B.6C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】由題知SKIPIF1<0,拋物線的焦點(diǎn)F為SKIPIF1<0,準(zhǔn)線l為SKIPIF1<0,如圖所示.由題知SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0SKIPIF1<0,由拋物線的定義知SKIPIF1<0,所以SKIPIF1<0是正三角形,所以SKIPIF1<0,則SKIPIF1<0.故選:D【題型2利用定義求距離和差最值】滿分技巧與拋物線有關(guān)的最值問題的轉(zhuǎn)換方法(1)將拋物線上的點(diǎn)到準(zhǔn)線的距離轉(zhuǎn)化為該點(diǎn)到焦點(diǎn)的距離,構(gòu)造出“兩點(diǎn)之間線段最短”,使問題得解.(2)將拋物線上的點(diǎn)到焦點(diǎn)的距離轉(zhuǎn)化為該點(diǎn)到準(zhǔn)線的距離,利用“與直線上所有點(diǎn)的連線中垂線段最短”原理解決.【例2】(2023·四川綿陽·高三南山中學(xué)??茧A段練習(xí))已知點(diǎn)SKIPIF1<0是拋物線SKIPIF1<0的焦點(diǎn),點(diǎn)SKIPIF1<0,且點(diǎn)SKIPIF1<0為拋物線SKIPIF1<0上任意一點(diǎn),則SKIPIF1<0的最小值為()A.7B.6C.5D.4【答案】A【解析】由SKIPIF1<0是拋物線SKIPIF1<0的焦點(diǎn),得SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,其準(zhǔn)線方程為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,即SKIPIF1<0,故點(diǎn)SKIPIF1<0在拋物線上方,由拋物線定義可知,點(diǎn)SKIPIF1<0到焦點(diǎn)SKIPIF1<0的距離SKIPIF1<0等于其到準(zhǔn)線的距離SKIPIF1<0,則SKIPIF1<0.故選:A.【變式2-1】(2023·江西萍鄉(xiāng)·高三統(tǒng)考期末)點(diǎn)SKIPIF1<0為拋物線SKIPIF1<0上任意一點(diǎn),點(diǎn)SKIPIF1<0為圓SKIPIF1<0上任意一點(diǎn),SKIPIF1<0為直線SKIPIF1<0的定點(diǎn),則SKIPIF1<0的最小值為()A.2B.SKIPIF1<0C.3D.SKIPIF1<0【答案】A【解析】如圖所示:由SKIPIF1<0知,拋物線焦點(diǎn)SKIPIF1<0,由SKIPIF1<0,化為SKIPIF1<0,即為以SKIPIF1<0為圓心,1為半徑的圓,又SKIPIF1<0,得SKIPIF1<0,恒過定點(diǎn)SKIPIF1<0,過點(diǎn)SKIPIF1<0作SKIPIF1<0垂直于拋物線的準(zhǔn)線:SKIPIF1<0交于點(diǎn)SKIPIF1<0,連接SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0三點(diǎn)共線時(shí),SKIPIF1<0最小,此時(shí)為3,所以SKIPIF1<0的最小值為:SKIPIF1<0,故選:A.【變式2-2】(2023·全國·模擬預(yù)測(cè))已知拋物線C:SKIPIF1<0的焦點(diǎn)為F,SKIPIF1<0,過點(diǎn)M作直線SKIPIF1<0的垂線,垂足為Q,點(diǎn)P是拋物線C上的動(dòng)點(diǎn),則SKIPIF1<0的最小值為.【答案】SKIPIF1<0【解析】由SKIPIF1<0得SKIPIF1<0,所以直線SKIPIF1<0過點(diǎn)SKIPIF1<0.連接AM,則SKIPIF1<0,由題意知點(diǎn)Q在以AM為直徑的圓上,設(shè)SKIPIF1<0,所以點(diǎn)Q的軌跡方程為SKIPIF1<0(不包含點(diǎn)SKIPIF1<0),記圓SKIPIF1<0的圓心為SKIPIF1<0,過點(diǎn)Q,P,N分別作準(zhǔn)線SKIPIF1<0的垂線,垂足分別為B,D,S,連接DQ,則SKIPIF1<0,當(dāng)且僅當(dāng)B,P,Q,N四點(diǎn)共線且點(diǎn)Q在PN中間時(shí)等號(hào)同時(shí)成立,所以SKIPIF1<0的最小值為SKIPIF1<0.【變式2-3】(2023·廣西·統(tǒng)考模擬預(yù)測(cè))已知拋物線SKIPIF1<0:SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,圓SKIPIF1<0:SKIPIF1<0,點(diǎn)SKIPIF1<0,SKIPIF1<0分別為拋物線SKIPIF1<0和圓SKIPIF1<0上的動(dòng)點(diǎn),設(shè)點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,則SKIPIF1<0的最小值為()A.3B.4C.5D.6【答案】C【解析】圓SKIPIF1<0:SKIPIF1<0,圓心坐標(biāo)SKIPIF1<0,半徑為1,拋物線SKIPIF1<0:SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,準(zhǔn)線方程SKIPIF1<0,如圖所示,點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離比點(diǎn)SKIPIF1<0到準(zhǔn)線SKIPIF1<0的距離大2,即SKIPIF1<0,SKIPIF1<0的最小值為SKIPIF1<0,當(dāng)SKIPIF1<0三點(diǎn)共線時(shí)SKIPIF1<0的最小值為SKIPIF1<0,所以SKIPIF1<0.故選:C.【變式2-4】(2023·湖北孝感·校聯(lián)考模擬預(yù)測(cè))設(shè)P為拋物線C:SKIPIF1<0上的動(dòng)點(diǎn),SKIPIF1<0關(guān)于P的對(duì)稱點(diǎn)為B,記P到直線SKIPIF1<0的距離分別SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【解析】如圖,因?yàn)镾KIPIF1<0,且SKIPIF1<0關(guān)于P的對(duì)稱點(diǎn)為B,所以|PA|=|PB|,拋物線焦點(diǎn)SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.當(dāng)P在線段AF上時(shí),SKIPIF1<0取得最小值,且最小值為SKIPIF1<0.故選:A【題型3拋物線標(biāo)準(zhǔn)方程的求解】滿分技巧1、定義法:根據(jù)拋物線的定義,確定p的值(系數(shù)p是指焦點(diǎn)到準(zhǔn)線的距離),再結(jié)合焦點(diǎn)位置,求出拋物線方程.標(biāo)準(zhǔn)方程有四種形式,要注意選擇.2、待定系數(shù)法(1)根據(jù)拋物線焦點(diǎn)是在x軸上還是在y軸上,設(shè)出相應(yīng)形式的標(biāo)準(zhǔn)方程,然后根據(jù)條件確定關(guān)于p的方程,解出p,從而寫出拋物線的標(biāo)準(zhǔn)方程;(2)當(dāng)焦點(diǎn)位置不確定時(shí),有兩種方法解決.一種是分情況討論,注意要對(duì)四種形式的標(biāo)準(zhǔn)方程進(jìn)行討論,對(duì)于焦點(diǎn)在x軸上的拋物線,若開口方向不確定需分為y2=-2px(p>0)和y2=2px(p>0)兩種情況求解.另一種是設(shè)成y2=mx(m≠0),若m>0,開口向右;若m<0,開口向左;若m有兩個(gè)解,則拋物線的標(biāo)準(zhǔn)方程有兩個(gè).同理,焦點(diǎn)在y軸上的拋物線可以設(shè)成x2=my(m≠0).【例3】(2023·北京·北京四中??寄M預(yù)測(cè))已知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,準(zhǔn)線為SKIPIF1<0,點(diǎn)SKIPIF1<0是拋物線SKIPIF1<0上一點(diǎn),SKIPIF1<0于SKIPIF1<0.若SKIPIF1<0,則拋物線SKIPIF1<0的方程為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】如圖,連接SKIPIF1<0,設(shè)準(zhǔn)線與SKIPIF1<0軸交點(diǎn)為SKIPIF1<0拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,準(zhǔn)線SKIPIF1<0:SKIPIF1<0又拋物線的定義可得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0為等邊三角形,所以SKIPIF1<0,SKIPIF1<0所以在SKIPIF1<0中,SKIPIF1<0,則SKIPIF1<0,所以拋物線SKIPIF1<0的方程為SKIPIF1<0.故選:C.【變式3-1】(2023·河北衡水·高二衡水市第二中學(xué)??茧A段練習(xí))已知拋物線SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)的焦點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0在SKIPIF1<0上,且SKIPIF1<0,若點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的方程為()A.SKIPIF1<0或SKIPIF1<0B.SKIPIF1<0或SKIPIF1<0C.SKIPIF1<0或SKIPIF1<0D.SKIPIF1<0或SKIPIF1<0【答案】A【解析】設(shè)SKIPIF1<0為SKIPIF1<0,則SKIPIF1<0,又由SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,可得SKIPIF1<0,由SKIPIF1<0,聯(lián)立方程組,消去SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,又由SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0的方程為SKIPIF1<0或SKIPIF1<0.故選:A.【變式3-2】(2023·上海楊浦·統(tǒng)考一模)已知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,第一象限的SKIPIF1<0、SKIPIF1<0兩點(diǎn)在拋物線上,且滿足SKIPIF1<0,SKIPIF1<0.若線段SKIPIF1<0中點(diǎn)的縱坐標(biāo)為4,則拋物線的方程為.【答案】SKIPIF1<0【解析】設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0都在第一象限,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0且SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以拋物線方程為SKIPIF1<0.【變式3-3】(2023·天津河?xùn)|·高三校考階段練習(xí))點(diǎn)M為拋物線SKIPIF1<0SKIPIF1<0上點(diǎn),拋物線焦點(diǎn)為F,過M作y軸垂線交y軸于N點(diǎn),若SKIPIF1<0是以SKIPIF1<0為底邊的等腰三角形,且SKIPIF1<0,則拋物線方程為.【答案】SKIPIF1<0【解析】因?yàn)镾KIPIF1<0是以SKIPIF1<0為底邊的等腰三角形,且SKIPIF1<0,所以SKIPIF1<0,設(shè)點(diǎn)M到拋物線準(zhǔn)線的距離為SKIPIF1<0,則由拋物線的定義知,SKIPIF1<0,即:SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0,所以拋物線的方程為SKIPIF1<0.【變式3-4】(2023·全國·高三專題練習(xí))若點(diǎn)A,B在拋物線SKIPIF1<0上,O是坐標(biāo)原點(diǎn),正三角形OAB的面積為SKIPIF1<0,則該拋物線的方程是.【答案】SKIPIF1<0【解析】根據(jù)對(duì)稱性,可知SKIPIF1<0軸,由于正三角形OAB的面積是SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,正SKIPIF1<0的高為SKIPIF1<0,故可設(shè)點(diǎn)A的坐標(biāo)為SKIPIF1<0,代入拋物線方程得SKIPIF1<0,解得SKIPIF1<0,故所求拋物線的方程為SKIPIF1<0.【題型4拋物線的中點(diǎn)弦問題】滿分技巧設(shè)直線與曲線的兩個(gè)交點(diǎn)SKIPIF1<0、SKIPIF1<0,中點(diǎn)坐標(biāo)為SKIPIF1<0,代入拋物線方程,SKIPIF1<0,SKIPIF1<0,將兩式相減,可得SKIPIF1<0,整理可得:SKIPIF1<0【例4】(2023·四川資陽·統(tǒng)考三模)已知拋物線C:SKIPIF1<0,過點(diǎn)SKIPIF1<0的直線l與拋物線C交于A,B兩點(diǎn),若SKIPIF1<0,則直線l的斜率是()A.SKIPIF1<0B.4C.SKIPIF1<0D.SKIPIF1<0【答案】A【解析】設(shè)SKIPIF1<0,則SKIPIF1<0作差得SKIPIF1<0.因?yàn)镾KIPIF1<0,所以P是線段AB的中點(diǎn),所以SKIPIF1<0,則直線l的斜率SKIPIF1<0.故選:A【變式4-1】(2022·北京·高三北京二中??茧A段練習(xí))已知A,B是拋物線SKIPIF1<0上的兩點(diǎn),線段AB的中點(diǎn)為SKIPIF1<0,則直線AB的方程為.【答案】SKIPIF1<0【解析】依題意,設(shè)SKIPIF1<0,若SKIPIF1<0,則直線SKIPIF1<0,由拋物線的對(duì)稱性可知,線段AB的中點(diǎn)為SKIPIF1<0,顯然不符合題意,故SKIPIF1<0,因?yàn)锳,B是拋物線SKIPIF1<0上的兩點(diǎn),所以SKIPIF1<0,兩式相減得,SKIPIF1<0,整理得SKIPIF1<0,因?yàn)榫€段AB的中點(diǎn)為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以直線AB的方程為SKIPIF1<0,即SKIPIF1<0.【變式4-2】(2023·貴州遵義·統(tǒng)考三模)已知拋物線SKIPIF1<0上兩點(diǎn)A,B關(guān)于點(diǎn)SKIPIF1<0對(duì)稱,則直線AB的斜率為.【答案】2【解析】設(shè)SKIPIF1<0,SKIPIF1<0代入拋物線SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0①,因?yàn)閮牲c(diǎn)A,B關(guān)于點(diǎn)SKIPIF1<0對(duì)稱,則SKIPIF1<0,所以由①得SKIPIF1<0,直線AB的斜率為2.則直線AB:SKIPIF1<0與代入拋物線SKIPIF1<0聯(lián)立,得SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0.所以直線AB的斜率為2.【變式4-3】(2022·全國·高三專題練習(xí))直線SKIPIF1<0(SKIPIF1<0是參數(shù))與拋物線SKIPIF1<0的相交弦是SKIPIF1<0,則弦SKIPIF1<0的中點(diǎn)軌跡方程是.【答案】SKIPIF1<0【解析】設(shè)SKIPIF1<0,SKIPIF1<0中點(diǎn)SKIPIF1<0,則SKIPIF1<0.SKIPIF1<0SKIPIF1<0,SKIPIF1<0過定點(diǎn)SKIPIF1<0,SKIPIF1<0.又SKIPIF1<0,(1)SKIPIF1<0,(2)SKIPIF1<0得:SKIPIF1<0,SKIPIF1<0.
于是SKIPIF1<0,即SKIPIF1<0.又弦中點(diǎn)軌跡在已知拋物線內(nèi),聯(lián)立SKIPIF1<0故弦SKIPIF1<0的中點(diǎn)軌跡方程是SKIPIF1<0【變式4-4】(2023·陜西漢中·校聯(lián)考模擬預(yù)測(cè))已知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0在拋物線SKIPIF1<0上,且SKIPIF1<0.(1)求拋物線SKIPIF1<0的方程;(2)已知直線SKIPIF1<0交拋物線SKIPIF1<0于SKIPIF1<0兩點(diǎn),且點(diǎn)SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),求直線SKIPIF1<0的方程.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【解析】(1)點(diǎn)SKIPIF1<0在拋物線SKIPIF1<0上,由拋物線定義可得SKIPIF1<0,解得SKIPIF1<0,故拋物線SKIPIF1<0的標(biāo)準(zhǔn)方程為SKIPIF1<0.(2)設(shè)SKIPIF1<0,如下圖所示:則SKIPIF1<0,兩式相減可得SKIPIF1<0,即SKIPIF1<0,又線段SKIPIF1<0的中點(diǎn)為SKIPIF1<0,可得SKIPIF1<0;則SKIPIF1<0,故直線SKIPIF1<0的斜率為4,所以直線SKIPIF1<0的方程為SKIPIF1<0,即直線SKIPIF1<0的方程為SKIPIF1<0.【題型5拋物線的弦長問題】滿分技巧1、一般弦長:設(shè)為拋物線的弦,,,(為直線的斜率,且).2、焦點(diǎn)弦長:如圖,是拋物線過焦點(diǎn)的一條弦,設(shè),,的中點(diǎn),過點(diǎn),,分別向拋物線的準(zhǔn)線作垂線,垂足分別為點(diǎn),,,根據(jù)拋物線的定義有,,故.又因?yàn)槭翘菪蔚闹形痪€,所以,從而有下列結(jié)論;(1)以為直徑的圓必與準(zhǔn)線相切.(2)(焦點(diǎn)弦長與中點(diǎn)關(guān)系)(3).(4)若直線的傾斜角為,則.(5),兩點(diǎn)的橫坐標(biāo)之積,縱坐標(biāo)之積均為定值,即,.(6)為定值.【例5】(2023·湖南長沙·雅禮中學(xué)校考模擬預(yù)測(cè))已知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,過SKIPIF1<0且斜率大于零的直線SKIPIF1<0與SKIPIF1<0及拋物線SKIPIF1<0的公共點(diǎn)從右到左依次為點(diǎn)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】如下圖所示:易知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,設(shè)直線l的方程為SKIPIF1<0,因?yàn)橹本€SKIPIF1<0與拋物線SKIPIF1<0相切,聯(lián)立SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,解得SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0、SKIPIF1<0,聯(lián)立SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,由韋達(dá)定理可得SKIPIF1<0,SKIPIF1<0,故選:C.【變式5-1】(2023·江西景德鎮(zhèn)·統(tǒng)考一模)已知拋物線C:SKIPIF1<0的焦點(diǎn)為F,準(zhǔn)線為l,過F的直線交拋物線C于A,B兩點(diǎn),SKIPIF1<0的中垂線分別交l與x軸于D,E兩點(diǎn)(D,E在SKIPIF1<0的兩側(cè)).若四邊形SKIPIF1<0為菱形,則SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.2【答案】B【解析】由四邊形SKIPIF1<0為菱形,如下圖示,SKIPIF1<0,SKIPIF1<0,由拋物線性質(zhì)知:SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0.公式SKIPIF1<0,證明如下:令直線SKIPIF1<0(斜率存在)為SKIPIF1<0,代入SKIPIF1<0,則SKIPIF1<0,整理得SKIPIF1<0,若SKIPIF1<0,而SKIPIF1<0,若直線傾斜角為SKIPIF1<0(不為直角),則SKIPIF1<0,所以SKIPIF1<0.故選:B【變式5-2】(2022·廣東深圳·高三深圳外國語學(xué)校??茧A段練習(xí))若直線l經(jīng)過拋物線SKIPIF1<0的焦點(diǎn),與該拋物線交于A,B兩點(diǎn),且線段AB的中點(diǎn)的縱坐標(biāo)為3,則線段AB的長為.【答案】8【解析】拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,直線SKIPIF1<0與拋物線交于兩點(diǎn),則其斜率存在,設(shè)SKIPIF1<0的方程為SKIPIF1<0,SKIPIF1<0,則由SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.【變式5-3】(2022·四川內(nèi)江·統(tǒng)考模擬預(yù)測(cè))已知拋物線SKIPIF1<0:SKIPIF1<0,坐標(biāo)原點(diǎn)為SKIPIF1<0,焦點(diǎn)為SKIPIF1<0,直線SKIPIF1<0:SKIPIF1<0.(1)若直線SKIPIF1<0與拋物線SKIPIF1<0只有一個(gè)公共點(diǎn),求SKIPIF1<0的值;(2)過點(diǎn)SKIPIF1<0作斜率為SKIPIF1<0的直線交拋物線SKIPIF1<0于SKIPIF1<0,SKIPIF1<0兩點(diǎn),求SKIPIF1<0的面積.【答案】(1)SKIPIF1<0或SKIPIF1<0;(2)SKIPIF1<0【解析】(1)依題意,聯(lián)立SKIPIF1<0,消去SKIPIF1<0,得:SKIPIF1<0,即:SKIPIF1<0,①當(dāng)SKIPIF1<0時(shí),有:SKIPIF1<0,顯然方程只有一個(gè)解,滿足條件;②當(dāng)SKIPIF1<0時(shí),要使得直線SKIPIF1<0與拋物線SKIPIF1<0只有一個(gè)公共點(diǎn),則方程SKIPIF1<0只有一個(gè)解,所以SKIPIF1<0,解得:SKIPIF1<0;綜上所述,當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),直線SKIPIF1<0與拋物線SKIPIF1<0只有一個(gè)公共點(diǎn).(2)由于拋物線SKIPIF1<0:SKIPIF1<0的焦點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,所以過點(diǎn)SKIPIF1<0且斜率為SKIPIF1<0的直線方程為:SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,聯(lián)立SKIPIF1<0,消去SKIPIF1<0,得:SKIPIF1<0,則由韋達(dá)定理得:SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.【變式5-4】(2023·湖南邵陽·高三邵東市第三中學(xué)??茧A段練習(xí))已知拋物線SKIPIF1<0的準(zhǔn)線方程是SKIPIF1<0.(1)求拋物線的方程;(2)設(shè)直線SKIPIF1<0與拋物線相交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),若SKIPIF1<0,求實(shí)數(shù)k的值.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【解析】(1)因?yàn)閽佄锞€SKIPIF1<0的準(zhǔn)線方程為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以拋物線的方程為SKIPIF1<0.(2)如圖,設(shè)SKIPIF1<0,SKIPIF1<0.將SKIPIF1<0代入SKIPIF1<0,消去SKIPIF1<0整理得SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0.SKIPIF1<0SKIPIF1<0,化簡(jiǎn)得:SKIPIF1<0,解得SKIPIF1<0,經(jīng)檢驗(yàn),此時(shí)SKIPIF1<0,故SKIPIF1<0.【題型6直線與拋物線綜合應(yīng)用】滿分技巧求解拋物線綜合問題的方法(1)研究直線與拋物線的位置關(guān)系與研究直線與橢圓、雙曲線的位置關(guān)系的方法類似,一般是用方程法,但涉及拋物線的弦長、中點(diǎn)、距離等問題時(shí),要注意“設(shè)而不求”“整體代入”“點(diǎn)差法”以及定義的靈活應(yīng)用.(2)有關(guān)直線與拋物線的弦長問題,要注意直線是否過拋物線的焦點(diǎn),若過拋物線的焦點(diǎn),可直接使用公式|AB|=x1+x2+p(焦點(diǎn)在x軸正半軸),若不過焦點(diǎn),則必須用弦長公式.【例6】(2023·全國·模擬預(yù)測(cè))已知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0上任意一點(diǎn)SKIPIF1<0到SKIPIF1<0的距離與到點(diǎn)SKIPIF1<0的距離之和的最小值為3.(1)求拋物線SKIPIF1<0的標(biāo)準(zhǔn)方程.(2)已知過點(diǎn)SKIPIF1<0且互相垂直的直線SKIPIF1<0與SKIPIF1<0分別交于點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0,線段SKIPIF1<0與SKIPIF1<0的中點(diǎn)分別為SKIPIF1<0.若直線SKIPIF1<0的斜率分別為SKIPIF1<0,求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【解析】(1)拋物線SKIPIF1<0的準(zhǔn)線方程為SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0到準(zhǔn)線的距離為SKIPIF1<0.由拋物線的定義,得SKIPIF1<0,解得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0三點(diǎn)共線時(shí),等號(hào)成立,所以拋物線SKIPIF1<0的標(biāo)準(zhǔn)方程為SKIPIF1<0.(2)設(shè)SKIPIF1<0,由題意可知,SKIPIF1<0的斜率存在且均不為0,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,將其代入SKIPIF1<0,得SKIPIF1<0,則有SKIPIF1<0.同理可得:設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,則SKIPIF1<0.所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào),又易知SKIPIF1<0,所以SKIPIF1<0的取值范圍為SKIPIF1<0.【變式6-1】(2023·湖北·高三校聯(lián)考階段練習(xí))已知拋物線C:SKIPIF1<0(SKIPIF1<0)的準(zhǔn)線方程為SKIPIF1<0.動(dòng)點(diǎn)P在SKIPIF1<0上,過P作拋物線C的兩條切線,切點(diǎn)為M,N.(1)求拋物線C的方程:(2)當(dāng)SKIPIF1<0面積的最大值時(shí),求點(diǎn)P的坐標(biāo).(O為坐標(biāo)原點(diǎn))【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)因?yàn)闇?zhǔn)線方程為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,拋物線C的方程為SKIPIF1<0.(2)設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,對(duì)SKIPIF1<0求導(dǎo)可得SKIPIF1<0,故過M的切線方程為SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,故MP:SKIPIF1<0,同理可得NP:SKIPIF1<0,因?yàn)閮汕芯€均經(jīng)過SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,SKIPIF1<0均在直線SKIPIF1<0上,可知MN:SKIPIF1<0,當(dāng)SKIPIF1<0得,SKIPIF1<0,解得SKIPIF1<0,則MN與y軸的交點(diǎn)坐標(biāo)為SKIPIF1<0.聯(lián)立SKIPIF1<0,整理得SKIPIF1<0,由韋達(dá)定理,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,又因?yàn)镾KIPIF1<0在圓SKIPIF1<0,則SKIPIF1<0,代入可得SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.構(gòu)造SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,易知SKIPIF1<0在SKIPIF1<0上恒成立,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值,此時(shí)SKIPIF1<0取到最大值SKIPIF1<0,點(diǎn)P的坐標(biāo)為SKIPIF1<0.【變式6-2】(2023·陜西西安·高三西安市第三中學(xué)校考期中)已知SKIPIF1<0為拋物線SKIPIF1<0SKIPIF1<0的焦點(diǎn),SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0為SKIPIF1<0的準(zhǔn)線SKIPIF1<0上的一點(diǎn),直線SKIPIF1<0的斜率為SKIPIF1<0,SKIPIF1<0的面積為4.(1)求SKIPIF1<0的方程;(2)拋物線SKIPIF1<0在SKIPIF1<0軸上方一點(diǎn)SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0,過點(diǎn)SKIPIF1<0作兩條傾斜角互補(bǔ)的直線,與曲線SKIPIF1<0的另一個(gè)交點(diǎn)分別為SKIPIF1<0、SKIPIF1<0,求證:直線SKIPIF1<0的斜率為定值.【答案】(1)SKIPIF1<0;(2)證明見解析【解析】(1)由題意知SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,則直線SKIPIF1<0的斜率為SKIPIF1<0.因?yàn)橹本€SKIPIF1<0的斜率為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0的面積SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),故拋物線SKIPIF1<0的方程為SKIPIF1<0.(2)依題意直線SKIPIF1<0的斜率存在且不為SKIPIF1<0,設(shè)直線SKIPIF1<0的斜率為SKIPIF1<0,點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.則直線SKIPIF1<0的方程為SKIPIF1<0,由SKIPIF1<0消去SKIPIF1<0整理得SKIPIF1<0,由SKIPIF1<0,所以SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是方程的兩個(gè)根,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,依題意,直線SKIPIF1<0的斜率為SKIPIF1<0,同理可得SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,所以直線SKIPIF1<0的斜率為定值.【變式6-3】(2023·全國·高三專題練習(xí))已知拋物線SKIPIF1<0的準(zhǔn)線經(jīng)過點(diǎn)SKIPIF1<0.(1)求拋物線C的方程.(2)設(shè)O是原點(diǎn),直線l恒過定點(diǎn)(1,0),且與拋物線C交于A,B兩點(diǎn),直線SKIPIF1<0與直線SKIPIF1<0,SKIPIF1<0分別交于點(diǎn)M,N,請(qǐng)問:是否存在以SKIPIF1<0為直徑的圓經(jīng)過x軸上的兩個(gè)定點(diǎn)?若存在,求出兩個(gè)定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.【答案】(1)SKIPIF1<0;(2)存在,兩個(gè)定點(diǎn)的坐標(biāo)分別為SKIPIF1<0和SKIPIF1<0.【解析】(1)依題意知,SKIPIF1<0,解得SKIPIF1<0,所以拋物線SKIPIF1<0的方程為SKIPIF1<0.(2)存在,理由如下.設(shè)直線SKIPIF1<0的方程為SKIPIF1<0.聯(lián)立直線SKIPIF1<0與拋物線SKIPIF1<0的方程得SKIPIF1<0消去SKIPIF1<0并整理,得SKIPIF1<0.易知SKIPIF1<0,則SKIPIF1<0由直線SKIPIF1<0的方程SKIPIF1<0,可得SKIPIF1<0,由直線SKIPIF1<0的方程SKIPIF1<0,可得SKIPIF1<0.設(shè)以SKIPIF1<0為直徑的圓上任一點(diǎn)SKIPIF1<0,則SKIPIF1<0,所以以SKIPIF1<0為直徑的圓的方程為SKIPIF1<0.令SKIPIF1<0,得SKIPIF1<0.將SKIPIF1<0代入上式,得SKIPIF1<0,解得SKIPIF1<0.故存在以SKIPIF1<0為直徑的圓經(jīng)過SKIPIF1<0軸上的兩個(gè)定點(diǎn),兩個(gè)定點(diǎn)的坐標(biāo)分別為SKIPIF1<0和SKIPIF1<0.【變式6-4】(2023·重慶·高三四川外國語大學(xué)附屬外國語學(xué)校校考期中)已知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0是拋物線上一點(diǎn),且SKIPIF1<0.(1)求拋物線C的方程;(2)設(shè)直線l:SKIPIF1<0,點(diǎn)B是l與y軸的交點(diǎn),過點(diǎn)ASKIPIF1<0作與l平行的直線SKIPIF1<0,過點(diǎn)A的動(dòng)直線SKIPIF1<0與拋物線C相交于P,Q兩點(diǎn),直線PB,QB分別交直線SKIPIF1<0于點(diǎn)M,N,證明:SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)證明見解析【解析】(1)過點(diǎn)D作準(zhǔn)線的垂線,垂足為SKIPIF1<0,由拋物線的定義得,SKIPIF1<0,解得SKIPIF1<0,所以拋物線C的方程為SKIPIF1<0.(2)證明:直線l:SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,所以點(diǎn)SKIPIF1<0,因?yàn)橹本€SKIPIF1<0平行于直線l:SKIPIF1<0,且過點(diǎn)SKIPIF1<0,所以直線SKIPIF1<0:SKIPIF1<0,設(shè)直線SKIPIF1<0:SKIPIF1<0,聯(lián)立SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0,SKIPIF1<0,由韋達(dá)定理可得SKIPIF1<0,SKIPIF1<0,所以直線PB的方程為SKIPIF1<0,直線QB的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0解得SKIPIF1<0,同理可得SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即A是線段MN的中點(diǎn).所以SKIPIF1<0.(建議用時(shí):60分鐘)1.(2023·西藏拉薩·統(tǒng)考一模)已知拋物線SKIPIF1<0:SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,點(diǎn)SKIPIF1<0在拋物線SKIPIF1<0上,且SKIPIF1<0,SKIPIF1<0為坐標(biāo)原點(diǎn),則SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.4D.5【答案】B【解析】設(shè)SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,又SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.故選:B2.(2023·全國·模擬預(yù)測(cè))已知拋物線SKIPIF1<0,直線SKIPIF1<0與拋物線SKIPIF1<0相交于A,B兩點(diǎn),點(diǎn)A為x軸上方一點(diǎn),過點(diǎn)A作SKIPIF1<0垂直于C的準(zhǔn)線于點(diǎn)D.若SKIPIF1<0,則p的值為()A.SKIPIF1<0B.1C.SKIPIF1<0D.2【答案】B【解析】如圖所示:根據(jù)題意,得點(diǎn)SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0.由拋物線的性質(zhì),得SKIPIF1<0.又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0是等邊三角形.而SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故選:B.3.(2023·浙江紹興·統(tǒng)考模擬預(yù)測(cè))已知SKIPIF1<0為拋物線SKIPIF1<0上的一點(diǎn),過SKIPIF1<0作圓SKIPIF1<0的兩條切線,切點(diǎn)分別為SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025學(xué)年西寧市城東區(qū)數(shù)學(xué)三年級(jí)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題含解析
- 2024-2025學(xué)年烏蘭浩特市數(shù)學(xué)三上期末學(xué)業(yè)水平測(cè)試模擬試題含解析
- 2025年再生橡膠項(xiàng)目立項(xiàng)申請(qǐng)報(bào)告
- 2024年片石供需協(xié)議
- 建筑實(shí)習(xí)報(bào)告范文錦集10篇
- 專業(yè)求職信匯編八篇
- 社會(huì)實(shí)踐心得50字
- 理想演講稿模板錦集5篇
- 個(gè)人簡(jiǎn)歷自我評(píng)價(jià)(15篇)
- 元旦主題晚會(huì)策劃書匯編15篇
- 2025年護(hù)理部工作計(jì)劃
- 2024年區(qū)域代理經(jīng)營協(xié)議
- DB35T 2153-2023 醫(yī)療機(jī)構(gòu)檢查檢驗(yàn)結(jié)果互認(rèn)共享數(shù)據(jù)傳輸及應(yīng)用要求
- 二年級(jí)語文上冊(cè) 課文2 口語交際 做手工教案 新人教版
- 七年級(jí)上冊(cè)語文第三單元知識(shí)速記清單(統(tǒng)編版2024)
- JJF 2143-2024 微波消解儀溫度參數(shù)校準(zhǔn)規(guī)范
- 2023-2024學(xué)年海南省陵水縣九年級(jí)(上)期末物理試卷
- 廣東省惠州市惠城區(qū)尚書實(shí)驗(yàn)分校2023-2024學(xué)年八年級(jí)上學(xué)期12月練習(xí)數(shù)學(xué)試卷
- 職業(yè)技能大賽電池制造工職業(yè)技能競(jìng)賽理論知識(shí)題及答案
- 2024秋期國家開放大學(xué)專科《高等數(shù)學(xué)基礎(chǔ)》一平臺(tái)在線形考(形考任務(wù)一至四)試題及答案
- 九年級(jí)上冊(cè)部編版歷史-1-4單元(1-12課)復(fù)習(xí)
評(píng)論
0/150
提交評(píng)論