版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,,則為()A. B. C. D.2.等比數(shù)列的各項均為正數(shù),且,則()A.12 B.10 C.8 D.3.如圖,在平面四邊形中,滿足,且,沿著把折起,使點到達(dá)點的位置,且使,則三棱錐體積的最大值為()A.12 B. C. D.4.函數(shù)與在上最多有n個交點,交點分別為(,……,n),則()A.7 B.8 C.9 D.105.據(jù)國家統(tǒng)計局發(fā)布的數(shù)據(jù),2019年11月全國CPI(居民消費價格指數(shù)),同比上漲4.5%,CPI上漲的主要因素是豬肉價格的上漲,豬肉加上其他畜肉影響CPI上漲3.27個百分點.下圖是2019年11月CPI一籃子商品權(quán)重,根據(jù)該圖,下列結(jié)論錯誤的是()A.CPI一籃子商品中所占權(quán)重最大的是居住B.CPI一籃子商品中吃穿住所占權(quán)重超過50%C.豬肉在CPI一籃子商品中所占權(quán)重約為2.5%D.豬肉與其他畜肉在CPI一籃子商品中所占權(quán)重約為0.18%6.在正方體中,E是棱的中點,F(xiàn)是側(cè)面內(nèi)的動點,且與平面的垂線垂直,如圖所示,下列說法不正確的是()A.點F的軌跡是一條線段 B.與BE是異面直線C.與不可能平行 D.三棱錐的體積為定值7.執(zhí)行如圖所示的程序框圖,若輸出的,則輸入的整數(shù)的最大值為()A.7 B.15 C.31 D.638.本次模擬考試結(jié)束后,班級要排一張語文、數(shù)學(xué)、英語、物理、化學(xué)、生物六科試卷講評順序表,若化學(xué)排在生物前面,數(shù)學(xué)與物理不相鄰且都不排在最后,則不同的排表方法共有()A.72種 B.144種 C.288種 D.360種9.已知,是兩條不重合的直線,是一個平面,則下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則10.如圖,在平行四邊形中,對角線與交于點,且,則()A. B.C. D.11.已知,則()A.5 B. C.13 D.12.公比為2的等比數(shù)列中存在兩項,,滿足,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系中,若雙曲線(,)的離心率為,則該雙曲線的漸近線方程為________.14.在平面直角坐標(biāo)系xOy中,已知雙曲線(a>0)的一條漸近線方程為,則a=_______.15.已知函數(shù)的最小值為2,則_________.16.設(shè)數(shù)列的前n項和為,且,若,則______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)若關(guān)于的方程的兩根都大于2,求實數(shù)的取值范圍.18.(12分)在世界讀書日期間,某地區(qū)調(diào)查組對居民閱讀情況進(jìn)行了調(diào)查,獲得了一個容量為200的樣本,其中城鎮(zhèn)居民140人,農(nóng)村居民60人.在這些居民中,經(jīng)常閱讀的城鎮(zhèn)居民有100人,農(nóng)村居民有30人.(1)填寫下面列聯(lián)表,并判斷能否有99%的把握認(rèn)為經(jīng)常閱讀與居民居住地有關(guān)?城鎮(zhèn)居民農(nóng)村居民合計經(jīng)常閱讀10030不經(jīng)常閱讀合計200(2)調(diào)查組從該樣本的城鎮(zhèn)居民中按分層抽樣抽取出7人,參加一次閱讀交流活動,若活動主辦方從這7位居民中隨機(jī)選取2人作交流發(fā)言,求被選中的2位居民都是經(jīng)常閱讀居民的概率.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82819.(12分)已知橢圓的左焦點為F,上頂點為A,直線AF與直線垂直,垂足為B,且點A是線段BF的中點.(I)求橢圓C的方程;(II)若M,N分別為橢圓C的左,右頂點,P是橢圓C上位于第一象限的一點,直線MP與直線交于點Q,且,求點P的坐標(biāo).20.(12分)如圖,在中,已知,,,為線段的中點,是由繞直線旋轉(zhuǎn)而成,記二面角的大小為.(1)當(dāng)平面平面時,求的值;(2)當(dāng)時,求二面角的余弦值.21.(12分)若養(yǎng)殖場每個月生豬的死亡率不超過,則該養(yǎng)殖場考核為合格,該養(yǎng)殖場在2019年1月到8月養(yǎng)殖生豬的相關(guān)數(shù)據(jù)如下表所示:月份1月2月3月4月5月6月7月8月月養(yǎng)殖量/千只33456791012月利潤/十萬元3.64.14.45.26.27.57.99.1生豬死亡數(shù)/只293749537798126145(1)從該養(yǎng)殖場2019年2月到6月這5個月中任意選取3個月,求恰好有2個月考核獲得合格的概率;(2)根據(jù)1月到8月的數(shù)據(jù),求出月利潤y(十萬元)關(guān)于月養(yǎng)殖量x(千只)的線性回歸方程(精確到0.001).(3)預(yù)計在今后的養(yǎng)殖中,月利潤與月養(yǎng)殖量仍然服從(2)中的關(guān)系,若9月份的養(yǎng)殖量為1.5萬只,試估計:該月利潤約為多少萬元?附:線性回歸方程中斜率和截距用最小二乘法估計計算公式如下:,參考數(shù)據(jù):.22.(10分)已知函數(shù)的導(dǎo)函數(shù)的兩個零點為和.(1)求的單調(diào)區(qū)間;(2)若的極小值為,求在區(qū)間上的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
分別求解出集合的具體范圍,由集合的交集運算即可求得答案.【詳解】因為集合,,所以故選:C【點睛】本題考查對數(shù)函數(shù)的定義域求法、一元二次不等式的解法及集合的交集運算,考查基本運算能力.2.B【解析】
由等比數(shù)列的性質(zhì)求得,再由對數(shù)運算法則可得結(jié)論.【詳解】∵數(shù)列是等比數(shù)列,∴,,∴.故選:B.【點睛】本題考查等比數(shù)列的性質(zhì),考查對數(shù)的運算法則,掌握等比數(shù)列的性質(zhì)是解題關(guān)鍵.3.C【解析】
過作于,連接,易知,,從而可證平面,進(jìn)而可知,當(dāng)最大時,取得最大值,取的中點,可得,再由,求出的最大值即可.【詳解】在和中,,所以,則,過作于,連接,顯然,則,且,又因為,所以平面,所以,當(dāng)最大時,取得最大值,取的中點,則,所以,因為,所以點在以為焦點的橢圓上(不在左右頂點),其中長軸長為10,焦距長為8,所以的最大值為橢圓的短軸長的一半,故最大值為,所以最大值為,故的最大值為.故選:C.【點睛】本題考查三棱錐體積的最大值,考查學(xué)生的空間想象能力與計算求解能力,屬于中檔題.4.C【解析】
根據(jù)直線過定點,采用數(shù)形結(jié)合,可得最多交點個數(shù),然后利用對稱性,可得結(jié)果.【詳解】由題可知:直線過定點且在是關(guān)于對稱如圖通過圖像可知:直線與最多有9個交點同時點左、右邊各四個交點關(guān)于對稱所以故選:C【點睛】本題考查函數(shù)對稱性的應(yīng)用,數(shù)形結(jié)合,難點在于正確畫出圖像,同時掌握基礎(chǔ)函數(shù)的性質(zhì),屬難題.5.D【解析】
A.從第一個圖觀察居住占23%,與其他比較即可.B.CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,再判斷.C.食品占19.9%,再看第二個圖,分清2.5%是在CPI一籃子商品中,還是在食品中即可.D.易知豬肉與其他畜肉在CPI一籃子商品中所占權(quán)重約為2.1%+2.5%=4.6%.【詳解】A.CPI一籃子商品中居住占23%,所占權(quán)重最大的,故正確.B.CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,權(quán)重超過50%,故正確.C.食品占中19.9%,分解后后可知豬肉是占在CPI一籃子商品中所占權(quán)重約為2.5%,故正確.D.豬肉與其他畜肉在CPI一籃子商品中所占權(quán)重約為2.1%+2.5%=4.6%,故錯誤.故選:D【點睛】本題主要考查統(tǒng)計圖的識別與應(yīng)用,還考查了理解辨析的能力,屬于基礎(chǔ)題.6.C【解析】
分別根據(jù)線面平行的性質(zhì)定理以及異面直線的定義,體積公式分別進(jìn)行判斷.【詳解】對于,設(shè)平面與直線交于點,連接、,則為的中點分別取、的中點、,連接、、,,平面,平面,平面.同理可得平面,、是平面內(nèi)的相交直線平面平面,由此結(jié)合平面,可得直線平面,即點是線段上上的動點.正確.對于,平面平面,和平面相交,與是異面直線,正確.對于,由知,平面平面,與不可能平行,錯誤.對于,因為,則到平面的距離是定值,三棱錐的體積為定值,所以正確;故選:.【點睛】本題考查了正方形的性質(zhì)、空間位置關(guān)系、空間角、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.7.B【解析】試題分析:由程序框圖可知:①,;②,;③,;④,;⑤,.第⑤步后輸出,此時,則的最大值為15,故選B.考點:程序框圖.8.B【解析】
利用分步計數(shù)原理結(jié)合排列求解即可【詳解】第一步排語文,英語,化學(xué),生物4種,且化學(xué)排在生物前面,有種排法;第二步將數(shù)學(xué)和物理插入前4科除最后位置外的4個空擋中的2個,有種排法,所以不同的排表方法共有種.選.【點睛】本題考查排列的應(yīng)用,不相鄰采用插空法求解,準(zhǔn)確分步是關(guān)鍵,是基礎(chǔ)題9.D【解析】
利用空間位置關(guān)系的判斷及性質(zhì)定理進(jìn)行判斷.【詳解】解:選項A中直線,還可能相交或異面,選項B中,還可能異面,選項C,由條件可得或.故選:D.【點睛】本題主要考查直線與平面平行、垂直的性質(zhì)與判定等基礎(chǔ)知識;考查空間想象能力、推理論證能力,屬于基礎(chǔ)題.10.C【解析】
畫出圖形,以為基底將向量進(jìn)行分解后可得結(jié)果.【詳解】畫出圖形,如下圖.選取為基底,則,∴.故選C.【點睛】應(yīng)用平面向量基本定理應(yīng)注意的問題(1)只要兩個向量不共線,就可以作為平面的一組基底,基底可以有無窮多組,在解決具體問題時,合理選擇基底會給解題帶來方便.(2)利用已知向量表示未知向量,實質(zhì)就是利用平行四邊形法則或三角形法則進(jìn)行向量的加減運算或數(shù)乘運算.11.C【解析】
先化簡復(fù)數(shù),再求,最后求即可.【詳解】解:,,故選:C【點睛】考查復(fù)數(shù)的運算,是基礎(chǔ)題.12.D【解析】
根據(jù)已知條件和等比數(shù)列的通項公式,求出關(guān)系,即可求解.【詳解】,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,當(dāng)時,,最小值為.故選:D.【點睛】本題考查等比數(shù)列通項公式,注意為正整數(shù),如用基本不等式要注意能否取到等號,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
利用,解出,即可求出雙曲線的漸近線方程.【詳解】,且,,,該雙曲線的漸近線方程為:.故答案為:.【點睛】本題考查了雙曲線離心率與漸近線方程,考查了雙曲線基本量的關(guān)系,考查了運算能力,屬于基礎(chǔ)題.14.3【解析】
雙曲線的焦點在軸上,漸近線為,結(jié)合漸近線方程為可求.【詳解】因為雙曲線(a>0)的漸近線為,且一條漸近線方程為,所以.故答案為:.【點睛】本題主要考查雙曲線的漸近線,明確雙曲線的焦點位置,寫出雙曲線的漸近線方程的對應(yīng)形式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).15.【解析】
首先利用絕對值的意義去掉絕對值符號,之后再結(jié)合后邊的函數(shù)解析式,對照函數(shù)值等于2的時候?qū)?yīng)的自變量的值,從而得到分段函數(shù)的分界點,從而得到相應(yīng)的等量關(guān)系式,求得參數(shù)的值.【詳解】根據(jù)題意可知,可以發(fā)現(xiàn)當(dāng)或時是分界點,結(jié)合函數(shù)的解析式,可以判斷0不可能,所以只能是是分界點,故,解得,故答案是.【點睛】本題主要考查分段函數(shù)的性質(zhì),二次函數(shù)的性質(zhì),函數(shù)最值的求解等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.16.9【解析】
用換中的n,得,作差可得,從而數(shù)列是等比數(shù)列,再由即可得到答案.【詳解】由,得,兩式相減,得,即;又,解得,所以數(shù)列為首項為-3、公比為3的等比數(shù)列,所以.故答案為:9.【點睛】本題考查已知與的關(guān)系求數(shù)列通項的問題,要注意n的范圍,考查學(xué)生運算求解能力,是一道中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.【解析】
先令,根據(jù)題中條件得到,求解,即可得出結(jié)果.【詳解】因為關(guān)于的方程的兩根都大于2,令所以有,解得,所以.【點睛】本題主要考查一元二次方程根的分布問題,熟記二次函數(shù)的特征即可,屬于常考題型.18.(1)見解析,有99%的把握認(rèn)為經(jīng)常閱讀與居民居住地有關(guān).(2)【解析】
(1)根據(jù)題中數(shù)據(jù)得到列聯(lián)表,然后計算出,與臨界值表中的數(shù)據(jù)對照后可得結(jié)論;(2)由題意得概率為古典概型,根據(jù)古典概型概率公式計算可得所求.【詳解】(1)由題意可得:城鎮(zhèn)居民農(nóng)村居民合計經(jīng)常閱讀10030130不經(jīng)常閱讀403070合計14060200則,所以有99%的把握認(rèn)為經(jīng)常閱讀與居民居住地有關(guān).(2)在城鎮(zhèn)居民140人中,經(jīng)常閱讀的有100人,不經(jīng)常閱讀的有40人.采取分層抽樣抽取7人,則其中經(jīng)常閱讀的有5人,記為、、、、;不經(jīng)常閱讀的有2人,記為、.從這7人中隨機(jī)選取2人作交流發(fā)言,所有可能的情況為,,,,,,,,,,,,,,,,,,,,,共21種,被選中的位居民都是經(jīng)常閱讀居民的情況有種,所求概率為.【點睛】本題主要考查古典概型的概率計算,以及獨立性檢驗的應(yīng)用,利用列舉法是解決本題的關(guān)鍵,考查學(xué)生的計算能力.對于古典概型,要求事件總數(shù)是可數(shù)的,滿足條件的事件個數(shù)可數(shù),使得滿足條件的事件個數(shù)除以總的事件個數(shù)即可,屬于中檔題.19.(I).(II)【解析】
(I)寫出坐標(biāo),利用直線與直線垂直,得到.求出點的坐標(biāo)代入,可得到的一個關(guān)系式,由此求得和的值,進(jìn)而求得橢圓方程.(II)設(shè)出點的坐標(biāo),由此寫出直線的方程,從而求得點的坐標(biāo),代入,化簡可求得點的坐標(biāo).【詳解】(I)∵橢圓的左焦點,上頂點,直線AF與直線垂直∴直線AF的斜率,即①又點A是線段BF的中點∴點的坐標(biāo)為又點在直線上∴②∴由①②得:∴∴橢圓的方程為.(II)設(shè)由(I)易得頂點M、N的坐標(biāo)為∴直線MP的方程是:由得:又點P在橢圓上,故∴∴∴或(舍)∴∴點P的坐標(biāo)為【點睛】本小題主要考查直線和圓錐曲線的位置關(guān)系,考查兩直線垂直的條件,考查向量數(shù)量積的運算.屬于中檔題.在解題過程中,首先閱讀清楚題意,題目所敘述的坐標(biāo)、所敘述的直線是怎么得到的,向量的數(shù)量積對應(yīng)的坐標(biāo)都有哪一些,應(yīng)該怎么得到,這些在讀題的時候需要分析清楚.20.(1);(2).【解析】
(1)平面平面,建立坐標(biāo)系,根據(jù)法向量互相垂直求得;(2)求兩個平面的法向量的夾角.【詳解】(1)如圖,以為原點,在平面內(nèi)垂直于的直線為軸所在的直線分別為軸,軸,建立空間直角坐標(biāo)系,則,設(shè)為平面的一個法向量,由得,取,則因為平面的一個法向量為由平面平面,得所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 洞見趨勢 解碼未來福利-2023年企業(yè)福利策略和管理趨勢調(diào)研報告
- 防震知識課件教學(xué)課件
- 設(shè)計營銷課件教學(xué)課件
- 股份置換協(xié)議書(2篇)
- 南京工業(yè)大學(xué)浦江學(xué)院《稅務(wù)稽查》2022-2023學(xué)年第一學(xué)期期末試卷
- 集控化驗辦公樓施工組織設(shè)計
- 防災(zāi)減災(zāi)說課稿
- 宿淮高速收費大棚施工組織設(shè)計
- 《軸對稱》說課稿
- 【初中化學(xué)】化石能源的合理利用課件-2024-2025學(xué)年九年級化學(xué)人教版(2024)上冊
- 三角形的重心
- 我國綠色化工未來發(fā)展戰(zhàn)略與思考
- 蘇里南商業(yè)機(jī)會多多
- 高考數(shù)學(xué)小題狂練:每題都附有詳細(xì)解析
- 浮動碼頭施工方案
- Poka-Yoke防錯技術(shù)(完整版)
- 保安交接班記錄表(2)
- 神明—EZflame火焰檢測系統(tǒng)
- 個人簡歷求職簡歷課件.ppt
- 2018年江蘇高考滿分作文:在母語的屋檐下
- 新青島版五四制2021-2022四年級科學(xué)上冊實驗指導(dǎo)
評論
0/150
提交評論