版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.M、N是曲線y=πsinx與曲線y=πcosx的兩個不同的交點(diǎn),則|MN|的最小值為()A.π B.π C.π D.2π2.已知復(fù)數(shù)滿足,其中為虛數(shù)單位,則().A. B. C. D.3.已知三棱錐的外接球半徑為2,且球心為線段的中點(diǎn),則三棱錐的體積的最大值為()A. B. C. D.4.如圖是二次函數(shù)的部分圖象,則函數(shù)的零點(diǎn)所在的區(qū)間是()A. B. C. D.5.已知中,,則()A.1 B. C. D.6.復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知為拋物線的焦點(diǎn),點(diǎn)在上,若直線與的另一個交點(diǎn)為,則()A. B. C. D.8.下列函數(shù)中,在區(qū)間上為減函數(shù)的是()A. B. C. D.9.已知復(fù)數(shù)z滿足,則在復(fù)平面上對應(yīng)的點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知△ABC中,.點(diǎn)P為BC邊上的動點(diǎn),則的最小值為()A.2 B. C. D.11.如圖,雙曲線的左,右焦點(diǎn)分別是直線與雙曲線的兩條漸近線分別相交于兩點(diǎn).若則雙曲線的離心率為()A. B.C. D.12.某人用隨機(jī)模擬的方法估計(jì)無理數(shù)的值,做法如下:首先在平面直角坐標(biāo)系中,過點(diǎn)作軸的垂線與曲線相交于點(diǎn),過作軸的垂線與軸相交于點(diǎn)(如圖),然后向矩形內(nèi)投入粒豆子,并統(tǒng)計(jì)出這些豆子在曲線上方的有粒,則無理數(shù)的估計(jì)值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.滿足線性的約束條件的目標(biāo)函數(shù)的最大值為________14.已知為雙曲線:的左焦點(diǎn),直線經(jīng)過點(diǎn),若點(diǎn),關(guān)于直線對稱,則雙曲線的離心率為__________.15.已知函數(shù)是偶函數(shù),直線與函數(shù)的圖象自左向右依次交于四個不同點(diǎn)A,B,C,D.若AB=BC,則實(shí)數(shù)t的值為_________.16.已知橢圓的下頂點(diǎn)為,若直線與橢圓交于不同的兩點(diǎn)、,則當(dāng)_____時,外心的橫坐標(biāo)最大.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時,求曲線在點(diǎn)處的切線方程;(2)若在上恒成立,求的取值范圍.18.(12分)已知是遞增的等差數(shù)列,,是方程的根.(1)求的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.19.(12分)以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且在兩種坐標(biāo)系中取相同的長度單位,建立極坐標(biāo)系,已知曲線,曲線(為參數(shù)),求曲線交點(diǎn)的直角坐標(biāo).20.(12分)某房地產(chǎn)開發(fā)商在其開發(fā)的某小區(qū)前修建了一個弓形景觀湖.如圖,該弓形所在的圓是以為直徑的圓,且米,景觀湖邊界與平行且它們間的距離為米.開發(fā)商計(jì)劃從點(diǎn)出發(fā)建一座景觀橋(假定建成的景觀橋的橋面與地面和水面均平行),橋面在湖面上的部分記作.設(shè).(1)用表示線段并確定的范圍;(2)為了使小區(qū)居民可以充分地欣賞湖景,所以要將的長度設(shè)計(jì)到最長,求的最大值.21.(12分)如圖,在四棱錐中,底面為菱形,底面,.(1)求證:平面;(2)若直線與平面所成的角為,求平面與平面所成銳二面角的余弦值.22.(10分)如圖,在中,已知,,,為線段的中點(diǎn),是由繞直線旋轉(zhuǎn)而成,記二面角的大小為.(1)當(dāng)平面平面時,求的值;(2)當(dāng)時,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
兩函數(shù)的圖象如圖所示,則圖中|MN|最小,設(shè)M(x1,y1),N(x2,y2),則x1=,x2=π,|x1-x2|=π,|y1-y2|=|πsinx1-πcosx2|=π+π=π,∴|MN|==π.故選C.2.A【解析】
先化簡求出,即可求得答案.【詳解】因?yàn)?,所以所以故選:A【點(diǎn)睛】此題考查復(fù)數(shù)的基本運(yùn)算,注意計(jì)算的準(zhǔn)確度,屬于簡單題目.3.C【解析】
由題可推斷出和都是直角三角形,設(shè)球心為,要使三棱錐的體積最大,則需滿足,結(jié)合幾何關(guān)系和圖形即可求解【詳解】先畫出圖形,由球心到各點(diǎn)距離相等可得,,故是直角三角形,設(shè),則有,又,所以,當(dāng)且僅當(dāng)時,取最大值4,要使三棱錐體積最大,則需使高,此時,故選:C【點(diǎn)睛】本題考查由三棱錐外接球半徑,半徑與球心位置求解錐體體積最值問題,屬于基礎(chǔ)題4.B【解析】
根據(jù)二次函數(shù)圖象的對稱軸得出范圍,軸截距,求出的范圍,判斷在區(qū)間端點(diǎn)函數(shù)值正負(fù),即可求出結(jié)論.【詳解】∵,結(jié)合函數(shù)的圖象可知,二次函數(shù)的對稱軸為,,,∵,所以在上單調(diào)遞增.又因?yàn)?,所以函?shù)的零點(diǎn)所在的區(qū)間是.故選:B.【點(diǎn)睛】本題考查二次函數(shù)的圖象及函數(shù)的零點(diǎn),屬于基礎(chǔ)題.5.C【解析】
以為基底,將用基底表示,根據(jù)向量數(shù)量積的運(yùn)算律,即可求解.【詳解】,,.故選:C.【點(diǎn)睛】本題考查向量的線性運(yùn)算以及向量的基本定理,考查向量數(shù)量積運(yùn)算,屬于中檔題.6.D【解析】
由復(fù)數(shù)除法運(yùn)算求出,再寫出其共軛復(fù)數(shù),得共軛復(fù)數(shù)對應(yīng)點(diǎn)的坐標(biāo).得結(jié)論.【詳解】,,對應(yīng)點(diǎn)為,在第四象限.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,考查共軛復(fù)數(shù)的概念,考查復(fù)數(shù)的幾何意義.掌握復(fù)數(shù)的運(yùn)算法則是解題關(guān)鍵.7.C【解析】
求得點(diǎn)坐標(biāo),由此求得直線的方程,聯(lián)立直線的方程和拋物線的方程,求得點(diǎn)坐標(biāo),進(jìn)而求得【詳解】拋物線焦點(diǎn)為,令,,解得,不妨設(shè),則直線的方程為,由,解得,所以.故選:C【點(diǎn)睛】本小題主要考查拋物線的弦長的求法,屬于基礎(chǔ)題.8.C【解析】
利用基本初等函數(shù)的單調(diào)性判斷各選項(xiàng)中函數(shù)在區(qū)間上的單調(diào)性,進(jìn)而可得出結(jié)果.【詳解】對于A選項(xiàng),函數(shù)在區(qū)間上為增函數(shù);對于B選項(xiàng),函數(shù)在區(qū)間上為增函數(shù);對于C選項(xiàng),函數(shù)在區(qū)間上為減函數(shù);對于D選項(xiàng),函數(shù)在區(qū)間上為增函數(shù).故選:C.【點(diǎn)睛】本題考查函數(shù)在區(qū)間上單調(diào)性的判斷,熟悉一些常見的基本初等函數(shù)的單調(diào)性是判斷的關(guān)鍵,屬于基礎(chǔ)題.9.A【解析】
設(shè),由得:,由復(fù)數(shù)相等可得的值,進(jìn)而求出,即可得解.【詳解】設(shè),由得:,即,由復(fù)數(shù)相等可得:,解之得:,則,所以,在復(fù)平面對應(yīng)的點(diǎn)的坐標(biāo)為,在第一象限.故選:A.【點(diǎn)睛】本題考查共軛復(fù)數(shù)的求法,考查對復(fù)數(shù)相等的理解,考查復(fù)數(shù)在復(fù)平面對應(yīng)的點(diǎn),考查運(yùn)算能力,屬于常考題.10.D【解析】
以BC的中點(diǎn)為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系,可得,設(shè),運(yùn)用向量的坐標(biāo)表示,求得點(diǎn)A的軌跡,進(jìn)而得到關(guān)于a的二次函數(shù),可得最小值.【詳解】以BC的中點(diǎn)為坐標(biāo)原點(diǎn),建立如圖的直角坐標(biāo)系,可得,設(shè),由,可得,即,則,當(dāng)時,的最小值為.故選D.【點(diǎn)睛】本題考查向量數(shù)量積的坐標(biāo)表示,考查轉(zhuǎn)化思想和二次函數(shù)的值域解法,考查運(yùn)算能力,屬于中檔題.11.A【解析】
易得,過B作x軸的垂線,垂足為T,在中,利用即可得到的方程.【詳解】由已知,得,過B作x軸的垂線,垂足為T,故,又所以,即,所以雙曲線的離心率.故選:A.【點(diǎn)睛】本題考查雙曲線的離心率問題,在作雙曲線離心率問題時,最關(guān)鍵的是找到的方程或不等式,本題屬于容易題.12.D【解析】
利用定積分計(jì)算出矩形中位于曲線上方區(qū)域的面積,進(jìn)而利用幾何概型的概率公式得出關(guān)于的等式,解出的表達(dá)式即可.【詳解】在函數(shù)的解析式中,令,可得,則點(diǎn),直線的方程為,矩形中位于曲線上方區(qū)域的面積為,矩形的面積為,由幾何概型的概率公式得,所以,.故選:D.【點(diǎn)睛】本題考查利用隨機(jī)模擬的思想估算的值,考查了幾何概型概率公式的應(yīng)用,同時也考查了利用定積分計(jì)算平面區(qū)域的面積,考查計(jì)算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】
作出不等式組表示的平面區(qū)域,將直線進(jìn)行平移,利用的幾何意義,可求出目標(biāo)函數(shù)的最大值。【詳解】由,得,作出可行域,如圖所示:平移直線,由圖像知,當(dāng)直線經(jīng)過點(diǎn)時,截距最小,此時取得最大值。由,解得,代入直線,得?!军c(diǎn)睛】本題主要考查簡單的線性規(guī)劃問題的解法——平移法。14.【解析】
由點(diǎn),關(guān)于直線對稱,得到直線的斜率,再根據(jù)直線過點(diǎn),可求出直線方程,又,中點(diǎn)在直線上,代入直線的方程,化簡整理,即可求出結(jié)果.【詳解】因?yàn)闉殡p曲線:的左焦點(diǎn),所以,又點(diǎn),關(guān)于直線對稱,,所以可得直線的方程為,又,中點(diǎn)在直線上,所以,整理得,又,所以,故,解得,因?yàn)椋?故答案為【點(diǎn)睛】本題主要考查雙曲線的簡單性質(zhì),先由兩點(diǎn)對稱,求出直線斜率,再由焦點(diǎn)坐標(biāo)求出直線方程,根據(jù)中點(diǎn)在直線上,即可求出結(jié)果,屬于常考題型.15.【解析】
由是偶函數(shù)可得時恒有,根據(jù)該恒等式即可求得,,的值,從而得到,令,可解得,,三點(diǎn)的橫坐標(biāo),根據(jù)可列關(guān)于的方程,解出即可.【詳解】解:因?yàn)槭桥己瘮?shù),所以時恒有,即,所以,所以,解得,,;所以;由,即,解得;故,.由,即,解得.故,.因?yàn)?,所以,即,解得,故答案為:.【點(diǎn)睛】本題考查函數(shù)奇偶性的性質(zhì)及二次函數(shù)的圖象、性質(zhì),考查學(xué)生的計(jì)算能力,屬中檔題.16.【解析】
由已知可得、的坐標(biāo),求得的垂直平分線方程,聯(lián)立已知直線方程與橢圓方程,求得的垂直平分線方程,兩垂直平分線方程聯(lián)立求得外心的橫坐標(biāo),再由導(dǎo)數(shù)求最值.【詳解】如圖,由已知條件可知,不妨設(shè),則外心在的垂直平分線上,即在直線,也就是在直線上,聯(lián)立,得或,的中點(diǎn)坐標(biāo)為,則的垂直平分線方程為,把代入上式,得,令,則,由,得(舍)或.當(dāng)時,,當(dāng)時,.當(dāng)時,函數(shù)取極大值,亦為最大值.故答案為:.【點(diǎn)睛】本題考查直線與橢圓位置關(guān)系的應(yīng)用,訓(xùn)練了利用導(dǎo)數(shù)求最值,是中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】
(1),對函數(shù)求導(dǎo),分別求出和,即可求出在點(diǎn)處的切線方程;(2)對求導(dǎo),分、和三種情況討論的單調(diào)性,再結(jié)合在上恒成立,可求得的取值范圍.【詳解】(1)因?yàn)?所以,所以,則,故曲線在點(diǎn)處的切線方程為.(2)因?yàn)?所以,①當(dāng)時,在上恒成立,則在上單調(diào)遞增,從而成立,故符合題意;②當(dāng)時,令,解得,即在上單調(diào)遞減,則,故不符合題意;③當(dāng)時,在上恒成立,即在上單調(diào)遞減,則,故不符合題意.綜上,的取值范圍為.【點(diǎn)睛】本題考查了曲線的切線方程的求法,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了不等式恒成立問題,利用分類討論是解決本題的較好方法,屬于中檔題.18.(1);(2).【解析】
(1)方程的兩根為,由題意得,在利用等差數(shù)列的通項(xiàng)公式即可得出;(2)利用“錯位相減法”、等比數(shù)列的前項(xiàng)和公式即可求出.【詳解】方程x2-5x+6=0的兩根為2,3.由題意得a2=2,a4=3.設(shè)數(shù)列{an}的公差為d,則a4-a2=2d,故d=,從而得a1=.所以{an}的通項(xiàng)公式為an=n+1.(2)設(shè)的前n項(xiàng)和為Sn,由(1)知=,則Sn=++…++,Sn=++…++,兩式相減得Sn=+-=+-,所以Sn=2-.考點(diǎn):等差數(shù)列的性質(zhì);數(shù)列的求和.【方法點(diǎn)晴】本題主要考查了等差數(shù)列的通項(xiàng)公式、“錯位相減法”、等比數(shù)列的前項(xiàng)和公式、一元二次方程的解法等知識點(diǎn)的綜合應(yīng)用,解答中方程的兩根為,由題意得,即可求解數(shù)列的通項(xiàng)公式,進(jìn)而利用錯位相減法求和是解答的關(guān)鍵,著重考查了學(xué)生的推理能力與運(yùn)算能力,屬于中檔試題.19.【解析】
利用極坐標(biāo)方程與普通方程、參數(shù)方程間的互化公式化簡即可.【詳解】因?yàn)椋?,所以曲線的直角坐標(biāo)方程為.由,得,所以曲線的普通方程為.由,得,所以(舍),所以,所以曲線的交點(diǎn)坐標(biāo)為.【點(diǎn)睛】本題考查極坐標(biāo)方程與普通方程,參數(shù)方程與普通方程間的互化,考查學(xué)生的計(jì)算能力,是一道容易題.20.(1),;(2)米.【解析】
(1)過點(diǎn)作于點(diǎn)再在中利用正弦定理求解,再根據(jù)求解,進(jìn)而求得.再根據(jù)確定的范圍即可.(2)根據(jù)(1)有,再設(shè),求導(dǎo)分析函數(shù)的單調(diào)性與最值即可.【詳解】解:過點(diǎn)作于點(diǎn)則,在中,,,由正弦定理得:,,,,,因?yàn)?化簡得,令,,且,因?yàn)?故令即,記,當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減,又,當(dāng)時,取最大值,此時,的最大值為米.【點(diǎn)睛】本題主要考查了三角函數(shù)在實(shí)際中的應(yīng)用,需要根據(jù)題意建立角度與長度間的關(guān)系,進(jìn)而求導(dǎo)分析函數(shù)的單調(diào)性,根據(jù)三角函數(shù)值求解對應(yīng)的最值即可.屬于難題.21.(1)證明見解析(2)【解析】
(1)由底面為菱形,得,再由底面,可得,結(jié)合線面垂直的判定可得平面;(2)以點(diǎn)為坐標(biāo)原點(diǎn),以所在直線及過點(diǎn)且垂直于平面的直線分別為軸建立空間直角坐標(biāo)系,分別求出平面與平面的一個法向量,由兩法向量所成角的余弦值可得平面與平面所成銳二面角的余弦值.【詳解】(1)證明:底面為菱形,,底面,平面,又,平面,平面;(2)解:,,為等邊三角形,.底面,是直線與平面所成的角為,在中,由,解得.如圖,以點(diǎn)為坐標(biāo)原點(diǎn),以所在直線及過點(diǎn)且垂直于平面的直線分別為軸建立空間直角坐標(biāo)系.則,,,,.,,,.設(shè)平面與平面的一個法向量分別為,.由,取,得;由,取,得..平面與平面所成銳二
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2021年超市促銷方案5篇范文模板
- 石河子大學(xué)《食品物性學(xué)》2022-2023學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《結(jié)構(gòu)力學(xué)二》2023-2024學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《簡明新疆地方史教程》2022-2023學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《風(fēng)景畫表現(xiàn)》2021-2022學(xué)年第一學(xué)期期末試卷
- 沈陽理工大學(xué)《自動武器原理與構(gòu)造》2023-2024學(xué)年第一學(xué)期期末試卷
- 沈陽理工大學(xué)《交互設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2018年四川內(nèi)江中考滿分作文《我心中的英雄》12
- 沈陽理工大學(xué)《電力電子技術(shù)》2023-2024學(xué)年期末試卷
- 廣州 存量房交易合同 范例
- 《收音機(jī)的組裝》課件
- 六年級【科學(xué)(湘科版)】保持生態(tài)平衡-教學(xué)課件
- 第5.3課《聯(lián)系生活實(shí)際弘揚(yáng)工匠精神》(課件)-【中職專用】高二語文同步課件(高教版2023·職業(yè)模塊)
- 《初中語文教材解析》
- 健康管理的四大關(guān)鍵飲食、運(yùn)動、休息、心理
- 住院醫(yī)師規(guī)范化培訓(xùn)臨床操作技能床旁教學(xué)指南(2021年版)全面解讀
- 教學(xué)查房-胃癌
- 幼兒園大班《種植》教案分享帶動畫
- 2023超星爾雅-大學(xué)生創(chuàng)新基礎(chǔ)-馮林全部答案
- 趙珍珠《商業(yè)銀行-金融企業(yè)會計(jì)》第二版課后參考答案 (第二到十一章)
- 大班科學(xué)《紅薯現(xiàn)形記》課件
評論
0/150
提交評論