2023-2024學年山東省濟寧微山縣聯(lián)考十校聯(lián)考最后數(shù)學試題含解析_第1頁
2023-2024學年山東省濟寧微山縣聯(lián)考十校聯(lián)考最后數(shù)學試題含解析_第2頁
2023-2024學年山東省濟寧微山縣聯(lián)考十校聯(lián)考最后數(shù)學試題含解析_第3頁
2023-2024學年山東省濟寧微山縣聯(lián)考十校聯(lián)考最后數(shù)學試題含解析_第4頁
2023-2024學年山東省濟寧微山縣聯(lián)考十校聯(lián)考最后數(shù)學試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學年山東省濟寧微山縣聯(lián)考十校聯(lián)考最后數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,將圖1中陰影部分拼成圖2,根據(jù)兩個圖形中陰影部分的關(guān)系,可以驗證下列哪個計算公式()A.(a+b)(a﹣b)=a2﹣b2 B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2 D.(a+b)2=(a﹣b)2+4ab2.某市2017年實現(xiàn)生產(chǎn)總值達280億的目標,用科學記數(shù)法表示“280億”為()A.28×109 B.2.8×108 C.2.8×109 D.2.8×10103.在⊙O中,已知半徑為5,弦AB的長為8,則圓心O到AB的距離為()A.3 B.4 C.5 D.64.如圖,AB∥CD,那么()A.∠BAD與∠B互補 B.∠1=∠2 C.∠BAD與∠D互補 D.∠BCD與∠D互補5.一個多邊形內(nèi)角和是外角和的2倍,它是()A.五邊形 B.六邊形 C.七邊形 D.八邊形6.如圖,△ABC是⊙O的內(nèi)接三角形,AC是⊙O的直徑,∠C=50°,∠ABC的平分線BD交⊙O于點D,則∠BAD的度數(shù)是()A.45° B.85° C.90° D.95°7.河堤橫斷面如圖所示,堤高BC=6米,迎水坡AB的坡比為1:,則AB的長為A.12米 B.4米 C.5米 D.6米8.若△ABC與△DEF相似,相似比為2:3,則這兩個三角形的面積比為()A.2:3 B.3:2 C.4:9 D.9:49.二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù))中的x與y的部分對應值如表所示:x-1013y33下列結(jié)論:(1)abc<0(2)當x>1時,y的值隨x值的增大而減??;(3)16a+4b+c<0(4)x=3是方程ax2+(b-1)x+c=0的一個根;其中正確的個數(shù)為()A.4個 B.3個 C.2個 D.1個10.如圖,在中,.點是的中點,連結(jié),過點作,分別交于點,與過點且垂直于的直線相交于點,連結(jié).給出以下四個結(jié)論:①;②點是的中點;③;④,其中正確的個數(shù)是()A.4 B.3 C.2 D.1二、填空題(本大題共6個小題,每小題3分,共18分)11.計算:()?=__.12.反比例函數(shù)的圖象經(jīng)過點(﹣3,2),則k的值是_____.當x大于0時,y隨x的增大而_____.(填增大或減小)13.如圖,已知⊙O是△ABD的外接圓,AB是⊙O的直徑,CD是⊙O的弦,∠ABD=58°,則∠BCD的度數(shù)是_____.14.小明統(tǒng)計了家里3月份的電話通話清單,按通話時間畫出頻數(shù)分布直方圖(如圖所示),則通話時間不足10分鐘的通話次數(shù)的頻率是_____.15.分解因式:ab2﹣9a=_____.16.如圖,已知圓O的半徑為2,A是圓上一定點,B是OA的中點,E是圓上一動點,以BE為邊作正方形BEFG(B、E、F、G四點按逆時針順序排列),當點E繞⊙O圓周旋轉(zhuǎn)時,點F的運動軌跡是_________圖形三、解答題(共8題,共72分)17.(8分)如圖,已知?ABCD.作∠B的平分線交AD于E點。(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法);若?ABCD的周長為10,CD=2,求DE的長。18.(8分)如圖,圓內(nèi)接四邊形ABCD的兩組對邊延長線分別交于E、F,∠AEB、∠AFD的平分線交于P點.求證:PE⊥PF.19.(8分)如圖1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.(1)OC的長為;(2)D是OA上一點,以BD為直徑作⊙M,⊙M交AB于點Q.當⊙M與y軸相切時,sin∠BOQ=;(3)如圖2,動點P以每秒1個單位長度的速度,從點O沿線段OA向點A運動;同時動點D以相同的速度,從點B沿折線B﹣C﹣O向點O運動.當點P到達點A時,兩點同時停止運動.過點P作直線PE∥OC,與折線O﹣B﹣A交于點E.設(shè)點P運動的時間為t(秒).求當以B、D、E為頂點的三角形是直角三角形時點E的坐標.20.(8分)如圖,某校準備給長12米,寬8米的矩形室內(nèi)場地進行地面裝飾,現(xiàn)將其劃分為區(qū)域Ⅰ(菱形),區(qū)域Ⅱ(4個全等的直角三角形),剩余空白部分記為區(qū)域Ⅲ;點為矩形和菱形的對稱中心,,,,為了美觀,要求區(qū)域Ⅱ的面積不超過矩形面積的,若設(shè)米.甲乙丙單價(元/米2)(1)當時,求區(qū)域Ⅱ的面積.計劃在區(qū)域Ⅰ,Ⅱ分別鋪設(shè)甲,乙兩款不同的深色瓷磚,區(qū)域Ⅲ鋪設(shè)丙款白色瓷磚,①在相同光照條件下,當場地內(nèi)白色區(qū)域的面積越大,室內(nèi)光線亮度越好.當為多少時,室內(nèi)光線亮度最好,并求此時白色區(qū)域的面積.②三種瓷磚的單價列表如下,均為正整數(shù),若當米時,購買三款瓷磚的總費用最少,且最少費用為7200元,此時__________,__________.21.(8分)《如果想毀掉一個孩子,就給他一部手機!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從2018年9月新學期起小學和初中禁止學生使用手機.為了解學生手機使用情況,某學校開展了“手機伴我健康行”主題活動,他們隨機抽取部分學生進行“使用手機目的”和“每周使用手機的時間”的問卷調(diào)查,并繪制成如圖①,②的統(tǒng)計圖,已知“查資料”的人數(shù)是40人.請你根據(jù)以上信息解答下列問題:在扇形統(tǒng)計圖中,“玩游戲”對應的百分比為,圓心角度數(shù)是度;補全條形統(tǒng)計圖;該校共有學生2100人,估計每周使用手機時間在2小時以上(不含2小時)的人數(shù).22.(10分)如圖,在矩形ABCD中,AB=4,BC=6,M是BC的中點,DE⊥AM于點E.求證:△ADE∽△MAB;求DE的長.23.(12分)如圖所示,在平面直角坐標系xOy中,正方形OABC的邊長為2cm,點A、C分別在y軸的負半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過點A、B和D(4,-2(1)求拋物線的表達式.(2)如果點P由點A出發(fā)沿AB邊以2cm/s的速度向點B運動,同時點Q由點B出發(fā),沿BC邊以1cm/s的速度向點C運動,當其中一點到達終點時,另一點也隨之停止運動.設(shè)S=PQ2(cm2).①試求出S與運動時間t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;②當S取54(3)在拋物線的對稱軸上求點M,使得M到D、A的距離之差最大,求出點M的坐標.24.如圖,在平面直角坐標系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0),B(0,1).(1)求點C的坐標;(2)將△ABC沿x軸的正方向平移,在第一象限內(nèi)B、C兩點的對應點B'、C'正好落在某反比例函數(shù)圖象上.請求出這個反比例函數(shù)和此時的直線B'C'的解析式.(3)若把上一問中的反比例函數(shù)記為y1,點B′,C′所在的直線記為y2,請直接寫出在第一象限內(nèi)當y1<y2時x的取值范圍.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

根據(jù)圖形確定出圖1與圖2中陰影部分的面積,由此即可解答.【詳解】∵圖1中陰影部分的面積為:(a﹣b)2;圖2中陰影部分的面積為:a2﹣2ab+b2;∴(a﹣b)2=a2﹣2ab+b2,故選B.【點睛】本題考查了完全平方公式的幾何背景,用不同的方法表示出陰影部分的面積是解題的關(guān)鍵.2、D【解析】

根據(jù)科學計數(shù)法的定義來表示數(shù)字,選出正確答案.【詳解】解:把一個數(shù)表示成a(1≤a<10,n為整數(shù))與10的冪相乘的形式,這種記數(shù)法叫做科學記數(shù)法,280億用科學計數(shù)法表示為2.8×1010,所以答案選D.【點睛】本題考查學生對科學計數(shù)法的概念的掌握和將數(shù)字用科學計數(shù)法表示的能力.3、A【解析】解:作OC⊥AB于C,連結(jié)OA,如圖.∵OC⊥AB,∴AC=BC=AB=×8=1.在Rt△AOC中,OA=5,∴OC=,即圓心O到AB的距離為2.故選A.4、C【解析】

分清截線和被截線,根據(jù)平行線的性質(zhì)進行解答即可.【詳解】解:∵AB∥CD,∴∠BAD與∠D互補,即C選項符合題意;當AD∥BC時,∠BAD與∠B互補,∠1=∠2,∠BCD與∠D互補,故選項A、B、D都不合題意,故選:C.【點睛】本題考查了平行線的性質(zhì),熟記性質(zhì)并準確識圖是解題的關(guān)鍵.5、B【解析】

多邊形的外角和是310°,則內(nèi)角和是2×310=720°.設(shè)這個多邊形是n邊形,內(nèi)角和是(n﹣2)?180°,這樣就得到一個關(guān)于n的方程,從而求出邊數(shù)n的值.【詳解】設(shè)這個多邊形是n邊形,根據(jù)題意得:(n﹣2)×180°=2×310°解得:n=1.故選B.【點睛】本題考查了多邊形的內(nèi)角與外角,熟記內(nèi)角和公式和外角和定理并列出方程是解題的關(guān)鍵.根據(jù)多邊形的內(nèi)角和定理,求邊數(shù)的問題就可以轉(zhuǎn)化為解方程的問題來解決.6、B【解析】

解:∵AC是⊙O的直徑,∴∠ABC=90°,∵∠C=50°,∴∠BAC=40°,∵∠ABC的平分線BD交⊙O于點D,∴∠ABD=∠DBC=45°,∴∠CAD=∠DBC=45°,∴∠BAD=∠BAC+∠CAD=40°+45°=85°,故選B.【點睛】本題考查圓周角定理;圓心角、弧、弦的關(guān)系.7、A【解析】

試題分析:在Rt△ABC中,BC=6米,,∴AC=BC×=6(米).∴(米).故選A.【詳解】請在此輸入詳解!8、C【解析】

由△ABC與△DEF相似,相似比為2:3,根據(jù)相似三角形的性質(zhì),即可求得答案.【詳解】∵△ABC與△DEF相似,相似比為2:3,∴這兩個三角形的面積比為4:1.故選C.【點睛】此題考查了相似三角形的性質(zhì).注意相似三角形的面積比等于相似比的平方.9、B【解析】

(1)利用待定系數(shù)法求出二次函數(shù)解析式為y=-x2+x+3,即可判定正確;(2)求得對稱軸,即可判定此結(jié)論錯誤;(3)由當x=4和x=-1時對應的函數(shù)值相同,即可判定結(jié)論正確;(4)當x=3時,二次函數(shù)y=ax2+bx+c=3,即可判定正確.【詳解】(1)∵x=-1時y=-,x=0時,y=3,x=1時,y=,∴,解得∴abc<0,故正確;(2)∵y=-x2+x+3,∴對稱軸為直線x=-=,所以,當x>時,y的值隨x值的增大而減小,故錯誤;(3)∵對稱軸為直線x=,∴當x=4和x=-1時對應的函數(shù)值相同,∴16a+4b+c<0,故正確;(4)當x=3時,二次函數(shù)y=ax2+bx+c=3,∴x=3是方程ax2+(b-1)x+c=0的一個根,故正確;綜上所述,結(jié)論正確的是(1)(3)(4).故選:B.【點睛】本題考查了二次函數(shù)的性質(zhì),主要利用了待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的增減性,二次函數(shù)與不等式,根據(jù)表中數(shù)據(jù)求出二次函數(shù)解析式是解題的關(guān)鍵.10、C【解析】

用特殊值法,設(shè)出等腰直角三角形直角邊的長,證明△CDB∽△BDE,求出相關(guān)線段的長;易證△GAB≌△DBC,求出相關(guān)線段的長;再證AG∥BC,求出相關(guān)線段的長,最后求出△ABC和△BDF的面積,即可作出選擇.【詳解】解:由題意知,△ABC是等腰直角三角形,設(shè)AB=BC=2,則AC=2,∵點D是AB的中點,∴AD=BD=1,在Rt△DBC中,DC=,(勾股定理)∵BG⊥CD,∴∠DEB=∠ABC=90°,又∵∠CDB=∠BDE,∴△CDB∽△BDE,∴∠DBE=∠DCB,,即∴DE=,BE=,在△GAB和△DBC中,∴△GAB≌△DBC(ASA)∴AG=DB=1,BG=CD=,∵∠GAB+∠ABC=180°,∴AG∥BC,∴△AGF∽△CBF,∴,且有AB=BC,故①正確,∵GB=,AC=2,∴AF==,故③正確,GF=,F(xiàn)E=BG﹣GF﹣BE=,故②錯誤,S△ABC=AB?AC=2,S△BDF=BF?DE=××=,故④正確.故選B.【點睛】本題考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)以及等腰直角三角形的相關(guān)性質(zhì),中等難度,注意合理的運用特殊值法是解題關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】試題分析:首先進行通分,然后再進行因式分解,從而進行約分得出答案.原式=.12、﹣6增大【解析】

∵反比例函數(shù)的圖象經(jīng)過點(﹣3,2),∴2=,即k=2×(﹣3)=﹣6,∴k<0,則y隨x的增大而增大.故答案為﹣6;增大.【點睛】本題考查用待定系數(shù)法求反函數(shù)解析式與反比例函數(shù)的性質(zhì):(1)當k>0時,函數(shù)圖象在一,三象限,在每個象限內(nèi),y隨x的增大而減小;(2)當k<0時,函數(shù)圖象在二,四象限,在每個象限內(nèi),y隨x的增大而增大.13、32°【解析】

根據(jù)直徑所對的圓周角是直角得到∠ADB=90°,求出∠A的度數(shù),根據(jù)圓周角定理解答即可.【詳解】∵AB是⊙O的直徑,

∴∠ADB=90°,

∵∠ABD=58°,

∴∠A=32°,

∴∠BCD=32°,

故答案為32°.14、0.7【解析】

用通話時間不足10分鐘的通話次數(shù)除以通話的總次數(shù)即可得.【詳解】由圖可知:小明家3月份通話總次數(shù)為20+15+10+5=50(次);其中通話不足10分鐘的次數(shù)為20+15=35(次),∴通話時間不足10分鐘的通話次數(shù)的頻率是35÷50=0.7.故答案為0.7.15、a(b+3)(b﹣3).【解析】

根據(jù)提公因式,平方差公式,可得答案.【詳解】解:原式=a(b2﹣9)=a(b+3)(b﹣3),故答案為:a(b+3)(b﹣3).【點睛】本題考查了因式分解,一提,二套,三檢查,分解要徹底.16、圓【解析】

根據(jù)題意作圖,即可得到點F的運動軌跡.【詳解】如圖,根據(jù)題意作下圖,可知F的運動軌跡為圓⊙O’.【點睛】此題主要考查動點的作圖問題,解題的關(guān)鍵是根據(jù)題意作出相應的圖形,方可判斷.三、解答題(共8題,共72分)17、(1)作圖見解析;(2)1【解析】

(1)以點B為圓心,任意長為半徑畫弧分別與AB、BC相交。然后再分別以交點為圓心,以交點間的距離為半徑分別畫弧,兩弧相交于一點,畫出射線BE即得.(2)根據(jù)平行四邊形的對邊相等,可得AB+AD=5,由兩直線平行內(nèi)錯角相等可得∠AEB=∠EBC,利用角平分線即得∠ABE=∠EBC,即證∠AEB=∠ABE.根據(jù)等角對等邊可得AB=AE=2,從而求出ED的長.【詳解】(1)解:如圖所示:(2)解:∵平行四邊形ABCD的周長為10∴AB+AD=5∵AD//BC∴∠AEB=∠EBC又∵BE平分∠ABC∴∠ABE=∠EBC∴∠AEB=∠ABE∴AB=AE=2∴ED=AD-AE=3-2=1【點睛】此題考查作圖-基本作圖和平行四邊形的性質(zhì),解題關(guān)鍵在于掌握作圖法則18、證明見解析.【解析】

由圓內(nèi)接四邊形ABCD的兩組對邊延長線分別交于E、F,∠AEB、∠AFD的平分線交于P點,繼而可得EM=EN,即可證得:PE⊥PF.【詳解】∵四邊形內(nèi)接于圓,∴,∵平分,∴,∵,,∴,∴,∵平分,∴.【點睛】此題考查了圓的內(nèi)接多邊形的性質(zhì)以及圓周角定理.此題難度不大,注意掌握數(shù)形結(jié)合思想的應用.19、(4)4;(2);(4)點E的坐標為(4,2)、(,)、(4,2).【解析】分析:(4)過點B作BH⊥OA于H,如圖4(4),易證四邊形OCBH是矩形,從而有OC=BH,只需在△AHB中運用三角函數(shù)求出BH即可.(2)過點B作BH⊥OA于H,過點G作GF⊥OA于F,過點B作BR⊥OG于R,連接MN、DG,如圖4(2),則有OH=2,BH=4,MN⊥OC.設(shè)圓的半徑為r,則MN=MB=MD=r.在Rt△BHD中運用勾股定理可求出r=2,從而得到點D與點H重合.易證△AFG∽△ADB,從而可求出AF、GF、OF、OG、OB、AB、BG.設(shè)OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,進而可求出BR.在Rt△ORB中運用三角函數(shù)就可解決問題.(4)由于△BDE的直角不確定,故需分情況討論,可分三種情況(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)討論,然后運用相似三角形的性質(zhì)及三角函數(shù)等知識建立關(guān)于t的方程就可解決問題.詳解:(4)過點B作BH⊥OA于H,如圖4(4),則有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四邊形OCBH是矩形,∴OC=BH,BC=OH.∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.∵∠BHA=90°,∠BAO=45°,∴tan∠BAH==4,∴BH=HA=4,∴OC=BH=4.故答案為4.(2)過點B作BH⊥OA于H,過點G作GF⊥OA于F,過點B作BR⊥OG于R,連接MN、DG,如圖4(2).由(4)得:OH=2,BH=4.∵OC與⊙M相切于N,∴MN⊥OC.設(shè)圓的半徑為r,則MN=MB=MD=r.∵BC⊥OC,OA⊥OC,∴BC∥MN∥OA.∵BM=DM,∴CN=ON,∴MN=(BC+OD),∴OD=2r﹣2,∴DH==.在Rt△BHD中,∵∠BHD=90°,∴BD2=BH2+DH2,∴(2r)2=42+(2r﹣4)2.解得:r=2,∴DH=0,即點D與點H重合,∴BD⊥0A,BD=AD.∵BD是⊙M的直徑,∴∠BGD=90°,即DG⊥AB,∴BG=AG.∵GF⊥OA,BD⊥OA,∴GF∥BD,∴△AFG∽△ADB,∴===,∴AF=AD=2,GF=BD=2,∴OF=4,∴OG===2.同理可得:OB=2,AB=4,∴BG=AB=2.設(shè)OR=x,則RG=2﹣x.∵BR⊥OG,∴∠BRO=∠BRG=90°,∴BR2=OB2﹣OR2=BG2﹣RG2,∴(2)2﹣x2=(2)2﹣(2﹣x)2.解得:x=,∴BR2=OB2﹣OR2=(2)2﹣()2=,∴BR=.在Rt△ORB中,sin∠BOR===.故答案為.(4)①當∠BDE=90°時,點D在直線PE上,如圖2.此時DP=OC=4,BD+OP=BD+CD=BC=2,BD=t,OP=t.則有2t=2.解得:t=4.則OP=CD=DB=4.∵DE∥OC,∴△BDE∽△BCO,∴==,∴DE=2,∴EP=2,∴點E的坐標為(4,2).②當∠BED=90°時,如圖4.∵∠DBE=OBC,∠DEB=∠BCO=90°,∴△DBE∽△OBC,∴==,∴BE=t.∵PE∥OC,∴∠OEP=∠BOC.∵∠OPE=∠BCO=90°,∴△OPE∽△BCO,∴==,∴OE=t.∵OE+BE=OB=2t+t=2.解得:t=,∴OP=,OE=,∴PE==,∴點E的坐標為().③當∠DBE=90°時,如圖4.此時PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.則有OD=PE,EA==(6﹣t)=6﹣t,∴BE=BA﹣EA=4﹣(6﹣t)=t﹣2.∵PE∥OD,OD=PE,∠DOP=90°,∴四邊形ODEP是矩形,∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.在Rt△DBE中,cos∠BED==,∴DE=BE,∴t=t﹣2)=2t﹣4.解得:t=4,∴OP=4,PE=6﹣4=2,∴點E的坐標為(4,2).綜上所述:當以B、D、E為頂點的三角形是直角三角形時點E的坐標為(4,2)、()、(4,2).點睛:本題考查了圓周角定理、切線的性質(zhì)、相似三角形的判定與性質(zhì)、三角函數(shù)的定義、平行線分線段成比例、矩形的判定與性質(zhì)、勾股定理等知識,還考查了分類討論的數(shù)學思想,有一定的綜合性.20、(1)8m2;(2)68m2;(3)40,8【解析】

(1)根據(jù)中心對稱圖形性質(zhì)和,,,可得,即可解當時,4個全等直角三角形的面積;(2)白色區(qū)域面積即是矩形面積減去一二部分的面積,分別用含x的代數(shù)式表示出菱形和四個全等直角三角形的面積,列出含有x的解析式表示白色區(qū)域面積,并化成頂點式,根據(jù),,,求出自變量的取值范圍,再根據(jù)二次函數(shù)的增減性即可解答;(3)計算出x=2時各部分面積以及用含m、n的代數(shù)式表示出費用,因為m,n均為正整數(shù),解得m=40,n=8.【詳解】(1)∵為長方形和菱形的對稱中心,,∴∵,,∴∴當時,,(2)∵,∴-,∵,,∴解不等式組得,∵,結(jié)合圖像,當時,隨的增大而減小.∴當時,取得最大值為(3)∵當時,SⅠ=4x2=16m2,=12m2,=68m2,總費用:16×2m+12×5n+68×2m=7200,化簡得:5n+14m=600,因為m,n均為正整數(shù),解得m=40,n=8.【點睛】本題考查中心對稱圖形性質(zhì),菱形、直角三角形的面積計算,二次函數(shù)的最值問題,解題關(guān)鍵是用含x的二次函數(shù)解析式表示出白色區(qū)面積.21、(1)35%,126;(2)見解析;(3)1344人【解析】

(1)由扇形統(tǒng)計圖其他的百分比求出“玩游戲”的百分比,乘以360即可得到結(jié)果;(2)求出3小時以上的人數(shù),補全條形統(tǒng)計圖即可;(3)由每周使用手機時間在2小時以上(不含2小時)的百分比乘以2100即可得到結(jié)果.【詳解】(1)根據(jù)題意得:1﹣(40%+18%+7%)=35%,則“玩游戲”對應的圓心角度數(shù)是360°×35%=126°,故答案為35%,126;(2)根據(jù)題意得:40÷40%=100(人),∴3小時以上的人數(shù)為100﹣(2+16+18+32)=32(人),補全圖形如下:;(3)根據(jù)題意得:2100×=1344(人),則每周使用手機時間在2小時以上(不含2小時)的人數(shù)約有1344人.【點睛】本題考查了條形統(tǒng)計圖,扇形統(tǒng)計圖,以及用樣本估計總體,準確識圖,從中找到必要的信息進行解題是關(guān)鍵.22、(1)證明見解析;(2).【解析】試題分析:利用矩形角相等的性質(zhì)證明△DAE∽△AMB.試題解析:(1)證明:∵四邊形ABCD是矩形,∴AD∥BC,∴∠DAE=∠AMB,又∵∠DEA=∠B=90°,∴△DAE∽△AMB.(2)由(1)知△DAE∽△AMB,∴DE:AD=AB:AM,∵M是邊BC的中點,BC=6,∴BM=3,又∵AB=4,∠B=90°,∴AM=5,∴DE:6=4:5,∴DE=.23、(1)拋物線的解析式為:y=1(2)①S與運動時間t之間的函數(shù)關(guān)系式是S=5t2﹣8t+4,t的取值范圍是0≤t≤1;②存在.R點的坐標是(3,﹣32(3)M的坐標為(1,﹣83【解析】試題分析:(1)設(shè)拋物線的解析式是y=ax2+bx+c,求出A、B、D的坐標代入即可;(2)①由勾股定理即可求出;②假設(shè)存在點R,可構(gòu)成以P、B、R、Q為頂點的平行四邊形,求出P、Q的坐標,再分為兩種種情況:A、B、C即可根據(jù)平行四邊形的性質(zhì)求出R的坐標;(3)A關(guān)于拋物線的對稱軸的對稱點為B,過B、D的直線與拋物線的對稱軸的交點為所求M,求出直線BD的解析式,把拋物線的對稱軸x=1代入即可求出M的坐標.試題解析:(1)設(shè)拋物線的解析式是y=ax2+bx+c,∵正方形的邊長2,∴B的坐標(2,﹣2)A點的坐標是(0,﹣2),把A(0,﹣2),B(2,﹣2),D(4,﹣23)代入得:c=-2解得a=16,b=﹣1∴拋物線的解析式為:y=1答:拋物線的解析式為:y=1(2)①由圖象知:PB=2﹣2t,BQ=t,∴S=PQ2=PB2+BQ2,=(2﹣2t)2+t2,即S=5t2﹣8t+4(0≤t≤1).答:S與運動時間t之間的函數(shù)關(guān)系式是S=5t2﹣8t+4,t的取值范圍是0≤t≤1;②假設(shè)存在點R,可構(gòu)成以P、B、R、Q為頂點的平行四邊形.∵S=5t2﹣8t+4(0≤t≤1),∴當S=54時,5t2﹣8t+4=54,得20t解得t=12,t=11此時點P的坐標為(1,﹣2),Q點的坐標為(2,﹣32若R點存在,分情況討論:(i)假設(shè)R在BQ的右邊,如圖所示,這時QR=PB,RQ∥PB,則R的橫坐標為3,R的縱坐標為﹣32即R(3,﹣32代入y=1∴這時存在R(3,﹣32(ii)假設(shè)R在QB的左邊時,這時PR=QB,PR∥QB,則R(1,﹣32)代入,y=左右不相等,∴R不在拋物線上.(1分)綜上所述,存點一點R(3,﹣32答:存在,R點的坐標是(3,﹣32(3)如圖,M′B=M′A,∵A關(guān)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論