版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
秘籍09圓錐曲線大題目錄【高考預(yù)測(cè)】概率預(yù)測(cè)+題型預(yù)測(cè)+考向預(yù)測(cè)【應(yīng)試秘籍】總結(jié)??键c(diǎn)及應(yīng)對(duì)的策略【誤區(qū)點(diǎn)撥】點(diǎn)撥常見的易錯(cuò)點(diǎn)易錯(cuò)點(diǎn):解題規(guī)范【搶分通關(guān)】精選名校模擬題,講解通關(guān)策略【題型一】極點(diǎn)、極線【題型二】自極三角形與調(diào)和點(diǎn)列【題型三】齊次化法解決斜率相關(guān)問題【題型四】定比點(diǎn)差法【題型五】定點(diǎn)、定值【題型六】求軌跡方程型概率預(yù)測(cè)☆☆☆☆☆題型預(yù)測(cè)解答題☆☆☆☆☆考向預(yù)測(cè)極點(diǎn)、極線圓錐曲線大題和小題考察的類型不一致,但是肯定都是以基礎(chǔ)知識(shí)為前提的情況下進(jìn)行考察,所以一般第一問考察的大多還是求圓錐曲線的函數(shù)解析式,而第二問往往考察的是直線與圓錐曲線的位置關(guān)系,這里對(duì)于解析幾何的代數(shù)問題要求就比較高,題型也相應(yīng)較多,需要多加練習(xí)。一些固定題型解題方法的掌握還是需要熟練,并且理解圓錐曲線中解析幾何的解題思維,延伸知識(shí)點(diǎn)例如極點(diǎn)、極線,齊次化解法、定比點(diǎn)差法等等比較熱門的需要熟練于心。易錯(cuò)點(diǎn)一:解題規(guī)范圓錐曲線大題在遇到直線與曲線相交相關(guān)的問題是,極點(diǎn)、極線的思想只能輔助我們解題,不可出現(xiàn)在答題過程中,都需要設(shè)點(diǎn)或設(shè)線,寫出完整的證明過程。例(2023年全國乙卷)已知橢圓SKIPIF1<0的離心率是SKIPIF1<0,點(diǎn)SKIPIF1<0在SKIPIF1<0上.(1)求SKIPIF1<0的方程;(2)過點(diǎn)SKIPIF1<0的直線交SKIPIF1<0于SKIPIF1<0兩點(diǎn),直線SKIPIF1<0與SKIPIF1<0軸的交點(diǎn)分別為SKIPIF1<0,證明:線段SKIPIF1<0的中點(diǎn)為定點(diǎn).【極線思維】記SKIPIF1<0,點(diǎn)B的極線SKIPIF1<0過點(diǎn)A,設(shè)極線與PQ交于點(diǎn)D,則B,P,D,Q為調(diào)和點(diǎn)列,AB,AP,AD,AQ為調(diào)和線束,而AB平行y軸,故MN的中點(diǎn)為y軸于極線的交點(diǎn)【詳解】(1)由題意可得SKIPIF1<0,解得SKIPIF1<0,所以橢圓方程為SKIPIF1<0.(2)由題意可知:直線SKIPIF1<0的斜率存在,設(shè)SKIPIF1<0,聯(lián)立方程SKIPIF1<0,消去y得:SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,可得SKIPIF1<0,因?yàn)镾KIPIF1<0,則直線SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,同理可得SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以線段SKIPIF1<0的中點(diǎn)是定點(diǎn)SKIPIF1<0.變式1:(2024·湖南衡陽·二模)(多選)已知圓SKIPIF1<0是直線SKIPIF1<0上一動(dòng)點(diǎn),過點(diǎn)SKIPIF1<0作直線SKIPIF1<0分別與圓SKIPIF1<0相切于點(diǎn)SKIPIF1<0,則(
)A.圓SKIPIF1<0上恰有一個(gè)點(diǎn)到SKIPIF1<0的距離為SKIPIF1<0 B.直線SKIPIF1<0恒過點(diǎn)SKIPIF1<0C.SKIPIF1<0的最小值是SKIPIF1<0 D.四邊形SKIPIF1<0面積的最小值為SKIPIF1<0【答案】BCD【詳解】易知圓心SKIPIF1<0,半徑SKIPIF1<0,如下圖所示:對(duì)于A,圓心SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,可得圓SKIPIF1<0上的點(diǎn)到直線SKIPIF1<0距離的最小值為SKIPIF1<0,圓SKIPIF1<0上的點(diǎn)到直線SKIPIF1<0距離的最大值為SKIPIF1<0,所以圓SKIPIF1<0上恰有兩個(gè)點(diǎn)到SKIPIF1<0的距離為SKIPIF1<0,即A錯(cuò)誤;對(duì)于B,設(shè)SKIPIF1<0,可得SKIPIF1<0;易知SKIPIF1<0,由SKIPIF1<0,整理可得SKIPIF1<0,同理可得SKIPIF1<0,即可知SKIPIF1<0兩點(diǎn)在直線SKIPIF1<0上,所以直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,所以直線SKIPIF1<0恒過定點(diǎn)SKIPIF1<0,即B正確;對(duì)于C,由直線SKIPIF1<0恒過定點(diǎn)SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0與圓心SKIPIF1<0的連線垂直于SKIPIF1<0時(shí),SKIPIF1<0的值最小,點(diǎn)SKIPIF1<0與圓心SKIPIF1<0之間的距離為SKIPIF1<0,所以SKIPIF1<0,故C正確;對(duì)于D,四邊形SKIPIF1<0的面積為SKIPIF1<0,根據(jù)切線長(zhǎng)公式可知SKIPIF1<0,當(dāng)SKIPIF1<0最小值,SKIPIF1<0最小,,所以,故四邊形的面積為,即D正確;故選:BCD【題型一】極點(diǎn)、極線二次曲線的極點(diǎn)極線(1).二次曲線SKIPIF1<0極點(diǎn)SKIPIF1<0對(duì)應(yīng)的極線為SKIPIF1<0SKIPIF1<0(半代半不代)(2)圓錐曲線的三類極點(diǎn)極線(以橢圓為例):橢圓方程SKIPIF1<0①極點(diǎn)SKIPIF1<0在橢圓外,SKIPIF1<0為橢圓的切線,切點(diǎn)為SKIPIF1<0則極線為切點(diǎn)弦SKIPIF1<0;②極點(diǎn)SKIPIF1<0在橢圓上,過點(diǎn)SKIPIF1<0作橢圓的切線SKIPIF1<0,則極線為切線SKIPIF1<0;③極點(diǎn)SKIPIF1<0在橢圓內(nèi),過點(diǎn)SKIPIF1<0作橢圓的弦SKIPIF1<0,分別過SKIPIF1<0作橢圓切線,則切線交點(diǎn)軌跡為極線SKIPIF1<0;(3)圓錐曲線的焦點(diǎn)為極點(diǎn),對(duì)應(yīng)準(zhǔn)線為極線.【例1】過點(diǎn)SKIPIF1<0作圓SKIPIF1<0的兩條切線,切點(diǎn)分別為SKIPIF1<0、SKIPIF1<0則直線SKIPIF1<0的方程為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0解析:直線SKIPIF1<0是點(diǎn)SKIPIF1<0對(duì)應(yīng)的極線,則方程為SKIPIF1<0,即SKIPIF1<0.故選A.【例2】已知點(diǎn)SKIPIF1<0為SKIPIF1<0上一動(dòng)點(diǎn).過點(diǎn)SKIPIF1<0作橢圓SKIPIF1<0的兩條切線,切點(diǎn)分別SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0運(yùn)動(dòng)時(shí),直線SKIPIF1<0過定點(diǎn),該定點(diǎn)的坐標(biāo)是________.解析:設(shè)點(diǎn)SKIPIF1<0的坐標(biāo)是SKIPIF1<0,則切點(diǎn)弦SKIPIF1<0的方程為SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,故直線SKIPIF1<0過定點(diǎn)SKIPIF1<0.【例3】(2024·廣東湛江·一模)已知點(diǎn)P為直線上的動(dòng)點(diǎn),過P作圓的兩條切線,切點(diǎn)分別為A,B,若點(diǎn)M為圓上的動(dòng)點(diǎn),則點(diǎn)M到直線AB的距離的最大值為.【答案】【詳解】設(shè),則滿足;易知圓的圓心為,半徑;圓的圓心為,半徑,如下圖所示:易知,所以,即,整理可得;同理可得,即是方程的兩組解,可得直線的方程為,聯(lián)立,即;令,可得,即時(shí)等式與無關(guān),所以直線恒過定點(diǎn),可得;又在圓內(nèi),當(dāng),且點(diǎn)為的延長(zhǎng)線與圓的交點(diǎn)時(shí),點(diǎn)到直線的距離最大;最大值為【變式1】(2024·陜西西安·一模)已知橢圓SKIPIF1<0的左,右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0與短軸的一個(gè)端點(diǎn)SKIPIF1<0構(gòu)成一個(gè)等腰直角三角形,點(diǎn)SKIPIF1<0在橢圓SKIPIF1<0,過點(diǎn)SKIPIF1<0作互相垂直且與SKIPIF1<0軸不重合的兩直線SKIPIF1<0,SKIPIF1<0分別交橢圓SKIPIF1<0于SKIPIF1<0,SKIPIF1<0和點(diǎn)SKIPIF1<0,SKIPIF1<0,且點(diǎn)SKIPIF1<0,SKIPIF1<0分別是弦SKIPIF1<0,SKIPIF1<0的中點(diǎn).
(1)求橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)若SKIPIF1<0,求以SKIPIF1<0為直徑的圓的方程;(3)直線SKIPIF1<0是否過SKIPIF1<0軸上的一個(gè)定點(diǎn)?若是,求出該定點(diǎn)坐標(biāo);若不是,說明理由.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0【詳解】(1)解:因?yàn)闄E圓SKIPIF1<0經(jīng)過點(diǎn)SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0與短軸的一個(gè)端點(diǎn)SKIPIF1<0構(gòu)成一個(gè)等腰直角三角形,可得SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以橢圓SKIPIF1<0的標(biāo)準(zhǔn)分別為SKIPIF1<0.(2)解:由(1)得SKIPIF1<0,所以直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立方程組SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0,則CD的中點(diǎn)為SKIPIF1<0且SKIPIF1<0,故以SKIPIF1<0為直徑的圓的方程為SKIPIF1<0.(3)解:設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,且SKIPIF1<0,則直線SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立方程組SKIPIF1<0,整理得SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0,由中點(diǎn)坐標(biāo)公式得SKIPIF1<0,將SKIPIF1<0的坐標(biāo)中的用SKIPIF1<0代換,可得SKIPIF1<0的中點(diǎn)為SKIPIF1<0,所以SKIPIF1<0,所以直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,則直線SKIPIF1<0過定點(diǎn)SKIPIF1<0.【變式2】(2024·上海徐匯·二模)已知橢圓SKIPIF1<0,SKIPIF1<0分別為橢圓SKIPIF1<0的左、右頂點(diǎn),SKIPIF1<0分別為左、右焦點(diǎn),直線SKIPIF1<0交橢圓SKIPIF1<0于SKIPIF1<0兩點(diǎn)(SKIPIF1<0不過點(diǎn)SKIPIF1<0).(1)若SKIPIF1<0為橢圓SKIPIF1<0上(除SKIPIF1<0外)任意一點(diǎn),求直線SKIPIF1<0和SKIPIF1<0的斜率之積;(2)若SKIPIF1<0,求直線SKIPIF1<0的方程;(3)若直線SKIPIF1<0與直線SKIPIF1<0的斜率分別是SKIPIF1<0,且SKIPIF1<0,求證:直線SKIPIF1<0過定點(diǎn).【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)證明見解析【詳解】(1)在橢圓SKIPIF1<0中,左、右頂點(diǎn)分別為SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0,則SKIPIF1<0.(2)設(shè)SKIPIF1<0,由已知可得SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0代入SKIPIF1<0可得SKIPIF1<0,聯(lián)立SKIPIF1<0解得SKIPIF1<0由SKIPIF1<0得直線SKIPIF1<0過點(diǎn)SKIPIF1<0,SKIPIF1<0,所以,所求直線方程為SKIPIF1<0.(3)設(shè)SKIPIF1<0,易知直線SKIPIF1<0的斜率不為SKIPIF1<0,設(shè)其方程為SKIPIF1<0(SKIPIF1<0),聯(lián)立SKIPIF1<0,可得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0.由韋達(dá)定理,得SKIPIF1<0.SKIPIF1<0,SKIPIF1<0.可化為SKIPIF1<0,整理即得SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,進(jìn)一步得SKIPIF1<0,化簡(jiǎn)可得SKIPIF1<0,解得SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0,恒過定點(diǎn)SKIPIF1<0.【變式3】(2024·新疆喀什·二模)已知橢圓SKIPIF1<0的左焦點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0在橢圓SKIPIF1<0上,過點(diǎn)SKIPIF1<0的兩條直線SKIPIF1<0分別與橢圓SKIPIF1<0交于另一點(diǎn)SKIPIF1<0,且直線SKIPIF1<0的斜率滿足SKIPIF1<0.(1)求橢圓SKIPIF1<0的方程;(2)證明直線SKIPIF1<0過定點(diǎn).【答案】(1)SKIPIF1<0;(2)證明見解析.【詳解】(1)由點(diǎn)SKIPIF1<0在橢圓SKIPIF1<0上,得SKIPIF1<0,由SKIPIF1<0為橢圓SKIPIF1<0的左焦點(diǎn),得SKIPIF1<0,所以橢圓SKIPIF1<0的方程為SKIPIF1<0.(2)依題意,直線SKIPIF1<0不垂直于坐標(biāo)軸,設(shè)其方程為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0消去y并整理得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0,整理得SKIPIF1<0,即有SKIPIF1<0,而SKIPIF1<0,解得SKIPIF1<0,滿足SKIPIF1<0,直線SKIPIF1<0:SKIPIF1<0過定點(diǎn)SKIPIF1<0,所以直線SKIPIF1<0過定點(diǎn)SKIPIF1<0.【題型二】自極三角形與調(diào)和點(diǎn)列一、調(diào)和點(diǎn)列的充要條件 如圖,若SKIPIF1<0四點(diǎn)構(gòu)成調(diào)和點(diǎn)列,則有(一般前2個(gè)出現(xiàn)較多)SKIPIF1<0二、調(diào)和點(diǎn)列與極點(diǎn)極線的聯(lián)系如圖,過極點(diǎn)SKIPIF1<0作任意直線,與橢圓交于SKIPIF1<0,與極線交點(diǎn)SKIPIF1<0則點(diǎn)SKIPIF1<0成調(diào)和點(diǎn)列,若點(diǎn)SKIPIF1<0的極線通過另一點(diǎn)SKIPIF1<0,則SKIPIF1<0的極線也通過SKIPIF1<0.一般稱SKIPIF1<0、SKIPIF1<0互為共軛點(diǎn).三、自極三角形如圖,設(shè)P是不在圓雉曲線上的一點(diǎn),過P點(diǎn)引兩條割線依次交二次曲線于E,F,G,H四點(diǎn),連接對(duì)角線EH,FG交于N,連接對(duì)邊EG,FH交于M,則直線MN為點(diǎn)P對(duì)應(yīng)的極線.若P為圓雉曲線上的點(diǎn),則過P點(diǎn)的切線即為極線.同理,PM為點(diǎn)N對(duì)應(yīng)的極線,PN為點(diǎn)M所對(duì)應(yīng)的極線.因而將△MNP稱為自極三點(diǎn)形.設(shè)直線MN交圓錐曲線于點(diǎn)A,B兩點(diǎn),則PA,PB恰為圓錐曲線的兩條切線.從直線SKIPIF1<0上任意一點(diǎn)SKIPIF1<0向橢圓SKIPIF1<0的左右頂點(diǎn)SKIPIF1<0引兩條割線SKIPIF1<0與橢圓交于SKIPIF1<0兩點(diǎn),則直線SKIPIF1<0恒過定點(diǎn)SKIPIF1<0.【例1】已知A、B分別為橢圓E:SKIPIF1<0(a>1)的左、右頂點(diǎn),G為E的上頂點(diǎn),SKIPIF1<0,P為直線x=6上的動(dòng)點(diǎn),PA與E的另一交點(diǎn)為C,PB與E的另一交點(diǎn)為D.(1)求E的方程; (2)證明:直線CD過定點(diǎn). 【自極三角形思路】延長(zhǎng)CB,AD交于點(diǎn)Q,SKIPIF1<0,則△EPG為自極三角形,故x=6為E點(diǎn)的極線,則E為SKIPIF1<0【詳解】(1)依據(jù)題意作出如下圖象:由橢圓方程SKIPIF1<0可得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0橢圓方程為:SKIPIF1<0(2)證明:設(shè)SKIPIF1<0,則直線SKIPIF1<0的方程為:SKIPIF1<0,即:SKIPIF1<0聯(lián)立直線SKIPIF1<0的方程與橢圓方程可得:SKIPIF1<0,整理得:SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0將SKIPIF1<0代入直線SKIPIF1<0可得:SKIPIF1<0所以點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0.同理可得:點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0直線SKIPIF1<0的方程為:SKIPIF1<0,整理可得:SKIPIF1<0整理得:SKIPIF1<0所以直線SKIPIF1<0過定點(diǎn)SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0:SKIPIF1<0,直線過點(diǎn)SKIPIF1<0.故直線CD過定點(diǎn)SKIPIF1<0.【例2】(2022·全國乙卷高考真題)已知橢圓E的中心為坐標(biāo)原點(diǎn),對(duì)稱軸為x軸、y軸,且過SKIPIF1<0兩點(diǎn).(1)求E的方程; (2)設(shè)過點(diǎn)SKIPIF1<0的直線交E于M,N兩點(diǎn),過M且平行于x軸的直線與線段AB交于點(diǎn)T,點(diǎn)H滿足SKIPIF1<0.證明:直線HN過定點(diǎn).【調(diào)和點(diǎn)列思路】AB為P所對(duì)應(yīng)的極線,故P,M,C,N四點(diǎn)成調(diào)和點(diǎn)列,故AP,AM,AC,AN四條線成調(diào)和線束,因?yàn)橹本€HM平行AP,且T為HM中點(diǎn),由調(diào)和線束平行性質(zhì)(平行于一組調(diào)和線束中的其中一條直線交另外三條直線的三個(gè)交點(diǎn),其中一個(gè)點(diǎn)為另外兩個(gè)點(diǎn)的中點(diǎn)),故H點(diǎn)必然在直線AN上,故直線HN過定SKIPIF1<0【詳解】(I)解:設(shè)橢圓SKIPIF1<0的方程為SKIPIF1<0,過SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,所以橢圓SKIPIF1<0的方程為:SKIPIF1<0.(II)證法一:定點(diǎn)為SKIPIF1<0,證明如下:點(diǎn)SKIPIF1<0對(duì)應(yīng)的極線為SKIPIF1<0,即SKIPIF1<0,即為直線SKIPIF1<0,則SKIPIF1<0為調(diào)和線束,過SKIPIF1<0作SKIPIF1<0//SKIPIF1<0,交SKIPIF1<0于SKIPIF1<0,由調(diào)和性質(zhì)可知SKIPIF1<0為SKIPIF1<0中點(diǎn),故直線SKIPIF1<0過定點(diǎn)SKIPIF1<0.證法二:SKIPIF1<0,所以SKIPIF1<0,①若過點(diǎn)SKIPIF1<0的直線斜率不存在,直線SKIPIF1<0.代入SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,代入AB方程SKIPIF1<0,可得SKIPIF1<0,由SKIPIF1<0得到SKIPIF1<0.求得SKIPIF1<0方程:SKIPIF1<0,過點(diǎn)SKIPIF1<0.②若過點(diǎn)SKIPIF1<0的直線斜率存在,設(shè)SKIPIF1<0.聯(lián)立SKIPIF1<0得SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0聯(lián)立SKIPIF1<0可得SKIPIF1<0,可求得此時(shí)SKIPIF1<0,將SKIPIF1<0,代入整理得SKIPIF1<0,將SKIPIF1<0代入,得SKIPIF1<0,顯然成立.綜上,可得直線SKIPIF1<0過定點(diǎn)SKIPIF1<0.【變式1】(2024江南十校聯(lián)考)在平面直角坐標(biāo)系SKIPIF1<0中,已知雙曲線C的中心為坐標(biāo)原點(diǎn),對(duì)稱軸是坐標(biāo)軸,右支與x軸的交點(diǎn)為SKIPIF1<0,其中一條漸近線的傾斜角為SKIPIF1<0.(1)求C的標(biāo)準(zhǔn)方程;(2)過點(diǎn)SKIPIF1<0作直線l與雙曲線C的左右兩支分別交于A,B兩點(diǎn),在線段SKIPIF1<0上取一點(diǎn)E滿足SKIPIF1<0,證明:點(diǎn)E在一條定直線上. 【極線思路】顯然E在T的極線上,故E點(diǎn)軌跡為T的極線SKIPIF1<0【詳解】(1)根據(jù)題意,設(shè)雙曲線的方程為SKIPIF1<0,由題知SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0;所以雙曲線方程為SKIPIF1<0.(2)易知SKIPIF1<0為雙曲線的右焦點(diǎn),如下圖所示:
由題知直線l斜率存在,根據(jù)對(duì)稱性,不妨設(shè)斜率為SKIPIF1<0,故直線的方程為SKIPIF1<0,代入雙曲線方程得SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,由韋達(dá)定理有SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,點(diǎn)E在線段SKIPIF1<0上,所以SKIPIF1<0由SKIPIF1<0可得SKIPIF1<0化簡(jiǎn)得SKIPIF1<0,代入SKIPIF1<0和SKIPIF1<0并化簡(jiǎn)可得SKIPIF1<0,即存在點(diǎn)E滿足條件,并且在定直線SKIPIF1<0上.【變式2】設(shè)橢圓SKIPIF1<0過點(diǎn)SKIPIF1<0,且左焦點(diǎn)為SKIPIF1<0.(1)求橢圓SKIPIF1<0的方程;(2)當(dāng)過點(diǎn)SKIPIF1<0的動(dòng)直線SKIPIF1<0與橢圓SKIPIF1<0相交于兩不同點(diǎn)SKIPIF1<0,SKIPIF1<0時(shí),在線段SKIPIF1<0上取點(diǎn)SKIPIF1<0,滿足SKIPIF1<0,證明:點(diǎn)SKIPIF1<0總在某定直線上. 解析:(1)由題意得SKIPIF1<0,解得SKIPIF1<0,所求橢圓方程為SKIPIF1<0.(2)解法:已知SKIPIF1<0,說明點(diǎn)SKIPIF1<0關(guān)于橢圓調(diào)和共軛,根據(jù)定理3,點(diǎn)SKIPIF1<0在點(diǎn)SKIPIF1<0對(duì)應(yīng)的極線上,此極線方程為SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0.故點(diǎn)SKIPIF1<0總在直線SKIPIF1<0.【變式3】已知SKIPIF1<0、SKIPIF1<0分別為橢圓SKIPIF1<0:SKIPIF1<0的上、下焦點(diǎn),其中SKIPIF1<0也是拋物線SKIPIF1<0的焦點(diǎn),點(diǎn)SKIPIF1<0是SKIPIF1<0與SKIPIF1<0在第二象限的交點(diǎn),且SKIPIF1<0.
(1)求橢圓SKIPIF1<0的方程; (2)已知點(diǎn)SKIPIF1<0和圓SKIPIF1<0:SKIPIF1<0,過點(diǎn)SKIPIF1<0的動(dòng)直線SKIPIF1<0與圓SKIPIF1<0相交于不同的兩點(diǎn)SKIPIF1<0,在線段SKIPIF1<0上取一點(diǎn)SKIPIF1<0,滿足:SKIPIF1<0,SKIPIF1<0,(SKIPIF1<0且SKIPIF1<0).求證:點(diǎn)SKIPIF1<0總在某定直線上.【極線思路】由題可知SKIPIF1<0,即SKIPIF1<0,故點(diǎn)Q在P點(diǎn)的極線上【詳解】(1)設(shè)SKIPIF1<0,因?yàn)辄c(diǎn)M在拋物線SKIPIF1<0上,且SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,又點(diǎn)M在拋物線SKIPIF1<0上,所以SKIPIF1<0,且SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以橢圓SKIPIF1<0的方程SKIPIF1<0;(2)設(shè)SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即有SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,即有SKIPIF1<0,所以SKIPIF1<0得:SKIPIF1<0,又點(diǎn)A、B在圓SKIPIF1<0上,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,故點(diǎn)Q總在直線SKIPIF1<0上.【題型三】齊次化法解決斜率相關(guān)問題“齊次”從詞面上解釋是“次數(shù)相等”的意思.在代數(shù)里也有“齊次”的叫法,例如f=1:“齊次化”方法使用場(chǎng)景題目中出現(xiàn)了一個(gè)定點(diǎn)引出的兩條動(dòng)直線的斜率之和k?+k?2:用法:必須先把該定點(diǎn)平移至原點(diǎn)位置,然后將兩個(gè)動(dòng)點(diǎn)所成的直線假設(shè)為mx+3:方程為mx+【例1】如圖,橢圓E:x2a2+y(1):求橢圓E的方程;(2):經(jīng)過點(diǎn)(1,1),且斜率為k的直線與橢圓E交于不同的兩點(diǎn)P、Q(均異于點(diǎn)A),解:(1)由題意,b=1,又c所以,a=2,b=1,c=1,所以,橢圓E的方程為首先將橢圓向上平移1個(gè)單位,得橢圓.E'的方程:x22此時(shí),點(diǎn)(1,1)向上平移1個(gè)單位,變?yōu)?1.2),設(shè)直線方程為mx+my=1,直線過(l,2),則有m+2m=1,將直線方程代入x2+2y2?4y=0得x2+2y2?4y平移之后,點(diǎn)P、Q變?yōu)镻'變換得4n?2y所以k原問題成立.【例2】已知橢圓C:x2a2(1)求橢圓C的方程;(2)點(diǎn)M,N在橢圓C上,且.AM⊥AN,AD⊥MN,D為垂足.解:(1)由題意得:ca=224a橢圓的方程為x26+(2)當(dāng)直線A'將整個(gè)圖形平移一下,將點(diǎn)A平移到坐標(biāo)原點(diǎn)A相應(yīng)的其它點(diǎn)平移為M'橢圓方程為:x+22+2y+12=6,設(shè)MN':mx+ny=1,即:4n+2yx2所以,?43m?43n=1,再將整個(gè)圖形重新平移回去,直線MN經(jīng)過定點(diǎn)B由題意可知,△ADB為直角三角形,斜邊AB的中點(diǎn)Q4當(dāng)直線AM,AN的斜率有一個(gè)不存在時(shí),不妨設(shè)N2?1,M?21,綜上所述,存在點(diǎn)Q431【變式1】(2024·全國·模擬預(yù)測(cè))已知P為橢圓SKIPIF1<0上一點(diǎn),過原點(diǎn)且斜率存在的直線SKIPIF1<0與橢圓C相交于A,B兩點(diǎn),過原點(diǎn)且斜率存在的直線SKIPIF1<0(SKIPIF1<0與SKIPIF1<0不重合)與橢圓C相交于M,N兩點(diǎn),且點(diǎn)P滿足到直線SKIPIF1<0和SKIPIF1<0的距離都等于SKIPIF1<0.(1)求直線SKIPIF1<0和SKIPIF1<0的斜率之積;(2)當(dāng)點(diǎn)P在C上運(yùn)動(dòng)時(shí),SKIPIF1<0是否為定值?若是,求出該值;若不是,請(qǐng)說明理由.【答案】(1)SKIPIF1<0;(2)是,12.【詳解】(1)設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0,SKIPIF1<0,則根據(jù)點(diǎn)到直線的距離公式可得SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,同理可得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0是一元二次方程SKIPIF1<0的兩實(shí)數(shù)根,SKIPIF1<0,則有SKIPIF1<0.又因?yàn)辄c(diǎn)SKIPIF1<0在C上,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0(定值).(2)SKIPIF1<0是定值,且定值為12.理由如下:設(shè)SKIPIF1<0,SKIPIF1<0,聯(lián)立方程組SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,同理可得SKIPIF1<0.由橢圓的對(duì)稱性知SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.由(1)知SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0(定值).【變式2】(2024·安徽合肥·二模)已知橢圓SKIPIF1<0的右焦點(diǎn)為SKIPIF1<0,左頂點(diǎn)為SKIPIF1<0,短軸長(zhǎng)為SKIPIF1<0,且經(jīng)過點(diǎn)SKIPIF1<0.(1)求橢圓SKIPIF1<0的方程;(2)過點(diǎn)SKIPIF1<0的直線SKIPIF1<0(不與SKIPIF1<0軸重合)與SKIPIF1<0交于SKIPIF1<0兩點(diǎn),直線SKIPIF1<0與直線SKIPIF1<0的交點(diǎn)分別為SKIPIF1<0,記直線SKIPIF1<0的斜率分別為SKIPIF1<0,證明:SKIPIF1<0為定值.【答案】(1)SKIPIF1<0;(2)證明見解析.【詳解】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,再將點(diǎn)SKIPIF1<0代入SKIPIF1<0得SKIPIF1<0,解得SKIPIF1<0,故橢圓SKIPIF1<0的方程為SKIPIF1<0;(2)由題意可設(shè)SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,易知SKIPIF1<0恒成立,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以直線SKIPIF1<0的方程為SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,同理SKIPIF1<0,從而SKIPIF1<0,故SKIPIF1<0為定值.【變式3】(2024·全國·模擬預(yù)測(cè))已知曲線SKIPIF1<0與曲線SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱.(1)求曲線SKIPIF1<0的方程.(2)若過原點(diǎn)的兩條直線分別交曲線SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0(SKIPIF1<0為坐標(biāo)原點(diǎn)),則四邊形SKIPIF1<0的面積是否為定值?若為定值,求四邊形SKIPIF1<0的面積;若不為定值,請(qǐng)說明理由.【答案】(1)SKIPIF1<0(2)是定值,SKIPIF1<0【詳解】(1)設(shè)點(diǎn)SKIPIF1<0為曲線SKIPIF1<0上任一點(diǎn),則點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0的對(duì)稱點(diǎn)SKIPIF1<0在曲線SKIPIF1<0上.根據(jù)對(duì)稱性,得SKIPIF1<0解得SKIPIF1<0將SKIPIF1<0代入曲線SKIPIF1<0并整理,得SKIPIF1<0.故曲線SKIPIF1<0的方程為SKIPIF1<0.(2)四邊形SKIPIF1<0的面積為定值.理由如下:當(dāng)直線SKIPIF1<0的斜率不存在時(shí),直線SKIPIF1<0軸,則SKIPIF1<0.因?yàn)镾KIPIF1<0,所以不妨設(shè)SKIPIF1<0,則SKIPIF1<0,此時(shí)取SKIPIF1<0,SKIPIF1<0,根據(jù)對(duì)稱性可知四邊形SKIPIF1<0為平行四邊形,則四邊形SKIPIF1<0的面積SKIPIF1<0,為定值.當(dāng)直線SKIPIF1<0的斜率存在時(shí),設(shè)SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0.聯(lián)立SKIPIF1<0得SKIPIF1<0.由SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0SKIPIF1<0.因?yàn)镾KIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.因?yàn)樵c(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離SKIPIF1<0,由于四邊形SKIPIF1<0為平行四邊形,所以四邊形SKIPIF1<0的面積SKIPIF1<0.綜上,四邊形SKIPIF1<0的面積為定值SKIPIF1<0.【題型四】定比點(diǎn)差法直線與圓雉曲線相交時(shí),中點(diǎn)(定比分點(diǎn))問題通常運(yùn)用韋達(dá)定理和點(diǎn)差法兩種方式.點(diǎn)差法(定比點(diǎn)差)是從設(shè)點(diǎn)的視角,將點(diǎn)的坐標(biāo)代人曲線方程,通過系數(shù)調(diào)配后進(jìn)行兩式作差.一般地,設(shè)橢圓SKIPIF1<0上兩點(diǎn)SKIPIF1<0,若定點(diǎn)SKIPIF1<0滿足SKIPIF1<0,則得到SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0由SKIPIF1<0得SKIPIF1<0兩式相減得SKIPIF1<0.把SKIPIF1<0代人,得SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0.特別地,如果SKIPIF1<0(或SKIPIF1<0),則可以得到方程組SKIPIF1<0繼而能相對(duì)快捷地求出交點(diǎn)坐標(biāo),避免暴求交點(diǎn).橢圓、雙曲線中的多點(diǎn)共線的倍值問題,也可類似解決,其實(shí)質(zhì)就是一種降維處理.此外,當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0是SKIPIF1<0的中點(diǎn)即轉(zhuǎn)化為中點(diǎn)弦問題.【例1】直線SKIPIF1<0與橢圓SKIPIF1<0交于SKIPIF1<0兩點(diǎn),SKIPIF1<0與SKIPIF1<0軸、SKIPIF1<0軸分別交于點(diǎn)SKIPIF1<0.如果SKIPIF1<0是線段SKIPIF1<0的兩個(gè)三等分點(diǎn),則直線SKIPIF1<0的斜率為.【解析】設(shè)點(diǎn)SKIPIF1<0.由SKIPIF1<0得SKIPIF1<0;由SKIPIF1<0得SKIPIF1<0.所以SKIPIF1<0.(*)由SKIPIF1<0兩式相減得SKIPIF1<0.把(*)代入,知SKIPIF1<0,故SKIPIF1<0,所以點(diǎn)SKIPIF1<0,所以SKIPIF1<0.【例2】設(shè)SKIPIF1<0分別為橢圓SKIPIF1<0的左右兩個(gè)焦點(diǎn),點(diǎn)SKIPIF1<0在橢圓上.若SKIPIF1<0SKIPIF1<0,則點(diǎn)SKIPIF1<0的坐標(biāo)是.【解析】延長(zhǎng)SKIPIF1<0交橢圓于點(diǎn)SKIPIF1<0.由SKIPIF1<0知,SKIPIF1<0,所以SKIPIF1<0把點(diǎn)SKIPIF1<0代入SKIPIF1<0,得SKIPIF1<0兩式相減,得SKIPIF1<0,化簡(jiǎn),得SKIPIF1<0.與SKIPIF1<0聯(lián)立,解得SKIPIF1<0,代入橢圓求得點(diǎn)SKIPIF1<0.【例3】已知點(diǎn)SKIPIF1<0,橢圓SKIPIF1<0上兩點(diǎn)SKIPIF1<0滿足SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),點(diǎn)SKIPIF1<0橫坐標(biāo)的絕對(duì)值最大.【解析】設(shè)點(diǎn)SKIPIF1<0.SKIPIF1<0由SKIPIF1<0.所以SKIPIF1<0,所以SKIPIF1<0,代入SKIPIF1<0,可得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)取得等號(hào).【變式1】已知SKIPIF1<0是雙曲線SKIPIF1<0的左焦點(diǎn),點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,直線SKIPIF1<0與雙曲線SKIPIF1<0的兩條漸進(jìn)線分別交于點(diǎn)SKIPIF1<0.若SKIPIF1<0SKIPIF1<0,則雙曲線SKIPIF1<0的離心率為.【答案】SKIPIF1<0.【解析】設(shè)點(diǎn)SKIPIF1<0.由于SKIPIF1<0,故SKIPIF1<0,得到SKIPIF1<0由點(diǎn)SKIPIF1<0均在漸近線SKIPIF1<00上可以知道,SKIPIF1<0則SKIPIF1<0兩式相減得SKIPIF1<0.把SKIPIF1<0代人,知SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0.結(jié)合SKIPIF1<0,解得SKIPIF1<0,故點(diǎn)SKIPIF1<0.由SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0.【變式2】已知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,斜率為SKIPIF1<0的直線SKIPIF1<0與拋物線SKIPIF1<0交于SKIPIF1<0兩點(diǎn),與SKIPIF1<0軸的交點(diǎn)為SKIPIF1<0.(1)若SKIPIF1<0,求直線SKIPIF1<0的方程;(2)若SKIPIF1<0,求SKIPIF1<0的值.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)設(shè)直線SKIPIF1<0的方程為SKIPIF1<0.SKIPIF1<0設(shè)點(diǎn)SKIPIF1<0,故SKIPIF1<0.由拋物線定義可得SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0.故直線SKIPIF1<0方程為SKIPIF1<0.(2)設(shè)直線SKIPIF1<0的方程為SKIPIF1<0SKIPIF1<0SKIPIF1<0設(shè)點(diǎn)SKIPIF1<0,故SKIPIF1<0由SKIPIF1<0可得SKIPIF1<0,可得SKIPIF1<0代入上式可得SKIPIF1<0.故直線SKIPIF1<0方程為SKIPIF1<0.解得點(diǎn)SKIPIF1<0,故SKIPIF1<0.【變式3】如圖,橢圓SKIPIF1<0.過點(diǎn)SKIPIF1<0作直線SKIPIF1<0分別交橢圓SKIPIF1<0于SKIPIF1<0,SKIPIF1<0四點(diǎn),且直線SKIPIF1<0的斜率為SKIPIF1<0.試判斷直線SKIPIF1<0與直線SKIPIF1<0的位置關(guān)系.【答案】SKIPIF1<0.【解析】設(shè)點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.設(shè)SKIPIF1<0,則由定比分點(diǎn)得到SKIPIF1<0又點(diǎn)SKIPIF1<0,SKIPIF1<0在橢圓SKIPIF1<0上,所以SKIPIF1<0SKIPIF1<0又SKIPIF1<0三式相加得SKIPIF1<0.同理,設(shè)SKIPIF1<0,可得SKIPIF1<0.兩式相減得SKIPIF1<0.又直線SKIPIF1<0的斜率為SKIPIF1<0,則SKIPIF1<0.所以SKIPIF1<0,即SKIPIF1<0.所以SKIPIF1<0.【題型五】定點(diǎn)、定值求定值問題常見的方法有兩種:(1)從特殊入手,求出定值,再證明這個(gè)值與變量無關(guān).(2)直接推理、計(jì)算,并在計(jì)算推理的過程中消去變量,從而得到定值.直線過定點(diǎn)問題或圓過定點(diǎn)問題,通常要設(shè)出直線方程,與圓錐曲線聯(lián)立,得到兩根之和,兩根之積,再表達(dá)出直線方程或圓的方程,結(jié)合方程特點(diǎn),求出所過的定點(diǎn)坐標(biāo).【例1】(2024·全國·模擬預(yù)測(cè))已知橢圓SKIPIF1<0的離心率為SKIPIF1<0,SKIPIF1<0的左焦點(diǎn)與點(diǎn)SKIPIF1<0連線的斜率為SKIPIF1<0.(1)求SKIPIF1<0的方程.(2)已知點(diǎn)SKIPIF1<0,過點(diǎn)SKIPIF1<0的直線SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0兩點(diǎn),直線SKIPIF1<0分別交SKIPIF1<0于SKIPIF1<0.試問:直線SKIPIF1<0的斜率是否為定值?若是,求出該定值;若不是,請(qǐng)說明理由.【答案】(1)SKIPIF1<0;(2)是,定值為SKIPIF1<0【詳解】(1)由題意可設(shè)橢圓SKIPIF1<0的半焦距為SKIPIF1<0,則橢圓SKIPIF1<0的左焦點(diǎn)為SKIPIF1<0.由題意得SKIPIF1<0,則SKIPIF1<0,所以橢圓SKIPIF1<
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 科技助力下的出行安全與行為優(yōu)化策略
- 2025年度個(gè)人宿舍租賃合同與住宿條件保障協(xié)議
- 2025年度鐘點(diǎn)工家庭園藝養(yǎng)護(hù)服務(wù)合同
- 二零二五年度員工薪酬保密與公司信息安全保護(hù)合同
- 二零二五年度搬運(yùn)工勞務(wù)派遣與用工管理合同
- 青少年心理健康教育與學(xué)校德育的協(xié)同發(fā)展
- 2025年度銀行貸款抵押合同-新能源交通工具生產(chǎn)
- 語文教材中的跨文化交流元素
- 現(xiàn)代商業(yè)背景下的小微企業(yè)推廣途徑
- 電子產(chǎn)品的教育價(jià)值挖掘與利用
- 2025年度部隊(duì)食堂食材采購與質(zhì)量追溯服務(wù)合同3篇
- 2025江蘇鹽城市交通投資建設(shè)控股集團(tuán)限公司招聘19人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 新人教版一年級(jí)下冊(cè)數(shù)學(xué)教案集體備課
- 任務(wù)型閱讀 -2024年浙江中考英語試題專項(xiàng)復(fù)習(xí)(解析版)
- 繪本 課件教學(xué)課件
- 大型央國企信創(chuàng)化與數(shù)字化轉(zhuǎn)型規(guī)劃實(shí)施方案
- pcn培訓(xùn)培訓(xùn)課件
- 過錯(cuò)方財(cái)產(chǎn)自愿轉(zhuǎn)讓協(xié)議書(2篇)
- 監(jiān)理專題安全例會(huì)紀(jì)要(3篇)
- 牧場(chǎng)物語-礦石鎮(zhèn)的伙伴們-完全攻略
- ISO 22003-1:2022《食品安全-第 1 部分:食品安全管理體系 審核與認(rèn)證機(jī)構(gòu)要求》中文版(機(jī)翻)
評(píng)論
0/150
提交評(píng)論