版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湘中名校2025屆高三下學(xué)期聯(lián)合模擬考試數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《易經(jīng)》包含著很多哲理,在信息學(xué)、天文學(xué)中都有廣泛的應(yīng)用,《易經(jīng)》的博大精深,對今天的幾何學(xué)和其它學(xué)科仍有深刻的影響.下圖就是易經(jīng)中記載的幾何圖形——八卦田,圖中正八邊形代表八卦,中間的圓代表陰陽太極圖,八塊面積相等的曲邊梯形代表八卦田.已知正八邊形的邊長為,陰陽太極圖的半徑為,則每塊八卦田的面積約為()A. B.C. D.2.已知復(fù)數(shù)滿足(是虛數(shù)單位),則=()A. B. C. D.3.已知向量,,且與的夾角為,則()A. B.1 C.或1 D.或94.如圖所示的“數(shù)字塔”有以下規(guī)律:每一層最左與最右的數(shù)字均為2,除此之外每個數(shù)字均為其兩肩的數(shù)字之積,則該“數(shù)字塔”前10層的所有數(shù)字之積最接近()A. B. C. D.5.已知某幾何體的三視圖如右圖所示,則該幾何體的體積為()A.3 B. C. D.6.設(shè)函數(shù),則,的大致圖象大致是的()A. B.C. D.7.己知全集為實數(shù)集R,集合A={x|x2+2x-8>0},B={x|log2x<1},則等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)8.某幾何體的三視圖如圖所示,若圖中小正方形的邊長均為1,則該幾何體的體積是A. B. C. D.9.雙曲線的右焦點為,過點且與軸垂直的直線交兩漸近線于兩點,與雙曲線的其中一個交點為,若,且,則該雙曲線的離心率為()A. B. C. D.10.網(wǎng)絡(luò)是一種先進的高頻傳輸技術(shù),我國的技術(shù)發(fā)展迅速,已位居世界前列.華為公司2019年8月初推出了一款手機,現(xiàn)調(diào)查得到該款手機上市時間和市場占有率(單位:%)的幾組相關(guān)對應(yīng)數(shù)據(jù).如圖所示的折線圖中,橫軸1代表2019年8月,2代表2019年9月……,5代表2019年12月,根據(jù)數(shù)據(jù)得出關(guān)于的線性回歸方程為.若用此方程分析并預(yù)測該款手機市場占有率的變化趨勢,則最早何時該款手機市場占有率能超過0.5%(精確到月)()A.2020年6月 B.2020年7月 C.2020年8月 D.2020年9月11.關(guān)于函數(shù),有下述三個結(jié)論:①函數(shù)的一個周期為;②函數(shù)在上單調(diào)遞增;③函數(shù)的值域為.其中所有正確結(jié)論的編號是()A.①② B.② C.②③ D.③12.某單位去年的開支分布的折線圖如圖1所示,在這一年中的水、電、交通開支(單位:萬元)如圖2所示,則該單位去年的水費開支占總開支的百分比為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,則________.(填“>”或“=”或“<”).14.函數(shù)的定義域是__________.15.圓關(guān)于直線的對稱圓的方程為_____.16.假如某人有壹元、貳元、伍元、拾元、貳拾元、伍拾元、壹佰元的紙幣各兩張,要支付貳佰壹拾玖(219)元的貨款,則有________種不同的支付方式.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)(1)求曲線和曲線圍成圖形的面積;(2)化簡求值:.18.(12分)已知函數(shù),.(1)若,,求實數(shù)的值.(2)若,,求正實數(shù)的取值范圍.19.(12分)已知直線的參數(shù)方程為(,為參數(shù)),曲線的極坐標(biāo)方程為.(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,并說明曲線的形狀;(2)若直線經(jīng)過點,求直線被曲線截得的線段的長.20.(12分)在平面直角坐標(biāo)系中,已知橢圓:()的左、右焦點分別為、,且點、與橢圓的上頂點構(gòu)成邊長為2的等邊三角形.(1)求橢圓的方程;(2)已知直線與橢圓相切于點,且分別與直線和直線相交于點、.試判斷是否為定值,并說明理由.21.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為.(為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求的普通方程及的直角坐標(biāo)方程;(2)求曲線上的點到距離的取值范圍.22.(10分)已知函數(shù).(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若恒成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
由圖利用三角形的面積公式可得正八邊形中每個三角形的面積,再計算出圓面積的,兩面積作差即可求解.【詳解】由圖,正八邊形分割成個等腰三角形,頂角為,設(shè)三角形的腰為,由正弦定理可得,解得,所以三角形的面積為:,所以每塊八卦田的面積約為:.故選:B本題考查了正弦定理解三角形、三角形的面積公式,需熟記定理與面積公式,屬于基礎(chǔ)題.2.A【解析】
把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】解:由,得,.故選.本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.3.C【解析】
由題意利用兩個向量的數(shù)量積的定義和公式,求的值.【詳解】解:由題意可得,求得,或,故選:C.本題主要考查兩個向量的數(shù)量積的定義和公式,屬于基礎(chǔ)題.4.A【解析】
結(jié)合所給數(shù)字特征,我們可將每層數(shù)字表示成2的指數(shù)的形式,觀察可知,每層指數(shù)的和成等比數(shù)列分布,結(jié)合等比數(shù)列前項和公式和對數(shù)恒等式即可求解【詳解】如圖,將數(shù)字塔中的數(shù)寫成指數(shù)形式,可發(fā)現(xiàn)其指數(shù)恰好構(gòu)成“楊輝三角”,前10層的指數(shù)之和為,所以原數(shù)字塔中前10層所有數(shù)字之積為.故選:A本題考查與“楊輝三角”有關(guān)的規(guī)律求解問題,邏輯推理,等比數(shù)列前項和公式應(yīng)用,屬于中檔題5.B【解析】由三視圖知:幾何體是直三棱柱消去一個三棱錐,如圖:
直三棱柱的體積為,消去的三棱錐的體積為,
∴幾何體的體積,故選B.點睛:本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及相關(guān)幾何量的數(shù)據(jù)是解答此類問題的關(guān)鍵;幾何體是直三棱柱消去一個三棱錐,結(jié)合直觀圖分別求出直三棱柱的體積和消去的三棱錐的體積,相減可得幾何體的體積.6.B【解析】
采用排除法:通過判斷函數(shù)的奇偶性排除選項A;通過判斷特殊點的函數(shù)值符號排除選項D和選項C即可求解.【詳解】對于選項A:由題意知,函數(shù)的定義域為,其關(guān)于原點對稱,因為,所以函數(shù)為奇函數(shù),其圖象關(guān)于原點對稱,故選A排除;對于選項D:因為,故選項D排除;對于選項C:因為,故選項C排除;故選:B本題考查利用函數(shù)的奇偶性和特殊點函數(shù)值符號判斷函數(shù)圖象;考查運算求解能力和邏輯推理能力;選取合適的特殊點并判斷其函數(shù)值符號是求解本題的關(guān)鍵;屬于中檔題、??碱}型.7.D【解析】
求解一元二次不等式化簡A,求解對數(shù)不等式化簡B,然后利用補集與交集的運算得答案.【詳解】解:由x2+2x-8>0,得x<-4或x>2,
∴A={x|x2+2x-8>0}={x|x<-4或x>2},
由log2x<1,x>0,得0<x<2,
∴B={x|log2x<1}={x|0<x<2},
則,
∴.
故選:D.本題考查了交、并、補集的混合運算,考查了對數(shù)不等式,二次不等式的求法,是基礎(chǔ)題.8.B【解析】該幾何體是直三棱柱和半圓錐的組合體,其中三棱柱的高為2,底面是高和底邊均為4的等腰三角形,圓錐的高為4,底面半徑為2,則其體積為,.故選B點睛:由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進行調(diào)整.9.D【解析】
根據(jù)已知得本題首先求出直線與雙曲線漸近線的交點,再利用,求出點,因為點在雙曲線上,及,代入整理及得,又已知,即可求出離心率.【詳解】由題意可知,代入得:,代入雙曲線方程整理得:,又因為,即可得到,故選:D.本題主要考查的是雙曲線的簡單幾何性質(zhì)和向量的坐標(biāo)運算,離心率問題關(guān)鍵尋求關(guān)于,,的方程或不等式,由此計算雙曲線的離心率或范圍,屬于中檔題.10.C【解析】
根據(jù)圖形,計算出,然后解不等式即可.【詳解】解:,點在直線上,令因為橫軸1代表2019年8月,所以橫軸13代表2020年8月,故選:C考查如何確定線性回歸直線中的系數(shù)以及線性回歸方程的實際應(yīng)用,基礎(chǔ)題.11.C【解析】
①用周期函數(shù)的定義驗證.②當(dāng)時,,,再利用單調(diào)性判斷.③根據(jù)平移變換,函數(shù)的值域等價于函數(shù)的值域,而,當(dāng)時,再求值域.【詳解】因為,故①錯誤;當(dāng)時,,所以,所以在上單調(diào)遞增,故②正確;函數(shù)的值域等價于函數(shù)的值域,易知,故當(dāng)時,,故③正確.故選:C.本題考查三角函數(shù)的性質(zhì),還考查推理論證能力以及分類討論思想,屬于中檔題.12.A【解析】
由折線圖找出水、電、交通開支占總開支的比例,再計算出水費開支占水、電、交通開支的比例,相乘即可求出水費開支占總開支的百分比.【詳解】水費開支占總開支的百分比為.故選:A本題考查折線圖與柱形圖,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
注意到,故只需比較與1的大小即可.【詳解】由已知,,故有.又由,故有.故答案為:.本題考查對數(shù)式比較大小,涉及到換底公式的應(yīng)用,考查學(xué)生的數(shù)學(xué)運算能力,是一道中檔題.14.【解析】由,得,所以,所以原函數(shù)定義域為,故答案為.15.【解析】
求出圓心關(guān)于直線的對稱點,即可得解.【詳解】的圓心為,關(guān)于對稱點設(shè)為,則有:,解得,所以對稱后的圓心為,故所求圓的方程為.故答案為:此題考查求圓關(guān)于直線的對稱圓方程,關(guān)鍵在于準確求出圓心關(guān)于直線的對稱點坐標(biāo).16.1【解析】
按照個位上的9元的支付情況分類,三個數(shù)位上的錢數(shù)分步計算,相加即可.【詳解】9元的支付有兩種情況,或者,①當(dāng)9元采用方式支付時,200元的支付方式為,或者或者共3種方式,10元的支付只能用1張10元,此時共有種支付方式;②當(dāng)9元采用方式支付時:200元的支付方式為,或者或者共3種方式,10元的支付只能用1張10元,此時共有種支付方式;所以總的支付方式共有種.故答案為:1.本題考查了分類加法計數(shù)原理和分步乘法計數(shù)原理,屬于中檔題.做題時注意分類做到不重不漏,分步做到步驟完整.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】
(1)求曲線和曲線圍成的圖形面積,首先求出兩曲線交點的橫坐標(biāo)0、1,然后求在區(qū)間上的定積分.(2)首先利用二倍角公式及兩角差的余弦公式計算出,然后再整體代入可得;【詳解】解:(1)聯(lián)立解得,,所以曲線和曲線圍成的圖形面積.(2)∴本題考查定積分求曲邊形的面積以及三角恒等變換的應(yīng)用,屬于中檔題.18.(1)1(2)【解析】
(1)求得和,由,,得,令,令導(dǎo)數(shù)求得函數(shù)的單調(diào)性,利用,即可求解.(2)解法一:令,利用導(dǎo)數(shù)求得的單調(diào)性,轉(zhuǎn)化為,令(),利用導(dǎo)數(shù)得到的單調(diào)性,分類討論,即可求解.解法二:可利用導(dǎo)數(shù),先證明不等式,,,,令(),利用導(dǎo)數(shù),分類討論得出函數(shù)的單調(diào)性與最值,即可求解.【詳解】(1)由題意,得,,由,…①,得,令,則,因為,所以在單調(diào)遞增,又,所以當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減;所以,當(dāng)且僅當(dāng)時等號成立.故方程①有且僅有唯一解,實數(shù)的值為1.(2)解法一:令(),則,所以當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減;故.令(),則.(i)若時,,在單調(diào)遞增,所以,滿足題意.(ii)若時,,滿足題意.(iii)若時,,在單調(diào)遞減,所以.不滿足題意.綜上述:.解法二:先證明不等式,,,…(*).令,則當(dāng)時,,單調(diào)遞增,當(dāng)時,,單調(diào)遞減,所以,即.變形得,,所以時,,所以當(dāng)時,.又由上式得,當(dāng)時,,,.因此不等式(*)均成立.令(),則,(i)若時,當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減;故.(ii)若時,,在單調(diào)遞增,所以.因此,①當(dāng)時,此時,,,則需由(*)知,,(當(dāng)且僅當(dāng)時等號成立),所以.②當(dāng)時,此時,,則當(dāng)時,(由(*)知);當(dāng)時,(由(*)知).故對于任意,.綜上述:.本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,著重考查了轉(zhuǎn)化與化歸思想、分類討論、及邏輯推理能力與計算能力,對于恒成立問題,通常要構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造新函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題.19.(1)曲線表示的是焦點為,準線為的拋物線;(2)8.【解析】試題分析:(1)將曲線的極坐標(biāo)方程為兩邊同時乘以,利用極坐標(biāo)與直角坐標(biāo)之間的關(guān)系即可得出其直角坐標(biāo)方程;(2)由直線經(jīng)過點,可得的值,再將直線的參數(shù)方程代入曲線的標(biāo)準方程,由直線參數(shù)方程的幾何意義可得直線被曲線截得的線段的長.試題解析:(1)由可得,即,∴曲線表示的是焦點為,準線為的拋物線.(2)將代入,得,∴,∵,∴,∴直線的參數(shù)方程為(為參數(shù)).將直線的參數(shù)方程代入得,由直線參數(shù)方程的幾何意義可知,.20.(1)(2)為定值.【解析】
(1)根據(jù)題意,得出,從而得出橢圓的標(biāo)準方程.(2)根據(jù)題意設(shè)直線方程:,因為直線與橢圓相切,這有一個交點,聯(lián)立直線與橢圓方程得,則,解得①把和代入,得和,,的表達式,比即可得出為定值.【詳解】解:(1)依題意,,,.所以橢圓的標(biāo)準方程為.(2)為定值.①因為直線分別與直線和直線相交,所以,直線一定存在斜率.②設(shè)直線:,由得,由,得.①把代入,得,把代入,得,又因為,所以,,②由①式,得,③把③式代入②式,得,,即為定值.本題考查橢圓的定義、方程、和性質(zhì),主要考查橢圓方程的運用,考查橢圓的定值問題,考查計算能力和轉(zhuǎn)化思想,是中檔題.21.(1),.(2)【解析】
(1)根據(jù)直線的參數(shù)方程為(為參數(shù)),消去參數(shù),即可求得的的普通方程,曲線的極坐標(biāo)方程為,利用極坐標(biāo)化直角坐標(biāo)的公式:,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024牛肉供應(yīng)鏈優(yōu)化與物流配送合同
- 二零二五年鮑魚海鮮產(chǎn)品進出口合同2篇
- 2025年度中小企業(yè)財務(wù)輔導(dǎo)與融資對接服務(wù)合同3篇
- 2025年工藝品FOB出口合同標(biāo)準范本2篇
- 2024年相機設(shè)備采購正式協(xié)議樣本
- 2024特定事項補充協(xié)議范本版B版
- 2025年度淋浴房安全檢測與安裝服務(wù)合同4篇
- 2025年環(huán)保型小區(qū)車棚租賃與充電樁建設(shè)合同3篇
- 2025年度綠色生態(tài)園林景觀項目苗木采購合同樣本3篇
- 2025年度消防設(shè)施設(shè)備安全性能評估合同3篇
- 軟件項目應(yīng)急措施及方案
- 2025河北邯鄲經(jīng)開國控資產(chǎn)運營管理限公司招聘專業(yè)技術(shù)人才5名高頻重點提升(共500題)附帶答案詳解
- 2024年民法典知識競賽考試題庫及答案(共50題)
- 2025老年公寓合同管理制度
- 2024-2025學(xué)年人教版數(shù)學(xué)六年級上冊 期末綜合卷(含答案)
- 2024中國汽車后市場年度發(fā)展報告
- 鈑金設(shè)備操作培訓(xùn)
- 感染性腹瀉的護理查房
- 天津市部分區(qū)2023-2024學(xué)年高二上學(xué)期期末考試 物理 含解析
- 水利工程招標(biāo)文件樣本
- 第17課 西晉的短暫統(tǒng)一和北方各族的內(nèi)遷(說課稿)-2024-2025學(xué)年七年級歷史上冊素養(yǎng)提升說課稿(統(tǒng)編版2024)
評論
0/150
提交評論