版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)集合,,則()A. B.C. D.2.若某幾何體的三視圖如圖所示,則該幾何體的表面積為()A.240 B.264 C.274 D.2823.已知集合,若,則實(shí)數(shù)的取值范圍為()A. B. C. D.4.過(guò)拋物線的焦點(diǎn)的直線與拋物線交于、兩點(diǎn),且,拋物線的準(zhǔn)線與軸交于,的面積為,則()A. B. C. D.5.復(fù)數(shù)滿足,則()A. B. C. D.6.設(shè)數(shù)列的各項(xiàng)均為正數(shù),前項(xiàng)和為,,且,則()A.128 B.65 C.64 D.637.用數(shù)學(xué)歸納法證明1+2+3+?+n2=n4A.k2+1C.k2+18.已知函數(shù),其中,若恒成立,則函數(shù)的單調(diào)遞增區(qū)間為()A. B.C. D.9.對(duì)于任意,函數(shù)滿足,且當(dāng)時(shí),函數(shù).若,則大小關(guān)系是()A. B. C. D.10.我國(guó)古代典籍《周易》用“卦”描述萬(wàn)物的變化.每一“重卦”由從下到上排列的6個(gè)爻組成,爻分為陽(yáng)爻“——”和陰爻“——”.如圖就是一重卦.在所有重卦中隨機(jī)取一重卦,則該重卦至少有2個(gè)陽(yáng)爻的概率是()A. B. C. D.11.一個(gè)四棱錐的三視圖如圖所示(其中主視圖也叫正視圖,左視圖也叫側(cè)視圖),則這個(gè)四棱錐中最最長(zhǎng)棱的長(zhǎng)度是().A. B. C. D.12.已知α,β是兩平面,l,m,n是三條不同的直線,則不正確命題是()A.若m⊥α,n//α,則m⊥n B.若m//α,n//α,則m//nC.若l⊥α,l//β,則α⊥β D.若α//β,lβ,且l//α,則l//β二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)在的零點(diǎn)個(gè)數(shù)為_(kāi)________.14.在平面直角坐標(biāo)系xOy中,直角三角形ABC的三個(gè)頂點(diǎn)都在橢圓上,其中A(0,1)為直角頂點(diǎn).若該三角形的面積的最大值為,則實(shí)數(shù)a的值為_(kāi)____.15.已知函數(shù),若對(duì)于任意正實(shí)數(shù),均存在以為三邊邊長(zhǎng)的三角形,則實(shí)數(shù)k的取值范圍是_______.16.若實(shí)數(shù)滿足約束條件,設(shè)的最大值與最小值分別為,則_____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四棱柱中,底面為菱形,.(1)證明:平面平面;(2)若,是等邊三角形,求二面角的余弦值.18.(12分)已知數(shù)列和,前項(xiàng)和為,且,是各項(xiàng)均為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列和的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.19.(12分)已知函數(shù).(1)討論函數(shù)單調(diào)性;(2)當(dāng)時(shí),求證:.20.(12分)在直角坐標(biāo)系中,曲線上的任意一點(diǎn)到直線的距離比點(diǎn)到點(diǎn)的距離小1.(1)求動(dòng)點(diǎn)的軌跡的方程;(2)若點(diǎn)是圓上一動(dòng)點(diǎn),過(guò)點(diǎn)作曲線的兩條切線,切點(diǎn)分別為,求直線斜率的取值范圍.21.(12分)在直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,射線的極坐標(biāo)方程為,射線的極坐標(biāo)方程為.(Ⅰ)寫出曲線的極坐標(biāo)方程,并指出是何種曲線;(Ⅱ)若射線與曲線交于兩點(diǎn),射線與曲線交于兩點(diǎn),求面積的取值范圍.22.(10分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),).在以坐標(biāo)原點(diǎn)為極點(diǎn)、軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.(1)若點(diǎn)在直線上,求直線的極坐標(biāo)方程;(2)已知,若點(diǎn)在直線上,點(diǎn)在曲線上,且的最小值為,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
利用一元二次不等式的解法和集合的交運(yùn)算求解即可.【詳解】由題意知,集合,,由集合的交運(yùn)算可得,.故選:D【點(diǎn)睛】本題考查一元二次不等式的解法和集合的交運(yùn)算;考查運(yùn)算求解能力;屬于基礎(chǔ)題.2.B【解析】
將三視圖還原成幾何體,然后分別求出各個(gè)面的面積,得到答案.【詳解】由三視圖可得,該幾何體的直觀圖如圖所示,延長(zhǎng)交于點(diǎn),其中,,,所以表面積.故選B項(xiàng).【點(diǎn)睛】本題考查三視圖還原幾何體,求組合體的表面積,屬于中檔題3.A【解析】
解一元二次不等式化簡(jiǎn)集合的表示,求解函數(shù)的定義域化簡(jiǎn)集合的表示,根據(jù)可以得到集合、之間的關(guān)系,結(jié)合數(shù)軸進(jìn)行求解即可.【詳解】,.因?yàn)?,所以有,因此?故選:A【點(diǎn)睛】本題考查了已知集合運(yùn)算的結(jié)果求參數(shù)取值范圍問(wèn)題,考查了解一元二次不等式,考查了函數(shù)的定義域,考查了數(shù)學(xué)運(yùn)算能力.4.B【解析】
設(shè)點(diǎn)、,并設(shè)直線的方程為,由得,將直線的方程代入韋達(dá)定理,求得,結(jié)合的面積求得的值,結(jié)合焦點(diǎn)弦長(zhǎng)公式可求得.【詳解】設(shè)點(diǎn)、,并設(shè)直線的方程為,將直線的方程與拋物線方程聯(lián)立,消去得,由韋達(dá)定理得,,,,,,,,可得,,拋物線的準(zhǔn)線與軸交于,的面積為,解得,則拋物線的方程為,所以,.故選:B.【點(diǎn)睛】本題考查拋物線焦點(diǎn)弦長(zhǎng)的計(jì)算,計(jì)算出拋物線的方程是解答的關(guān)鍵,考查計(jì)算能力,屬于中等題.5.C【解析】
利用復(fù)數(shù)模與除法運(yùn)算即可得到結(jié)果.【詳解】解:,故選:C【點(diǎn)睛】本題考查復(fù)數(shù)除法運(yùn)算,考查復(fù)數(shù)的模,考查計(jì)算能力,屬于基礎(chǔ)題.6.D【解析】
根據(jù),得到,即,由等比數(shù)列的定義知數(shù)列是等比數(shù)列,然后再利用前n項(xiàng)和公式求.【詳解】因?yàn)?,所以,所以,所以?shù)列是等比數(shù)列,又因?yàn)椋裕?故選:D【點(diǎn)睛】本題主要考查等比數(shù)列的定義及等比數(shù)列的前n項(xiàng)和公式,還考查了運(yùn)算求解的能力,屬于中檔題.7.C【解析】
首先分析題目求用數(shù)學(xué)歸納法證明1+1+3+…+n1=n4【詳解】當(dāng)n=k時(shí),等式左端=1+1+…+k1,當(dāng)n=k+1時(shí),等式左端=1+1+…+k1+k1+1+k1+1+…+(k+1)1,增加了項(xiàng)(k1+1)+(k1+1)+(k1+3)+…+(k+1)1.故選:C.【點(diǎn)睛】本題主要考查數(shù)學(xué)歸納法,屬于中檔題./8.A【解析】
,從而可得,,再解不等式即可.【詳解】由已知,,所以,,由,解得,.故選:A.【點(diǎn)睛】本題考查求正弦型函數(shù)的單調(diào)區(qū)間,涉及到恒成立問(wèn)題,考查學(xué)生轉(zhuǎn)化與化歸的思想,是一道中檔題.9.A【解析】
由已知可得的單調(diào)性,再由可得對(duì)稱性,可求出在單調(diào)性,即可求出結(jié)論.【詳解】對(duì)于任意,函數(shù)滿足,因?yàn)楹瘮?shù)關(guān)于點(diǎn)對(duì)稱,當(dāng)時(shí),是單調(diào)增函數(shù),所以在定義域上是單調(diào)增函數(shù).因?yàn)?,所以?故選:A.【點(diǎn)睛】本題考查利用函數(shù)性質(zhì)比較函數(shù)值的大小,解題的關(guān)鍵要掌握函數(shù)對(duì)稱性的代數(shù)形式,屬于中檔題..10.C【解析】
利用組合的方法求所求的事件的對(duì)立事件,即該重卦沒(méi)有陽(yáng)爻或只有1個(gè)陽(yáng)爻的概率,再根據(jù)兩對(duì)立事件的概率和為1求解即可.【詳解】設(shè)“該重卦至少有2個(gè)陽(yáng)爻”為事件.所有“重卦”共有種;“該重卦至少有2個(gè)陽(yáng)爻”的對(duì)立事件是“該重卦沒(méi)有陽(yáng)爻或只有1個(gè)陽(yáng)爻”,其中,沒(méi)有陽(yáng)爻(即6個(gè)全部是陰爻)的情況有1種,只有1個(gè)陽(yáng)爻的情況有種,故,所以該重卦至少有2個(gè)陽(yáng)爻的概率是.故選:C【點(diǎn)睛】本題主要考查了對(duì)立事件概率和為1的方法求解事件概率的方法.屬于基礎(chǔ)題.11.A【解析】
作出其直觀圖,然后結(jié)合數(shù)據(jù)根據(jù)勾股定定理計(jì)算每一條棱長(zhǎng)即可.【詳解】根據(jù)三視圖作出該四棱錐的直觀圖,如圖所示,其中底面是直角梯形,且,,平面,且,∴,,,,∴這個(gè)四棱錐中最長(zhǎng)棱的長(zhǎng)度是.故選.【點(diǎn)睛】本題考查了四棱錐的三視圖的有關(guān)計(jì)算,正確還原直觀圖是解題關(guān)鍵,屬于基礎(chǔ)題.12.B【解析】
根據(jù)線面平行、線面垂直和空間角的知識(shí),判斷A選項(xiàng)的正確性.由線面平行有關(guān)知識(shí)判斷B選項(xiàng)的正確性.根據(jù)面面垂直的判定定理,判斷C選項(xiàng)的正確性.根據(jù)面面平行的性質(zhì)判斷D選項(xiàng)的正確性.【詳解】A.若,則在中存在一條直線,使得,則,又,那么,故正確;B.若,則或相交或異面,故不正確;C.若,則存在,使,又,則,故正確.D.若,且,則或,又由,故正確.故選:B【點(diǎn)睛】本小題主要考查空間線線、線面和面面有關(guān)命題真假性的判斷,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】
本問(wèn)題轉(zhuǎn)化為曲線交點(diǎn)個(gè)數(shù)問(wèn)題,在同一直角坐標(biāo)系內(nèi),畫出函數(shù)的圖象,利用數(shù)形結(jié)合思想進(jìn)行求解即可.【詳解】問(wèn)題函數(shù)在的零點(diǎn)個(gè)數(shù),可以轉(zhuǎn)化為曲線交點(diǎn)個(gè)數(shù)問(wèn)題.在同一直角坐標(biāo)系內(nèi),畫出函數(shù)的圖象,如下圖所示:由圖象可知:當(dāng)時(shí),兩個(gè)函數(shù)只有一個(gè)交點(diǎn).故答案為:1【點(diǎn)睛】本題考查了求函數(shù)的零點(diǎn)個(gè)數(shù)問(wèn)題,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想.14.3【解析】
設(shè)直線AB的方程為y=kx+1,則直線AC的方程可設(shè)為yx+1,(k≠0),聯(lián)立方程得到B(,),故S,令t,得S,利用均值不等式得到答案.【詳解】設(shè)直線AB的方程為y=kx+1,則直線AC的方程可設(shè)為yx+1,(k≠0)由消去y,得(1+a2k2)x2+2a2kx=0,所以x=0或x∵A的坐標(biāo)(0,1),∴B的坐標(biāo)為(,k?1),即B(,),因此AB?,同理可得:AC?.∴Rt△ABC的面積為SAB?AC?令t,得S.∵t2,∴S△ABC.當(dāng)且僅當(dāng),即t時(shí),△ABC的面積S有最大值為.解之得a=3或a.∵a時(shí),t2不符合題意,∴a=3.故答案為:3.【點(diǎn)睛】本題考查了橢圓內(nèi)三角形面積的最值問(wèn)題,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.15.【解析】
根據(jù)三角形三邊關(guān)系可知對(duì)任意的恒成立,將的解析式用分離常數(shù)法變形,由均值不等式可得分母的取值范圍,則整個(gè)式子的取值范圍由的符號(hào)決定,故分為三類討論,根據(jù)函數(shù)的單調(diào)性求出函數(shù)值域,再討論,轉(zhuǎn)化為的最小值與的最大值的不等式,進(jìn)而求出的取值范圍.【詳解】因?yàn)閷?duì)任意正實(shí)數(shù),都存在以為三邊長(zhǎng)的三角形,故對(duì)任意的恒成立,,令,則,當(dāng),即時(shí),該函數(shù)在上單調(diào)遞減,則;當(dāng),即時(shí),,當(dāng),即時(shí),該函數(shù)在上單調(diào)遞增,則,所以,當(dāng)時(shí),因?yàn)?,所以,解得;當(dāng)時(shí),,滿足條件;當(dāng)時(shí),,且,所以,解得,綜上,,故答案為:【點(diǎn)睛】本題考查參數(shù)范圍,考查三角形的構(gòu)成條件,考查利用函數(shù)單調(diào)性求函數(shù)值域,考查分類討論思想與轉(zhuǎn)化思想.16.【解析】
畫出可行域,平移基準(zhǔn)直線到可行域邊界位置,由此求得最大值以及最小值,進(jìn)而求得的比值.【詳解】畫出可行域如下圖所示,由圖可知,當(dāng)直線過(guò)點(diǎn)時(shí),取得最大值7;過(guò)點(diǎn)時(shí),取得最小值2,所以.【點(diǎn)睛】本小題主要考查利用線性規(guī)劃求線性目標(biāo)函數(shù)的最值.這種類型題目的主要思路是:首先根據(jù)題目所給的約束條件,畫出可行域;其次是求得線性目標(biāo)函數(shù)的基準(zhǔn)函數(shù);接著畫出基準(zhǔn)函數(shù)對(duì)應(yīng)的基準(zhǔn)直線;然后通過(guò)平移基準(zhǔn)直線到可行域邊界的位置;最后求出所求的最值.屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)證明見(jiàn)解析(2)【解析】
(1)根據(jù)面面垂直的判定定理可知,只需證明平面即可.由為菱形可得,連接和與的交點(diǎn),由等腰三角形性質(zhì)可得,即能證得平面;(2)由題意知,平面,可建立空間直角坐標(biāo)系,以為坐標(biāo)原點(diǎn),所在直線為軸,所在直線為軸,所在直線為軸,再分別求出平面的法向量,平面的法向量,即可根據(jù)向量法求出二面角的余弦值.【詳解】(1)如圖,設(shè)與相交于點(diǎn),連接,又為菱形,故,為的中點(diǎn).又,故.又平面,平面,且,故平面,又平面,所以平面平面.(2)由是等邊三角形,可得,故平面,所以,,兩兩垂直.如圖以為坐標(biāo)原點(diǎn),所在直線為軸,所在直線為軸,所在直線為軸,建立空間直角坐標(biāo)系.不妨設(shè),則,,則,,,,,,設(shè)為平面的法向量,則即可取,設(shè)為平面的法向量,則即可取,所以.所以二面角的余弦值為0.【點(diǎn)睛】本題主要考查線面垂直的判定定理,面面垂直的判定定理的應(yīng)用,以及利用向量法求二面角,意在考查學(xué)生的直觀想象能力,邏輯推理能力和數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.18.(1),;(2).【解析】
(1)令求出的值,然后由,得出,然后檢驗(yàn)是否符合在時(shí)的表達(dá)式,即可得出數(shù)列的通項(xiàng)公式,并設(shè)數(shù)列的公比為,根據(jù)題意列出和的方程組,解出這兩個(gè)量,然后利用等比數(shù)列的通項(xiàng)公式可求出;(2)求出數(shù)列的前項(xiàng)和,然后利用分組求和法可求出.【詳解】(1)當(dāng)時(shí),,當(dāng)時(shí),.也適合上式,所以,.設(shè)數(shù)列的公比為,則,由,兩式相除得,,解得,,;(2)設(shè)數(shù)列的前項(xiàng)和為,則,.【點(diǎn)睛】本題考查利用求,同時(shí)也考查了等比數(shù)列通項(xiàng)的計(jì)算,以及分組求和法的應(yīng)用,考查計(jì)算能力,屬于中等題.19.(1)見(jiàn)解析(2)見(jiàn)解析【解析】
(1)根據(jù)的導(dǎo)函數(shù)進(jìn)行分類討論單調(diào)性(2)欲證,只需證,構(gòu)造函數(shù),證明,這時(shí)需研究的單調(diào)性,求其最大值即可【詳解】解:(1)的定義域?yàn)椋?,①?dāng)時(shí),由得,由,得,所以在上單調(diào)遞增,在單調(diào)遞減;②當(dāng)時(shí),由得,由,得,或,所以在上單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增;③當(dāng)時(shí),,所以在上單調(diào)遞增;④當(dāng)時(shí),由,得,由,得,或,所以在上單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增.(2)當(dāng)時(shí),欲證,只需證,令,,則,因存在,使得成立,即有,使得成立.當(dāng)變化時(shí),,的變化如下:0單調(diào)遞增單調(diào)遞減所以.因?yàn)?,所以,所?即,所以當(dāng)時(shí),成立.【點(diǎn)睛】考查求函數(shù)單調(diào)性的方法和用函數(shù)的最值證明不等式的方法,難題.20.(1);(2)【解析】
(1)設(shè),根據(jù)題意可得點(diǎn)的軌跡方程滿足的等式,化簡(jiǎn)即可求得動(dòng)點(diǎn)的軌跡的方程;(2)設(shè)出切線的斜率分別為,切點(diǎn),,點(diǎn),則可得過(guò)點(diǎn)的拋物線的切線方程為,聯(lián)立拋物線方程并化簡(jiǎn),由相切時(shí)可得兩條切線斜率關(guān)系;由拋物線方程求得導(dǎo)函數(shù),并由導(dǎo)數(shù)的幾何意義并代入拋物線方程表示出,可求得,結(jié)合點(diǎn)滿足的方程可得的取值范圍,即可求得的范圍.【詳解】(1)設(shè)點(diǎn),∵點(diǎn)到直線的距離等于,∴,化簡(jiǎn)得,∴動(dòng)點(diǎn)的軌跡的方程為.(2)由題意可知,的斜率都存在,分別設(shè)為,切點(diǎn),,設(shè)點(diǎn),過(guò)點(diǎn)的拋物線的切線方程為,聯(lián)立,化簡(jiǎn)可得,∴,即,∴,.由,求得導(dǎo)函數(shù),∴,,,∴,因?yàn)辄c(diǎn)滿足,由圓的性質(zhì)可
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024汽車銷售合同范本標(biāo)準(zhǔn)版
- 2024股權(quán)出質(zhì)質(zhì)權(quán)合同
- 印刷單張合同范本
- 舞蹈培訓(xùn)退費(fèi)合同范本
- 金礦收購(gòu)合同范本
- 個(gè)人合伙合同范本
- 白內(nèi)障的治療與保健
- 漆包線購(gòu)銷合同范本
- 個(gè)人家庭居室裝修合同范本
- 白化病康復(fù)治療
- 2024至2030年中國(guó)羽毛球行業(yè)發(fā)展現(xiàn)狀及投資趨勢(shì)研究報(bào)告
- 儲(chǔ)能電池?zé)崾Э鼗馂?zāi)演化機(jī)制及防控
- 2024年公司市場(chǎng)化選聘經(jīng)理層考核管理辦法
- 太陽(yáng)能光伏電站施工安全標(biāo)準(zhǔn)化建設(shè)考核試卷
- 防炫(AG工藝)玻璃項(xiàng)目可行性研究報(bào)告模板-備案拿地
- 煤炭洗選工藝數(shù)字化與智能化
- 2024年【汽車駕駛員(技師)】證模擬考試及答案
- 大學(xué)生心理健康教育智慧樹知到期末考試答案章節(jié)答案2024年魯東大學(xué)
- 瑜伽脊柱扭轉(zhuǎn)課程設(shè)計(jì)
- 生物技術(shù)研究合伙協(xié)議
- 室外燃?xì)夤艿腊惭b施工方案
評(píng)論
0/150
提交評(píng)論