




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆四平市重點(diǎn)中學(xué)中考數(shù)學(xué)最后一模試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.圖1是邊長為1的六個小正方形組成的圖形,它可以圍成圖2的正方體,則圖1中正方形頂點(diǎn)A,B在圍成的正方體中的距離是()A.0 B.1 C. D.2.函數(shù)y=ax2與y=﹣ax+b的圖象可能是()A. B.C. D.3.關(guān)于反比例函數(shù)y=,下列說法中錯誤的是()A.它的圖象是雙曲線B.它的圖象在第一、三象限C.y的值隨x的值增大而減小D.若點(diǎn)(a,b)在它的圖象上,則點(diǎn)(b,a)也在它的圖象上4.如圖,將一副三角板如此擺放,使得BO和CD平行,則∠AOD的度數(shù)為()A.10° B.15° C.20° D.25°5.方程有兩個實(shí)數(shù)根,則k的取值范圍是().A.k≥1 B.k≤1 C.k>1 D.k<16.如圖,已知AB和CD是⊙O的兩條等弦.OM⊥AB,ON⊥CD,垂足分別為點(diǎn)M、N,BA、DC的延長線交于點(diǎn)P,聯(lián)結(jié)OP.下列四個說法中:①;②OM=ON;③PA=PC;④∠BPO=∠DPO,正確的個數(shù)是()A.1 B.2 C.3 D.47.如圖,已知AB∥CD,AD=CD,∠1=40°,則∠2的度數(shù)為()A.60° B.65° C.70° D.75°8.《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著.書中有下列問題“今有勾八步,股十五步,問勾中容圓徑幾何?”其意思是“今有直角三角形(如圖),勾(短直角邊)長為8步,股(長直角邊)長為15步,問該直角三角形能容納的圓形(內(nèi)切圓)直徑是多少?”()A.3步 B.5步 C.6步 D.8步9.如圖,已知線段AB,分別以A,B為圓心,大于AB為半徑作弧,連接弧的交點(diǎn)得到直線l,在直線l上取一點(diǎn)C,使得∠CAB=25°,延長AC至點(diǎn)M,則∠BCM的度數(shù)為()A.40° B.50° C.60° D.70°10.下面的幾何體中,主視圖為圓的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.一個圓錐的母線長15CM.高為9CM.則側(cè)面展開圖的圓心角________。12.如圖,已知⊙P的半徑為2,圓心P在拋物線y=x2﹣1上運(yùn)動,當(dāng)⊙P與x軸相切時,圓心P的坐標(biāo)為_____.13.計算:7+(-5)=______.14.如圖,已知l1∥l2∥l3,相鄰兩條平行直線間的距離相等,若等腰直角三角形ABC的直角頂點(diǎn)C在l1上,另兩個頂點(diǎn)A,B分別在l3,l2上,則sinα的值是_____.15.若有意義,則x的范圍是_____.16.如圖為兩正方形ABCD、CEFG和矩形DFHI的位置圖,其中D,A兩點(diǎn)分別在CG、BI上,若AB=3,CE=5,則矩形DFHI的面積是_____.17.如圖1,點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),沿B→C→A勻速運(yùn)動到點(diǎn)A,圖2是點(diǎn)P運(yùn)動時,線段BP的長度y隨時間x變化的關(guān)系圖象,其中M為曲線部分的最低點(diǎn),則△ABC的面積是___.三、解答題(共7小題,滿分69分)18.(10分)如圖,點(diǎn)在的直徑的延長線上,點(diǎn)在上,且AC=CD,∠ACD=120°.求證:是的切線;若的半徑為2,求圖中陰影部分的面積.19.(5分)觀察猜想:在Rt△ABC中,∠BAC=90°,AB=AC,點(diǎn)D在邊BC上,連接AD,把△ABD繞點(diǎn)A逆時針旋轉(zhuǎn)90°,點(diǎn)D落在點(diǎn)E處,如圖①所示,則線段CE和線段BD的數(shù)量關(guān)系是,位置關(guān)系是.探究證明:在(1)的條件下,若點(diǎn)D在線段BC的延長線上,請判斷(1)中結(jié)論是還成立嗎?請?jiān)趫D②中畫出圖形,并證明你的判斷.拓展延伸:如圖③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=,其他條件不變,過點(diǎn)D作DF⊥AD交CE于點(diǎn)F,請直接寫出線段CF長度的最大值.20.(8分)如圖,矩形中,對角線、交于點(diǎn),以、為鄰邊作平行四邊形,連接求證:四邊形是菱形若,,求四邊形的面積21.(10分)學(xué)校決定在學(xué)生中開設(shè):A、實(shí)心球;B、立定跳遠(yuǎn);C、跳繩;D、跑步四種活動項(xiàng)目.為了了解學(xué)生對四種項(xiàng)目的喜歡情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計圖,請結(jié)合圖中的信息解答下列問題:(1)在這項(xiàng)調(diào)查中,共調(diào)查了多少名學(xué)生?(2)請計算本項(xiàng)調(diào)查中喜歡“立定跳遠(yuǎn)”的學(xué)生人數(shù)和所占百分比,并將兩個統(tǒng)計圖補(bǔ)充完整.(3)若調(diào)查到喜歡“跳繩”的5名學(xué)生中有2名男生,3名女生,現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生,請用畫樹狀圖或列表法求出剛好抽到不同性別學(xué)生的概率.22.(10分)已知拋物線y=x2﹣6x+9與直線y=x+3交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),拋物線的頂點(diǎn)為C,直線y=x+3與x軸交于點(diǎn)D.(1)求拋物線的頂點(diǎn)C的坐標(biāo)及A,B兩點(diǎn)的坐標(biāo);(2)將拋物線y=x2﹣6x+9向上平移1個單位長度,再向左平移t(t>0)個單位長度得到新拋物線,若新拋物線的頂點(diǎn)E在△DAC內(nèi),求t的取值范圍;(3)點(diǎn)P(m,n)(﹣3<m<1)是拋物線y=x2﹣6x+9上一點(diǎn),當(dāng)△PAB的面積是△ABC面積的2倍時,求m,n的值.23.(12分)如圖所示,△ABC和△ADE是有公共頂點(diǎn)的等腰直角三角形,∠BAC=∠DAE=90°,EC的延長線交BD于點(diǎn)P.(1)把△ABC繞點(diǎn)A旋轉(zhuǎn)到圖1,BD,CE的關(guān)系是(選填“相等”或“不相等”);簡要說明理由;(2)若AB=3,AD=5,把△ABC繞點(diǎn)A旋轉(zhuǎn),當(dāng)∠EAC=90°時,在圖2中作出旋轉(zhuǎn)后的圖形,PD=,簡要說明計算過程;(3)在(2)的條件下寫出旋轉(zhuǎn)過程中線段PD的最小值為,最大值為.24.(14分)如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點(diǎn)C(0,4),與x軸交于點(diǎn)A和點(diǎn)B,其中點(diǎn)A的坐標(biāo)為(﹣2,0),拋物線的對稱軸x=1與拋物線交于點(diǎn)D,與直線BC交于點(diǎn)E.(1)求拋物線的解析式;(2)若點(diǎn)F是直線BC上方的拋物線上的一個動點(diǎn),是否存在點(diǎn)F使四邊形ABFC的面積最大,若存在,求出點(diǎn)F的坐標(biāo)和最大值;若不存在,請說明理由;(3)平行于DE的一條動直線l與直線BC相較于點(diǎn)P,與拋物線相交于點(diǎn)Q,若以D、E、P、Q為頂點(diǎn)的四邊形是平行四邊形,求P點(diǎn)的坐標(biāo).
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】試題分析:本題考查了勾股定理、展開圖折疊成幾何體、正方形的性質(zhì);熟練掌握正方形的性質(zhì)和勾股定理,并能進(jìn)行推理計算是解決問題的關(guān)鍵.由正方形的性質(zhì)和勾股定理求出AB的長,即可得出結(jié)果.解:連接AB,如圖所示:根據(jù)題意得:∠ACB=90°,由勾股定理得:AB==;故選C.考點(diǎn):1.勾股定理;2.展開圖折疊成幾何體.2、B【解析】選項(xiàng)中,由圖可知:在,;在,,∴,所以A錯誤;選項(xiàng)中,由圖可知:在,;在,,∴,所以B正確;選項(xiàng)中,由圖可知:在,;在,,∴,所以C錯誤;選項(xiàng)中,由圖可知:在,;在,,∴,所以D錯誤.故選B.點(diǎn)睛:在函數(shù)與中,相同的系數(shù)是“”,因此只需根據(jù)“拋物線”的開口方向和“直線”的變化趨勢確定出兩個解析式中“”的符號,看兩者的符號是否一致即可判斷它們在同一坐標(biāo)系中的圖象情況,而這與“b”的取值無關(guān).3、C【解析】
根據(jù)反比例函數(shù)y=的圖象上點(diǎn)的坐標(biāo)特征,以及該函數(shù)的圖象的性質(zhì)進(jìn)行分析、解答.【詳解】A.反比例函數(shù)的圖像是雙曲線,正確;B.k=2>0,圖象位于一、三象限,正確;C.在每一象限內(nèi),y的值隨x的增大而減小,錯誤;D.∵ab=ba,∴若點(diǎn)(a,b)在它的圖像上,則點(diǎn)(b,a)也在它的圖像上,故正確.故選C.【點(diǎn)睛】本題主要考查反比例函數(shù)的性質(zhì).注意:反比例函數(shù)的增減性只指在同一象限內(nèi).4、B【解析】
根據(jù)題意可知,∠AOB=∠ABO=45°,∠DOC=30°,再根據(jù)平行線的性質(zhì)即可解答【詳解】根據(jù)題意可知∠AOB=∠ABO=45°,∠DOC=30°∵BO∥CD∴∠BOC=∠DCO=90°∴∠AOD=∠BOC-∠AOB-∠DOC=90°-45°-30°=15°故選B【點(diǎn)睛】此題考查三角形內(nèi)角和,平行線的性質(zhì),解題關(guān)鍵在于利用平行線的性質(zhì)得到角相等5、D【解析】當(dāng)k=1時,原方程不成立,故k≠1,當(dāng)k≠1時,方程為一元二次方程.∵此方程有兩個實(shí)數(shù)根,∴,解得:k≤1.綜上k的取值范圍是k<1.故選D.6、D【解析】如圖連接OB、OD;∵AB=CD,∴=,故①正確∵OM⊥AB,ON⊥CD,∴AM=MB,CN=ND,∴BM=DN,∵OB=OD,∴Rt△OMB≌Rt△OND,∴OM=ON,故②正確,∵OP=OP,∴Rt△OPM≌Rt△OPN,∴PM=PN,∠OPB=∠OPD,故④正確,∵AM=CN,∴PA=PC,故③正確,故選D.7、C【解析】
由等腰三角形的性質(zhì)可求∠ACD=70°,由平行線的性質(zhì)可求解.【詳解】∵AD=CD,∠1=40°,∴∠ACD=70°,∵AB∥CD,∴∠2=∠ACD=70°,故選:C.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì),平行線的性質(zhì),是基礎(chǔ)題.8、C【解析】試題解析:根據(jù)勾股定理得:斜邊為則該直角三角形能容納的圓形(內(nèi)切圓)半徑(步),即直徑為6步,故選C9、B【解析】
解:∵由作法可知直線l是線段AB的垂直平分線,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故選B.10、C【解析】試題解析:A、的主視圖是矩形,故A不符合題意;B、的主視圖是正方形,故B不符合題意;C、的主視圖是圓,故C符合題意;D、的主視圖是三角形,故D不符合題意;故選C.考點(diǎn):簡單幾何體的三視圖.二、填空題(共7小題,每小題3分,滿分21分)11、288°【解析】
母線長為15cm,高為9cm,由勾股定理可得圓錐的底面半徑;由底面周長與扇形的弧長相等求得圓心角.【詳解】解:如圖所示,在Rt△SOA中,SO=9,SA=15;則:設(shè)側(cè)面屬開圖扇形的國心角度數(shù)為n,則由得n=288°故答案為:288°.【點(diǎn)睛】本題利用了勾股定理,弧長公式,圓的周長公式和扇形面積公式求解.12、(,1)或(﹣,1)【解析】
根據(jù)直線和圓相切,則圓心到直線的距離等于圓的半徑,得點(diǎn)P的縱坐標(biāo)是1或-1.將P的縱坐標(biāo)代入函數(shù)解析式,求P點(diǎn)坐標(biāo)即可【詳解】根據(jù)直線和圓相切,則圓心到直線的距離等于圓的半徑,得點(diǎn)P的縱坐標(biāo)是1或-1.當(dāng)y=1時,x1-1=1,解得x=±當(dāng)y=-1時,x1-1=-1,方程無解故P點(diǎn)的坐標(biāo)為()或(-)【點(diǎn)睛】此題注意應(yīng)考慮兩種情況.熟悉直線和圓的位置關(guān)系應(yīng)滿足的數(shù)量關(guān)系是解題的關(guān)鍵.13、2【解析】
根據(jù)有理數(shù)的加法法則計算即可.【詳解】.故答案為:2.【點(diǎn)睛】本題考查有理數(shù)的加法計算,熟練掌握加法法則是關(guān)鍵.14、【解析】
過點(diǎn)A作AD⊥l1于D,過點(diǎn)B作BE⊥l1于E,根據(jù)同角的余角相等求出∠CAD=∠BCE,然后利用“角角邊”證明△ACD和△CBE全等,根據(jù)全等三角形對應(yīng)邊相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用銳角的正弦等于對邊比斜邊列式計算即可得解.【詳解】如圖,過點(diǎn)A作AD⊥l1于D,過點(diǎn)B作BE⊥l1于E,設(shè)l1,l2,l3間的距離為1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,∴AD=2,∴AC=,∴AB=AC=,∴sinα=,故答案為.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),銳角三角函數(shù)的定義,正確添加輔助線構(gòu)造出全等三角形是解題的關(guān)鍵.15、x≤1.【解析】
根據(jù)二次根式有意義的條件、分式有意義的條件列出不等式,解不等式即可.【詳解】依題意得:1﹣x≥0且x﹣3≠0,解得:x≤1.故答案是:x≤1.【點(diǎn)睛】本題主要考查了二次根式和分式有意義的條件,關(guān)鍵是掌握二次根式中的被開方數(shù)必須是非負(fù)數(shù),分式有意義的條件是分母不等于零.16、【解析】
由題意先求出DG和FG的長,再根據(jù)勾股定理可求得DF的長,然后再證明△DGF∽△DAI,依據(jù)相似三角形的性質(zhì)可得到DI的長,最后依據(jù)矩形的面積公式求解即可.【詳解】∵四邊形ABCD、CEFG均為正方形,∴CD=AD=3,CG=CE=5,∴DG=2,在Rt△DGF中,DF==,∵∠FDG+∠GDI=90°,∠GDI+∠IDA=90°,∴∠FDG=∠IDA.又∵∠DAI=∠DGF,∴△DGF∽△DAI,∴,即,解得:DI=,∴矩形DFHI的面積是=DF?DI=,故答案為:.【點(diǎn)睛】本題考查了正方形的性質(zhì),矩形的性質(zhì),相似三角形的判定和性質(zhì),三角形的面積,熟練掌握相關(guān)性質(zhì)定理與判定定理是解題的關(guān)鍵.17、12【解析】
根據(jù)圖象可知點(diǎn)P在BC上運(yùn)動時,此時BP不斷增大,而從C向A運(yùn)動時,BP先變小后變大,從而可求出線段長度解答.【詳解】根據(jù)題意觀察圖象可得BC=5,點(diǎn)P在AC上運(yùn)動時,BPAC時,BP有最小值,觀察圖象可得,BP的最小值為4,即BPAC時BP=4,又勾股定理求得CP=3,因點(diǎn)P從點(diǎn)C運(yùn)動到點(diǎn)A,根據(jù)函數(shù)的對稱性可得CP=AP=3,所以的面積是=12.【點(diǎn)睛】本題考查動點(diǎn)問題的函數(shù)圖象,解題的關(guān)鍵是注意結(jié)合圖象求出線段的長度,本題屬于中等題型.三、解答題(共7小題,滿分69分)18、(1)見解析(2)圖中陰影部分的面積為π.【解析】
(1)連接OC.只需證明∠OCD=90°.根據(jù)等腰三角形的性質(zhì)即可證明;(2)先根據(jù)直角三角形中30°的銳角所對的直角邊是斜邊的一半求出OD,然后根據(jù)勾股定理求出CD,則陰影部分的面積即為直角三角形OCD的面積減去扇形COB的面積.【詳解】(1)證明:連接OC.∵AC=CD,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC,∴∠2=∠A=30°.∴∠OCD=∠ACD-∠2=90°,即OC⊥CD,∴CD是⊙O的切線;(2)解:∠1=∠2+∠A=60°.∴S扇形BOC==.在Rt△OCD中,∠D=30°,∴OD=2OC=4,∴CD==.∴SRt△OCD=OC×CD=×2×=.∴圖中陰影部分的面積為:-.19、(1)CE=BD,CE⊥BD.(2)(1)中的結(jié)論仍然成立.理由見解析;(3).【解析】分析:(1)線段AD繞點(diǎn)A逆時針旋轉(zhuǎn)90°得到AE,根據(jù)旋轉(zhuǎn)的性質(zhì)得到AD=AE,∠BAD=∠CAE,得到△BAD≌△CAE,CE=BD,∠ACE=∠B,得到∠BCE=∠BCA+∠ACE=90°,于是有CE=BD,CE⊥BD.(2)證明的方法與(1)類似.(3)過A作AM⊥BC于M,EN⊥AM于N,根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠DAE=90°,AD=AE,利用等角的余角相等得到∠NAE=∠ADM,易證得Rt△AMD≌Rt△ENA,則NE=MA,由于∠ACB=45°,則AM=MC,所以MC=NE,易得四邊形MCEN為矩形,得到∠DCF=90°,由此得到Rt△AMD∽Rt△DCF,得,設(shè)DC=x,MD=1-x,利用相似比可得到CF=-x2+1,再利用二次函數(shù)即可求得CF的最大值.詳解:(1)①∵AB=AC,∠BAC=90°,∴線段AD繞點(diǎn)A逆時針旋轉(zhuǎn)90°得到AE,∴AD=AE,∠BAD=∠CAE,∴△BAD≌△CAE,∴CE=BD,∠ACE=∠B,∴∠BCE=∠BCA+∠ACE=90°,∴BD⊥CE;故答案為CE=BD,CE⊥BD.(2)(1)中的結(jié)論仍然成立.理由如下:如圖,∵線段AD繞點(diǎn)A逆時針旋轉(zhuǎn)90°得到AE,∴AE=AD,∠DAE=90°,∵AB=AC,∠BAC=90°∴∠CAE=∠BAD,∴△ACE≌△ABD,∴CE=BD,∠ACE=∠B,∴∠BCE=90°,即CE⊥BD,∴線段CE,BD之間的位置關(guān)系和數(shù)量關(guān)系分別為:CE=BD,CE⊥BD.(3)如圖3,過A作AM⊥BC于M,EN⊥AM于N,∵線段AD繞點(diǎn)A逆時針旋轉(zhuǎn)90°得到AE∴∠DAE=90°,AD=AE,∴∠NAE=∠ADM,易證得Rt△AMD≌Rt△ENA,∴NE=AM,∵∠ACB=45°,∴△AMC為等腰直角三角形,∴AM=MC,∴MC=NE,∵AM⊥BC,EN⊥AM,∴NE∥MC,∴四邊形MCEN為平行四邊形,∵∠AMC=90°,∴四邊形MCEN為矩形,∴∠DCF=90°,∴Rt△AMD∽Rt△DCF,∴,設(shè)DC=x,∵∠ACB=45°,AC=,∴AM=CM=1,MD=1-x,∴,∴CF=-x2+x=-(x-)2+,∴當(dāng)x=時有最大值,CF最大值為.點(diǎn)睛:本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后的兩個圖形全等,對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角,對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.也考查了等腰直角三角形的性質(zhì)和三角形全等及相似的判定與性質(zhì).20、(1)見解析;(2)S四邊形ADOE=.【解析】
(1)根據(jù)矩形的性質(zhì)有OA=OB=OC=OD,根據(jù)四邊形ADOE是平行四邊形,得到OD∥AE,AE=OD.等量代換得到AE=OB.即可證明四邊形AOBE為平行四邊形.根據(jù)有一組鄰邊相等的平行四邊形是菱形即可證明.(2)根據(jù)菱形的性質(zhì)有∠EAB=∠BAO.根據(jù)矩形的性質(zhì)有AB∥CD,根據(jù)平行線的性質(zhì)有∠BAC=∠ACD,求出∠DCA=60°,求出AD=.根據(jù)面積公式SΔADC,即可求解.【詳解】(1)證明:∵矩形ABCD,∴OA=OB=OC=OD.∵平行四邊形ADOE,∴OD∥AE,AE=OD.∴AE=OB.∴四邊形AOBE為平行四邊形.∵OA=OB,∴四邊形AOBE為菱形.(2)解:∵菱形AOBE,∴∠EAB=∠BAO.∵矩形ABCD,∴AB∥CD.∴∠BAC=∠ACD,∠ADC=90°.∴∠EAB=∠BAO=∠DCA.∵∠EAO+∠DCO=180°,∴∠DCA=60°.∵DC=2,∴AD=.∴SΔADC=.∴S四邊形ADOE=.【點(diǎn)睛】考查平行四邊形的判定與性質(zhì),矩形的性質(zhì),菱形的判定與性質(zhì),解直角三角形,綜合性比較強(qiáng).21、(1)150;(2)詳見解析;(3).【解析】
(1)用A類人數(shù)除以它所占的百分比得到調(diào)查的總?cè)藬?shù);(2)用總?cè)藬?shù)分別減去A、C、D得到B類人數(shù),再計算出它所占的百分比,然后補(bǔ)全兩個統(tǒng)計圖;(3)畫樹狀圖展示所有20種等可能的結(jié)果數(shù),再找出剛好抽到不同性別學(xué)生的結(jié)果數(shù),然后利用概率公式求解.【詳解】解:(1)15÷10%=150,所以共調(diào)查了150名學(xué)生;(2)喜歡“立定跳遠(yuǎn)”學(xué)生的人數(shù)為150﹣15﹣60﹣30=45,喜歡“立定跳遠(yuǎn)”的學(xué)生所占百分比為1﹣20%﹣40%﹣10%=30%,兩個統(tǒng)計圖補(bǔ)充為:(3)畫樹狀圖為:共有20種等可能的結(jié)果數(shù),其中剛好抽到不同性別學(xué)生的結(jié)果數(shù)為12,所以剛好抽到不同性別學(xué)生的概率【點(diǎn)睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.也考查了統(tǒng)計圖.22、(1)C(2,0),A(1,4),B(1,9);(2)<t<5;(2)m=,∴n=.【解析】分析:(Ⅰ)將拋物線的一般式配方為頂點(diǎn)式即可求出點(diǎn)C的坐標(biāo),聯(lián)立拋物線與直線的解析式即可求出A、B的坐標(biāo).(Ⅱ)由題意可知:新拋物線的頂點(diǎn)坐標(biāo)為(2﹣t,1),然后求出直線AC的解析式后,將點(diǎn)E的坐標(biāo)分別代入直線AC與AD的解析式中即可求出t的值,從而可知新拋物線的頂點(diǎn)E在△DAC內(nèi),求t的取值范圍.(Ⅲ)直線AB與y軸交于點(diǎn)F,連接CF,過點(diǎn)P作PM⊥AB于點(diǎn)M,PN⊥x軸于點(diǎn)N,交DB于點(diǎn)G,由直線y=x+2與x軸交于點(diǎn)D,與y軸交于點(diǎn)F,得D(﹣2,0),F(xiàn)(0,2),易得CF⊥AB,△PAB的面積是△ABC面積的2倍,所以AB?PM=AB?CF,PM=2CF=1,從而可求出PG=3,利用點(diǎn)G在直線y=x+2上,P(m,n),所以G(m,m+2),所以PG=n﹣(m+2),所以n=m+4,由于P(m,n)在拋物線y=x2﹣1x+9上,聯(lián)立方程從而可求出m、n的值.詳解:(I)∵y=x2﹣1x+9=(x﹣2)2,∴頂點(diǎn)坐標(biāo)為(2,0).聯(lián)立,解得:或;(II)由題意可知:新拋物線的頂點(diǎn)坐標(biāo)為(2﹣t,1),設(shè)直線AC的解析式為y=kx+b將A(1,4),C(2,0)代入y=kx+b中,∴,解得:,∴直線AC的解析式為y=﹣2x+1.當(dāng)點(diǎn)E在直線AC上時,﹣2(2﹣t)+1=1,解得:t=.當(dāng)點(diǎn)E在直線AD上時,(2﹣t)+2=1,解得:t=5,∴當(dāng)點(diǎn)E在△DAC內(nèi)時,<t<5;(III)如圖,直線AB與y軸交于點(diǎn)F,連接CF,過點(diǎn)P作PM⊥AB于點(diǎn)M,PN⊥x軸于點(diǎn)N,交DB于點(diǎn)G.由直線y=x+2與x軸交于點(diǎn)D,與y軸交于點(diǎn)F,得D(﹣2,0),F(xiàn)(0,2),∴OD=OF=2.∵∠FOD=90°,∴∠OFD=∠ODF=45°.∵OC=OF=2,∠FOC=90°,∴CF==2,∠OFC=∠OCF=45°,∴∠DFC=∠DFO+∠OFC=45°+45°=90°,∴CF⊥AB.∵△PAB的面積是△ABC面積的2倍,∴AB?PM=AB?CF,∴PM=2CF=1.∵PN⊥x軸,∠FDO=45°,∴∠DGN=45°,∴∠PGM=45°.在Rt△PGM中,sin∠PGM=,∴PG===3.∵點(diǎn)G在直線y=x+2上,P(m,n),∴G(m,m+2).∵﹣2<m<1,∴點(diǎn)P在點(diǎn)G的上方,∴PG=n﹣(m+2),∴n=m+4.∵P(m,n)在拋物線y=x2﹣1x+9上,∴m2﹣1m+9=n,∴m2﹣1m+9=m+4,解得:m=.∵﹣2<m<1,∴m=不合題意,舍去,∴m=,∴n=m+4=.點(diǎn)睛:本題是二次函數(shù)綜合題,涉及待定系數(shù)法,解方程,勾股定理,三角形的面積公式,綜合程度較高,需要學(xué)生綜合運(yùn)用所學(xué)知識.23、(1)BD,CE的關(guān)系是相等;(2)或;(3)1,1【解析】分析:(1)依據(jù)△ABC和△ADE是有公共頂點(diǎn)的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA,∠BAD=∠CAE,DA=EA,進(jìn)而得到△ABD≌△ACE,可得出BD=CE;(2)分兩種情況:依據(jù)∠PDA=∠AEC,∠PCD=∠ACE,可得△PCD∽△ACE,即可得到=,進(jìn)而得到PD=;依據(jù)∠ABD=∠PBE,∠BAD=∠BPE=90°,可得△BAD∽△BPE,即可得到,進(jìn)而得出PB=,PD=BD+PB=;(3)以A為圓心,AC長為半徑畫圓,當(dāng)CE在⊙A下方與⊙A相切時,PD的值最小;當(dāng)CE在在⊙A右上方與⊙A相切時,PD的值最大.在Rt△PED中,PD=DE?sin∠PED,因此銳角∠PED的大小直接決定了PD的大?。謨煞N情況進(jìn)行討論,即可得到旋轉(zhuǎn)過程中線段PD的最小值以及最大值.詳解:(1)BD,CE的關(guān)系是相等.理由:∵△ABC和△ADE是有公共頂點(diǎn)的等腰直角三角形,∠BAC=∠DAE=90°,∴BA=CA,∠BAD=∠CAE,DA=EA,∴△ABD≌△ACE,∴BD=CE;故答案為相等.(2)作出旋轉(zhuǎn)后的圖形,若點(diǎn)C在AD上,如圖2所示:∵∠EAC=90°,∴CE=,∵∠PD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 贛南衛(wèi)生健康職業(yè)學(xué)院《商務(wù)智能》2023-2024學(xué)年第二學(xué)期期末試卷
- 遼寧財貿(mào)學(xué)院《行政案例研討》2023-2024學(xué)年第二學(xué)期期末試卷
- 2024-2025學(xué)年山東省百校大聯(lián)考高三上學(xué)期12月月考?xì)v史試卷
- 吉林工業(yè)職業(yè)技術(shù)學(xué)院《媒介文化》2023-2024學(xué)年第二學(xué)期期末試卷
- 上??萍即髮W(xué)《航海學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 欽州幼兒師范高等專科學(xué)?!毒频攴?wù)營銷》2023-2024學(xué)年第二學(xué)期期末試卷
- 黃淮學(xué)院《地理學(xué)基本問題》2023-2024學(xué)年第二學(xué)期期末試卷
- 福建衛(wèi)生職業(yè)技術(shù)學(xué)院《小學(xué)文學(xué)與媒體教育》2023-2024學(xué)年第二學(xué)期期末試卷
- 集寧師范學(xué)院《跨境電子商務(wù)實(shí)務(wù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 浙江工業(yè)大學(xué)之江學(xué)院《管理心理學(xué)D1》2023-2024學(xué)年第二學(xué)期期末試卷
- T-CAME 59-2023 醫(yī)院消毒供應(yīng)中心建設(shè)與運(yùn)行管理標(biāo)準(zhǔn)
- 住院患者導(dǎo)管滑脫風(fēng)險評估表
- 2024屆高考政治一輪復(fù)習(xí)經(jīng)濟(jì)學(xué)名詞解釋
- 幼兒園大班音樂教案《我們多快樂》
- GB/T 22919.9-2024水產(chǎn)配合飼料第9部分:大口黑鱸配合飼料
- 《草船借箭》課本劇劇本-4篇
- 體育與兒童心理健康教育教材教學(xué)課件
- 婚姻家庭法(第三版)教案全套 項(xiàng)目1-9 婚姻家庭法概述-特殊婚姻家庭關(guān)系
- 可持續(xù)采購與供應(yīng)鏈管理
- 心肺復(fù)蘇及AED教學(xué)
- 電梯維保經(jīng)營計劃書
評論
0/150
提交評論