版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
ModuIe3
Problem3.1
(a)WhentheinputvariableistheforceF.TheinputvariableFandtheoutputvariableyarerelatedby
theequationobtainedbyequatingthemomentonthestick:
TakingLaplacetransforms,assuminginitialconditionstobezero,
F=-Y+-csY
33
leadingtothetransferfunction
y_31k
Fl+(4c/k)s
wherethetimeconstant「isgivenby
4c
T=——
k
(b)WhenF=0
Theinputvariableisx,thedisplacementofthetoppointoftheupperspring.Theinputvariablexand
theoutputvariableyarerelatedbytheequationobtainedbythemomentonthestick:
k(x—*)l=kl*+Z?c.2l
333dt
TakingLaplacetransforms,assuminginitialconditionstobezero,
3kX=(2k^4cs)Y
leadingtothetransferfunction
Y_3/2
Xl+(2c/A)s
wherethetimeconstant「isgivenby
2c
r
X=Pole.
X
上
2c4c
Problem3.2P54
Detenninetheoutputoftheopen-loopsystem
a
G(s)=-~~-
1+sT
totheinput
r(t)=t
Sketchbothinputandoutputasfunctionsoftime,anddeterminethesteady-stateerrorbetweentheinput
andoutput.ComparetheresultwiththatgivenbyFig3.7.
Solution:
Whiletheinputr(t)=t,useLaplacetransforms,
1
Inputr(s)=—
八/、a1TT
Outputc(s)=r(s)G(s)=—z=a—r1-
S.(1+Ts)sS+1
\T)
thetime-domainresponsebecomes
c(t)=at-aT
Problem3.3
3.3ThemasslessbarshowninFig.P3.3hasbeendisplacedadistancexoandissubjectedtoaunit
impulse3inthedirectionshown.Findtheresponseofthesystemfort>0andsketchtheresultasa
functionoftime.Confirmthesteady-stateresponseusingthefinal-valuetheorem.
Solution:
Theequationobtainedbyequatingtheforce:
kx0+ci0=
TakingLaplacetransforms,assuminginitialconditiontobezero,
KXo+CsXo=l
leadingtothetransferfunction
X_1_11
K+CS~C~^K
c
Thetime-domainresponsebecomes
八1
x(t)=—
Thesteady-stateresponseusingthefinal-valuetheorem:
「「111
limx(/)=lims=—
T8STOK+CssK
K(x0+x)+Ci=方⑺nKx0+X(K+Cs)=1;
1—Kx1—Ka1
?X=-n=
'Cs+KKC
—5-r1
K
/1—KX
x(t)=Q--ec
C
Accordingtothefinal-valuetheorem:
limx(r)=limy-X=lim-~~——=0
T8S->05->0KC.
—5+1
K
Problem3.4
Solution:
l.Iftheinputisaunitstep,then
R(s)=,
s
R(s)、]______C(s)、
->>
\-\-TS
leadingto,
1
C(s)=
(l+rs)s
takingtheinverseLaplacetransformgives,
-t
c(t)=\-er
asthesteady-stateoutputissaidtohavebeenachievedonceitiswithin1%ofthefinalvalue,wecan
solute"t"likethis,
-t
c(t)=\—eT=99%x1(thefinalvalueis1)
hence,
-/
er=°。1(thetimeconstantr=10s)
t-4.605xr=46.05s
2.thenumericalvalueofthenumeratorofthetransferfunctiondoesn'taffecttheanswer.
Seethisequation,
If
_C(s)_A
R(s)1+rs
then
?、A
C(5)=-
(1+7S)S
givingthetime-domainresponse
-i
c(r)=A(l-e7)
asthefinalvalueisA,thesteady-stateoutputisachievedwhen,
-t
C(0=A(1-^7)=AX99%
solutetheequation,
t=4.605T=46.05s
theresultmakenodifferentfromthatabove,sowesaidthatthenumericalvalueofthenumeratorofthe
transferfiinctiondoesn'taffecttheanswer.
Ifa<l,asthetimeincrease,thetwolineswon'tcross.Inthesteadystatetheoutputlagstheinputbyatime
bymorethanthetimeconstantT.
Thesteadyerrorwillbenegativeinfinite.
R(t)
C(t)
t
Ifa=l,asthetimeincrease,thetwolineswillbeparallel.ItisassameasFig3.7.
Ifa>l,asthetimeincrease,thetwolineswillcross.Inthesteadystatetheoutputlagstheinputbyatime
bylessthanthetimeconstantT.
Thesteadyerrorwillbepositiveinfinite.
R(t)
C(t)
t
Problem3.5
Solution:
615+6296145
R(s)=—+-,Y(s)==--++
52?(5s4-1)ss25s+1
.??y(£)=6f-29+29"〃5
sothesteady-stateerroris29(-30),Toconformtheresult:
limy(t)-lim⑹一29+29,)=8;
Z-?oc—oo
s+6
lim=limy(s)=lim/(s)=lim=00.
fT85—>0ST。S->0s(5s+1)
%=lime(f)=limS?E(S)=limS-[K(5)-R(S)]
iooSTO5->0
=-30
Therefore,thesolutionisbasicallycorrect.
Problem3.6
2夕+3y=x
sinceinputisofconstantamplitudeandvariablefrequency,itcanberepresentedas:
x=4*
asweknow,theoutputshouldbeasinusoidalsignalwiththesamefrequencyoftheinput,itcanalsobe
representedas:
y=
hence
2汝幾e""+3yd“'=4e"0
y。二i
Ao3+2汝
2w
(p=-tan
ItsDC(w—>0)valueis=UJ
Requirement
3
iJAJ=J_X⑷—?w=-
619+402232
.._i71
whilephaselagoftheinput:(p=—tan1=
4
Problem3.7
Onedefinitionofthebandwidthofasystemisthefrequencyrangeoverwhichtheamplitudeoftheoutput
signalisgreaterthan70%oftheinputsignalamplitudewhenasystemissubjectedtoaharmonicinput.
Findarelationshipbetweenthebandwidthandthetimeconstantofafirst-ordersystem.Whatisthephase
angleatthebandwidthfrequency?
Solution:
Fromtheequation3.41
r
A=.°>0.7/;,(1)
Jl+療一
andco>Q(2)
八/,L02
so0<6><
o1.02
sothebandwidthB(o=
fromtheequation3.43
--
thephaseangleZc0=-tanCOT-tan1.02=一
Problem3.8
3.8Solution
AccordingtogeneralizedtransferfunctionofFirst-OrderFeedbackSystems
cKGK
R1+KGH1+K+TS
?thesteadystateoftheoutputofthissystemis2.5V.
.C2.51i
??ifs—>0,>=—.Fromthis,wecangetthevalueofK,thatisK=一.
/?1043
Sinceweknowthatthestepinputis10V,takingLaplacetransforms,theinputis—.
S
Thentheoutputisfollowed
TakingreverseLaplacetransforms,
C=2.5-2.5e%r=2.5(1-e-4,/3r)
Fromthefigure,wecanseethatwhenthetimereached3s,thevalueofoutputis86%ofthesteadystate.So
wecanknow
——=>7=一
l—l"3r=0864占=>7=2
31
Thetransferfunctionis
12+8s4+6s
Let12+8s=0,wecangetthepole,thatisS=-1.5—2/3
Problem3.9Page55
Solution:
Thetransferfunctioncanberepresented,
1+sRC
Leadingtothefinaltransferfunction,
,1+3SRC+(SRC)2
Andthereason:
thesecondsimplelagcompensationnetworkcanberegardedastheloadofthefirstone,andaccordingto
LoadEffect,theloadaffectstheprimaryrelationship;sothetransferfunctionofthecombinationdoesn't
equaltheproductofthetwoindividuallagtransferfunction
ModuIe4
Problem4.1
4.1Theclosed-looptransferfunctionis
10
C—S(S+6)_10
R—l+Tvfc-52+65+10
DIJiVf
Comparingwiththegeneralizedsecond-ordersystem,weget
w?=Vio
2EWn=6
r3V10
10
2
WdJVn>Jl-E=1
Problem4.3
4.3Consideringthespringrisexandthemassrisey.UsingNewton'ssecondlawofmotion
、d(x-y)
my=K(x-y)+c————
dt
TakingLaplacetransfbnns,assumingzeroinitialconditions
mYs2=KX-KY+csX-csY
resultinginthetransferfuncitionwhere
y_CS+K
Xms2+cs+K
And
0=-y/mk
2
c=1.26*105
Problem4.4
Solution:
Theclosed-looptransferfunctionis
£_1_
J§*S+2=J
RD-Kk1SC2+I2OSC+K
1H?
SS+2
Comparingtheclosed-looptransferfunctionwiththegeneralizedform,
Rs?++①;
itisseenthat
K=(o“
Andthat
2g=2;六
Thepercentageovershootistherefore
P。=100e向=100J
Where
PO<10%
Whensolved,gives1.2<AT(2.86)
WhenKtakesthevalue1.2,thepolesofthesystemaregivenby
1+2s+1.2=0
Whichgives
5=-l±0.45js=-l±1.36j
-0.45
Problem4.5
4.5Aunity-feedbackcontrolsystemhasthefbruzard-pathtransferfunction
S(s+10)
Findtheclosed-looptransferfunction,anddevelopexpressionsforthedampingratio
AnddampednaturalfrequencyintermofKPlottheclosed-looppolesonthecomplex
PlaneforAT=0,10,25,50,lOO.ForeachvalueofKcalculatethecorrespondingdamping
ratioanddampednaturalfrequency.Whatconclusionscanyoudrawfromtheplot?
Solution:
KG(S)
SubstituteG(s)=intothefeedbackformula:①(s)=.Andinunitfeedbacksystem
s(s+10)1+〃G(S)
H=l.
K
Resultin:0(s)=
s2+10.v+^
Sothedampednaturalfrequency,
105
dampingratioQ=--j==.
Thecharacteristicequationiss-+10S+K=0.
WhenK<25,s=-5±,25-K;
WhileK>25,s=—5土ijK-25;
Thevalueof①八and《〔correspondingtoKarelistedasfollows.
K0102550100
-5+V15-5+573/
Pole1S}0-5-5+5i
-5-V15-5-5y/3i
Pole2S2-10-5-5-5i
0Vio55>/210
700后10.5
PlotthecomplexplaneforeachvalueofK:
'im
X-5+5-73:axis
k=100
X-5+5±
k=50
-io-5--s-5+V15
0
XA八)\/real
k=0
k=10k=25k=10k=0axis
Xk=50-5-5i
Xk=i0O-5-
Wecanconcludefromtheplot.
Whenk<25,polesdistributeontherealaxis.ThesmallervalueofKis,thefartherpolesisawayfrompoint
-5.ThelargervalueofKis,thenearerpolesisawayfrompoint-5.
Whenk>25,polesdistributeawayfromtherealaxis.ThesmallervalueofKis,thefurther(nearer)polesis
awayfrompoint-5.ThelargervalueofKis,thenearer(farther)polesisawayfrompoint-5.Andallthe
polesdistributeonalineparallelsimaginaryaxis,intersectrealaxisonthepole-5.
Problem4.6
..v,1fdv.
R+lr+l-FIV,dt+C
RLCRL)bdt
o
TakingLaplacetransforms,assumingzeroinitialconditions,reducesthisequationto
VhRLs
/QLS+7?+RLCs?
Sincetheinputisaconstantcurrentio,so
then,
RL
C(s)=匕
Ls+R+RLCs~
Applyingthefinal-valuetheoremyields
limc(f)=limsC(s)=0
38SfO、J
indicatingthatthesteady-statevoltageacrossthecapacitorCeventuallyreachesthezeroresultinginfull
error.
Problem4.7
4.7Provethatforanunderdampedsecond-ordersystemsubjecttoastepinput,thepercentage
overshootabovethesteady-stateoutputisafunctiononlyofthedampingratio.
Fig.4.7
Solution
Theoutputcanbegivenby
s(§2+
]_________s+2應(yīng)(1)
1(S+血)2+%2(y)
thedampednaturalfrequency①dcanbedefinedas
①d=①“Ji-L
⑵
substitutingaboveresultsin
s+3”______________
22⑶
'S(S+40“>+02(5+^)+<y(/
takingtheinversetransformyields
,一他,
c(f)=l一sm(a)dt+。)
where(4)
themaximumoutputis
叫)=1sin(叫+*
兀兀⑸
I-=-
P%C0n^-^
sothemaximumis
也)=1+產(chǎn)/£
thepercentageovershootistherefore
PO=100eWG
Problem4.8
Solutionto4.8:
Consideringthemassmdisplacedadistancexfromitsequilibriumposition,
thefree-bodydiagramofthemasswillbeasshownasfollows.
UsingNewton'ssecondlawofmotion,
p—2kx-ex=mx
mx+at+2kx=p
TakingLaplacetransforms,assumingzeroinitialconditions,
X(ms2+cs+2k)=P
resultsinthetransferfunction
X/P=(1/m)/(s2+(c/m)s+2k/m)
=(2/k)(2k/m)(s2+(c/m)s+2k/m)
Aswesee
X(ms2+cs+2k)=P
AsPisconstant
1
SoXoc——.
ms+cs+2k
Whens=——=—6.25x105
2m
(ms2+cs+2k]=105
io4
Xa=k?!?/p>
Thisisasecond-ordertransferfunctionwhere
2
(vn=2k/m
and
-c!2wnm=c/2y12km
Thedampednaturalfrequencyisgivenby
0=①小-U=MklmZ-c218km
=y)2k/m-(c/2m)2
Usingthegivendata,
co,,=V2X5X104/2X106=V^05=0.2236
250
=2.7950x1O-4
-2X2X106XV^05
織=0.2236xjl-(2.7950x1()-4)2=0.2236
Withthesedatawecandrawapicture
71
T,=—=14.050
3d
-=16000
3
Ts=4.6rf=73600
X112k/in1%
Pms?+cs+2k2k^,2+5+mcod(s+血)+G;
mm
甘山恢丁康片cc
其中叫二匕.而‘叫氣盛"兩‘血=不
-£-儂"
/.x=?Psina)dt
mcod
???K=,,=篇e「口'"(—3"sincodtp+%cos*)=0
tan①/p-~~=>*)=7.03=>xp-0.02m
Problem4.10
4.10
solution:
ThesystemissimilartotheoneinthebookonPAGE58toPAGE63.Thedifferenceistheconnectionof
thespring.Sothetransferfunctionis
a=
a$2+27%普+/2
仇=k&k“,N
2
ed_RJs+RCs+(R+kakmN)kp
22
J=NJm+J?C=Ncm+cl-,
N43旦
N,“助仇
_/K?K,
W"~vNJ'R
dampingratio
ButthevalueofJisdifferent,becausethereisaspringconnected.
"N2N2
Becauseoffinal-valuetheorem,
a
a27
ModuIe5
Problem5.4
5.4Theclosed-looptransferfunctionofthesystemmaybewrittenas
10K
c=S2+6S+10=_K_10(K+l)
R]I10K1+K52+6S+10A:+10
S2+65+10
Theclosed-looppolesarethesolutionsofthecharacteristicequation
旦旺叵一土后加j
2
叱,=J10(l+K)
2EjlO(l+K)=6
,10(1+K)
Inordertostudythestabilityofthesystem,thebehavioroftheclosed-looppoleswhenthegainK
increasesfromzerotoinfintewillbeobserved.Sowhen
&=2E=—S=-3土后J
'10
K,=10E=S=-3±V10TJ
2110
K、=20E=^^-S=-3±V201J
370
雙擊下面可以看到原圖
Re
Problem5.5
Solution
Theclosed-looptransferfunctionis
K
Ri+3(")S2+K(1+〃S)d+oKs+K
s2
Comparingtheclosed-looptransferfunctionwiththegeneralizedform,
C=成
Leadingto
CDn=y[K
ea尿
Thepercentageovershootistherefore
Y冗
PO=100e貨=40%
Producingtheresult
1=0.869(0.28)
Andthepeaktime
Leadingto
%=1.586(0.82)
Problem5.7
5.7ProvethattherisetimeTrofasecond-ordersystemwithaunitstepinputisgivenby
1CD(i1-Jl二42
「=£tan」嬴=-tan1'—~一
Plottheriseagainstthedampingratio.
Solution:
Accordingto(4.33):c(t)=l-e(cos(odt+."sincodt).4.33
Whent=T.,c(t)=l.substituec(t)=1into(4.33)
Producingtheresult
1(D(l1-Jl-42
Tr=mtan」嬴=晟tan-1-[-
Plottherisetimeagainstthedampingratio:
Tr!s
Problem5.9
Solutionto5.9:
Asweknowthatthesystemistheopen-looptransferfunctionofaunity-feedbackcontrolsystem.
SoGH(S)=G(S)
Givenas
GH。);^~~-
'"2)(S+5)
Theclose-looptransferfunctionofthesystemmaybewrittenas
As)_G(s)_4K
R''l+GH(s)(s-2)(s+5)+4K
Thecharacteristicequationis
(s—2)(s+5)+4K=0ns2+3s+4K—10=0
AccordingtotheRouth'smethod,theRouth'sarraymustbeformedasfollow
5214K-10
s30
5°4K-10
Forthereisnoclosed-looppolestotherightoftheimaginaryaxis
4K-1020nKN2.5
Giventhat=0.5
CDn—J4K-10
3
0=-.,nK=4.75
2J4K-10
WhenK=0,therootare
s=+2,?5
Accordingtothecharacteristicequation,thesolutionsare
whileK<3.0625,wehaveoneortwosolutions,allareintegralnumber.
Orwewillhavesolutionswithimaginarynumber.
Sowecandraw
□Open-looppoles
Closed-looppoles
Problems.10
5.10
solution:
<=0.6
w=2rad/s
accordingto
e-Cw-'1
(c)=l/sin(叼+。)=7
2
e-12,?sin(l.6/+^)=0.4tan0=g
finally,tisdelaytime:
ta1.235(0.67)
ModuIe6
Problem6.3
FirstweassumethedisturbanceDtobezero:
e=R-C
C^K-e---
5+1S
e_s(s+l)
Hence:
元-10K+s(s+l)
ThenwesettheinputRtobezero:
C=(Ke+D)?——=-en—=-
s(s+l)D10K+s(s+l)
Addingthesetworesultstogether:
s(s+l)n10n
10K+s(s+l)10K+s(s+l)
R(S)W;*
_5+110_5-9
e―To&+7(7+i)―io^7+7(7+i)―ioo5+?(5+i)
thesteady-stateerror:
”—9vv—9
=lims?e=lim--4——=lim=-0.09
STOI。/+$2+]oosiOS+S+100
Problem6.4
Detenninethedisturbancerejectionratio(DRR)forthesystemshowninFigP.6.4
+
fig.P.6.4
solution:
fromthediagramwecanknow:
&=0.2
R
(=1
c=0.05
sowecangetthat
==1+£A_=1+22rl=5
SgJcLcR0.05
2],soc=0.025,DRR=9
0.15+0.050.05s+0.025
Problem6.5
6.5Solution
Forthepurposesofdeterminingthesteady-stateerrorofthesystem,weshouldgettoknowtheeffect
oftheinputandthedisturbancealongwhentheotherwillbeassumedtobezero.
Firsttosimplifytheblockdiagramtothefollowingpatter:
Allowingthetransferfunctionfromtheinputtotheoutputpositiontobewrittenas
■=20
2
edJS+2S+20
e200:20*2一40
01-222
Js+2.V+20廣js+2s+20s-(Js+2s+20)$
AccordingtotheequationE=R-C:
e")=解網(wǎng)⑸—織切=翹儂—不言而)]寸巴曲卷
0.2
問題;
1.系統(tǒng)型為2,對于階躍輸入,穩(wěn)態(tài)誤差為0.
2.終值定理寫的不對。
andthetransferfunctionfromtheinputtotheoutputpositiontobewrittenas
1
TdJs?+2s+20
Q-___________T二_______________
02J?+25+20"S(J$2+2S+20)
Accordingtotheequatione="c
1-1
%,⑸=媽[一%⑸]=媽[一百+25+201=/+2S+20-0.05
s。thestateerrorshouldbe:%=+e對=0.2-0.05=0.15
Problem6.9
Solution:
Thetransferfunctionoftheinsideloopis
10
fJ-5-(-5---+--1--)---1-0
1+lOZs-$2+(10&+1)5
s(s+1)
Andthetransferfunctionofthewholesystemis
C__________10
J-52+(10^+1)5+10
Wegetthevalueof叼and,fromtheaboveequation:
wn=Vio
10)+1
_2>/10
AndthevalueofPOis
P0=100e-s/席
Accordingtotheformerequation:
PO=10%n?=0.6=
2V10
Thefinalresultis
kJ2布-1=028
10
ModuIe7
Problem7.5
Determinetheclosed-looptransferfunctionandthepercentageovershootfbrasystemdescribedby
thepole-zeromapshowninFig.P7.5,assumingthesteadystategainoftheclosed-looptransferfunctionis
unity.
頓1
(a)
-i
SOLUTION:
Fromthefigure,wecangettheBodeformfunction
C_1+sr
Rs~/co~+2s/co
。n+1
]_電、=J(_2/+F=#)—
3
1/r_3
,=0.894a0.9
菽=2
FromFig.7.6onpage117,wecanseethat,undertheeffectofclosed-loopzero,while0=0.9and
/=—,thePercentovershootislessthan1%.
2
C1
R-(1+57)。2/d+2公/%+1)
—l/r=-3=>r=l/3
3'=2,?y?=V5?2.24n4=2/石。0.894,
C15
R(s+3)(52+4s+5)
Problem7.7
7.7Asystemhasatransferfunctionthatmaybewritteninthefonn
C_1
R(s+l)($2+〃s+b)
Itisknownthatforthesecond-orderterm,。=0.2.Investigationoftheunitstepresponserevealsan
overshootof5%oftheinput.Calculatetheconstantsaandb,plottheclosed-loopsystempolesonthe
complexplane,andcommentonthereducabilityofthesystem.
Solution:
Thethird-ordersystemwith(=0.2wouldhaveanovershootof5%iftheadditionalpolewerelocated
suchthattheparameter(3=2.25.
then
£=4==2.25(看圖似不超過2.1)
初0.2例
Thetime-domainresponseparametersmaybecalculateas
(on=4rad/sand7=0.2
a=23口=1.6andb=*=16
thenwewillplotclosed-loopsystempolesonthecomplexplane:
Theotherrealpolecannotbeneglected,theeffectofthereal-axispolecontributiontotheresponsewillbe
tomakeitmoresluggish.
Problem7.9
Solution:
Examinationoftheplantrevealsthefollowingtime-domainparameters:
co=2rad/sJ=1—=/?;
nT
ExaminingFig7.6,thesystemwithJ=1wouldhaveanovershootof5%ifthezeroislocatedsuchthat
theparameter/=0.6.Thisrelatedtotheparameterbby
y2
y=0.6==一
她b
b=\.2
Iftheinputisaunitstep,thesteady-stateout
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 游戲經(jīng)銷商協(xié)議
- 建筑綠化凈化施工合同
- 橋梁照明系統(tǒng)安裝合同
- 預(yù)付款合同管理要點(diǎn)
- 建筑工程技術(shù)建造師聘用合同
- 云計算行業(yè)試用期合同簽訂策略
- 生物醫(yī)藥工廠勞動合同模板
- 兒童醫(yī)院護(hù)士錄用合同模板
- 電子產(chǎn)品租賃合同協(xié)議書
- 兒童科學(xué)館裝修協(xié)議
- 國開汽車學(xué)院《項(xiàng)目管理》形考作業(yè)1-4答案
- 歌唱語音智慧樹知到期末考試答案章節(jié)答案2024年齊魯師范學(xué)院
- 健康膳食解碼智慧樹知到期末考試答案章節(jié)答案2024年佳木斯大學(xué)
- 《中國心力衰竭診斷和治療指南2024》解讀
- 2023年肝糖原的提取鑒定與定量實(shí)驗(yàn)報告
- 年產(chǎn)10噸功能益生菌凍干粉的工廠設(shè)計改
- 2.秸稈和落葉的有效處理課件
- 一般行業(yè)建設(shè)項(xiàng)目安全條件和設(shè)施綜合分析報告
- 四年級體育與健康上冊復(fù)習(xí)題與答案
- 注塑機(jī)冷卻水系統(tǒng)工程
- 神經(jīng)遞質(zhì)與受體
評論
0/150
提交評論