山東省平邑縣曾子學(xué)校2021-2022學(xué)年高三3月份模擬考試數(shù)學(xué)試題含解析_第1頁
山東省平邑縣曾子學(xué)校2021-2022學(xué)年高三3月份模擬考試數(shù)學(xué)試題含解析_第2頁
山東省平邑縣曾子學(xué)校2021-2022學(xué)年高三3月份模擬考試數(shù)學(xué)試題含解析_第3頁
山東省平邑縣曾子學(xué)校2021-2022學(xué)年高三3月份模擬考試數(shù)學(xué)試題含解析_第4頁
山東省平邑縣曾子學(xué)校2021-2022學(xué)年高三3月份模擬考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若(1+2ai)i=1-bi,其中a,b∈R,則|a+bi|=().A. B. C. D.52.函數(shù)的圖象如圖所示,則它的解析式可能是()A. B.C. D.3.若雙曲線的焦距為,則的一個(gè)焦點(diǎn)到一條漸近線的距離為()A. B. C. D.4.已知六棱錐各頂點(diǎn)都在同一個(gè)球(記為球)的球面上,且底面為正六邊形,頂點(diǎn)在底面上的射影是正六邊形的中心,若,,則球的表面積為()A. B. C. D.5.已知向量,,且與的夾角為,則()A. B.1 C.或1 D.或96.若滿足約束條件則的最大值為()A.10 B.8 C.5 D.37.已知雙曲線的一條漸近線方程為,則雙曲線的離心率為()A. B. C. D.8.()A. B. C. D.9.若函數(shù)在處取得極值2,則()A.-3 B.3 C.-2 D.210.已知函數(shù),,若存在實(shí)數(shù),使成立,則正數(shù)的取值范圍為()A. B. C. D.11.劉徽(約公元225年-295年),魏晉期間偉大的數(shù)學(xué)家,中國古典數(shù)學(xué)理論的奠基人之一他在割圓術(shù)中提出的,“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術(shù)的核心思想是將一個(gè)圓的內(nèi)接正n邊形等分成n個(gè)等腰三角形(如圖所示),當(dāng)n變得很大時(shí),這n個(gè)等腰三角形的面積之和近似等于圓的面積,運(yùn)用割圓術(shù)的思想,得到的近似值為()A. B. C. D.12.已知函數(shù)的圖象如圖所示,則可以為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)滿足約束條件,則目標(biāo)函數(shù)的最小值為_.14.已知向量,,,則_________.15.已知數(shù)列與均為等差數(shù)列(),且,則______.16.“”是“”的__________條件.(填寫“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若存在,使得不等式對(duì)一切恒成立,求實(shí)數(shù)的取值范圍.18.(12分)已知,求的最小值.19.(12分)已知橢圓的右焦點(diǎn)為,直線被稱作為橢圓的一條準(zhǔn)線,點(diǎn)在橢圓上(異于橢圓左、右頂點(diǎn)),過點(diǎn)作直線與橢圓相切,且與直線相交于點(diǎn).(1)求證:.(2)若點(diǎn)在軸的上方,當(dāng)?shù)拿娣e最小時(shí),求直線的斜率.附:多項(xiàng)式因式分解公式:20.(12分)在中,、、的對(duì)應(yīng)邊分別為、、,已知,,.(1)求;(2)設(shè)為中點(diǎn),求的長.21.(12分)如圖,在三棱柱中,平面ABC.(1)證明:平面平面(2)求二面角的余弦值.22.(10分)某大學(xué)生在開學(xué)季準(zhǔn)備銷售一種文具套盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開學(xué)季內(nèi),每售出1盒該產(chǎn)品獲利50元,未售出的產(chǎn)品,每盒虧損30元.根據(jù)歷史資料,得到開學(xué)季市場需求量的頻率分布直方圖,如圖所示.該同學(xué)為這個(gè)開學(xué)季進(jìn)了160盒該產(chǎn)品,以(單位:盒,)表示這個(gè)開學(xué)季內(nèi)的市場需求量,(單位:元)表示這個(gè)開學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤.(1)根據(jù)直方圖估計(jì)這個(gè)開學(xué)季內(nèi)市場需求量的平均數(shù)和眾數(shù);(2)將表示為的函數(shù);(3)以需求量的頻率作為各需求量的概率,求開學(xué)季利潤不少于4800元的概率.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】試題分析:由已知,-2a+i=1-bi,根據(jù)復(fù)數(shù)相等的充要條件,有a=-,b=-1所以|a+bi|=,選C考點(diǎn):復(fù)數(shù)的代數(shù)運(yùn)算,復(fù)數(shù)相等的充要條件,復(fù)數(shù)的模2.B【解析】

根據(jù)定義域排除,求出的值,可以排除,考慮排除.【詳解】根據(jù)函數(shù)圖象得定義域?yàn)?,所以不合題意;選項(xiàng),計(jì)算,不符合函數(shù)圖象;對(duì)于選項(xiàng),與函數(shù)圖象不一致;選項(xiàng)符合函數(shù)圖象特征.故選:B【點(diǎn)睛】此題考查根據(jù)函數(shù)圖象選擇合適的解析式,主要利用函數(shù)性質(zhì)分析,常見方法為排除法.3.B【解析】

根據(jù)焦距即可求得參數(shù),再根據(jù)點(diǎn)到直線的距離公式即可求得結(jié)果.【詳解】因?yàn)殡p曲線的焦距為,故可得,解得,不妨??;又焦點(diǎn),其中一條漸近線為,由點(diǎn)到直線的距離公式即可求的.故選:B.【點(diǎn)睛】本題考查由雙曲線的焦距求方程,以及雙曲線的幾何性質(zhì),屬綜合基礎(chǔ)題.4.D【解析】

由題意,得出六棱錐為正六棱錐,求得,再結(jié)合球的性質(zhì),求得球的半徑,利用表面積公式,即可求解.【詳解】由題意,六棱錐底面為正六邊形,頂點(diǎn)在底面上的射影是正六邊形的中心,可得此六棱錐為正六棱錐,又由,所以,在直角中,因?yàn)?,所以,設(shè)外接球的半徑為,在中,可得,即,解得,所以外接球的表面積為.故選:D.【點(diǎn)睛】本題主要考查了正棱錐的幾何結(jié)構(gòu)特征,以及外接球的表面積的計(jì)算,其中解答中熟記幾何體的結(jié)構(gòu)特征,熟練應(yīng)用球的性質(zhì)求得球的半徑是解答的關(guān)鍵,著重考查了空間想象能力,以及推理與計(jì)算能力,屬于中檔試題.5.C【解析】

由題意利用兩個(gè)向量的數(shù)量積的定義和公式,求的值.【詳解】解:由題意可得,求得,或,故選:C.【點(diǎn)睛】本題主要考查兩個(gè)向量的數(shù)量積的定義和公式,屬于基礎(chǔ)題.6.D【解析】

畫出可行域,將化為,通過平移即可判斷出最優(yōu)解,代入到目標(biāo)函數(shù),即可求出最值.【詳解】解:由約束條件作出可行域如圖,化目標(biāo)函數(shù)為直線方程的斜截式,.由圖可知當(dāng)直線過時(shí),直線在軸上的截距最大,有最大值為3.故選:D.【點(diǎn)睛】本題考查了線性規(guī)劃問題.一般第一步畫出可行域,然后將目標(biāo)函數(shù)轉(zhuǎn)化為的形式,在可行域內(nèi)通過平移找到最優(yōu)解,將最優(yōu)解帶回到目標(biāo)函數(shù)即可求出最值.注意畫可行域時(shí),邊界線的虛實(shí)問題.7.B【解析】

由題意得出的值,進(jìn)而利用離心率公式可求得該雙曲線的離心率.【詳解】雙曲線的漸近線方程為,由題意可得,因此,該雙曲線的離心率為.故選:B.【點(diǎn)睛】本題考查利用雙曲線的漸近線方程求雙曲線的離心率,利用公式計(jì)算較為方便,考查計(jì)算能力,屬于基礎(chǔ)題.8.D【解析】

利用,根據(jù)誘導(dǎo)公式進(jìn)行化簡,可得,然后利用兩角差的正弦定理,可得結(jié)果.【詳解】由所以,所以原式所以原式故故選:D【點(diǎn)睛】本題考查誘導(dǎo)公式以及兩角差的正弦公式,關(guān)鍵在于掌握公式,屬基礎(chǔ)題.9.A【解析】

對(duì)函數(shù)求導(dǎo),可得,即可求出,進(jìn)而可求出答案.【詳解】因?yàn)?所以,則,解得,則.故選:A.【點(diǎn)睛】本題考查了函數(shù)的導(dǎo)數(shù)與極值,考查了學(xué)生的運(yùn)算求解能力,屬于基礎(chǔ)題.10.A【解析】

根據(jù)實(shí)數(shù)滿足的等量關(guān)系,代入后將方程變形,構(gòu)造函數(shù),并由導(dǎo)函數(shù)求得的最大值;由基本不等式可求得的最小值,結(jié)合存在性問題的求法,即可求得正數(shù)的取值范圍.【詳解】函數(shù),,由題意得,即,令,∴,∴在上單調(diào)遞增,在上單調(diào)遞減,∴,而,當(dāng)且僅當(dāng),即當(dāng)時(shí),等號(hào)成立,∴,∴.故選:A.【點(diǎn)睛】本題考查了導(dǎo)數(shù)在求函數(shù)最值中的應(yīng)用,由基本不等式求函數(shù)的最值,存在性成立問題的解法,屬于中檔題.11.A【解析】

設(shè)圓的半徑為,每個(gè)等腰三角形的頂角為,則每個(gè)等腰三角形的面積為,由割圓術(shù)可得圓的面積為,整理可得,當(dāng)時(shí)即可為所求.【詳解】由割圓術(shù)可知當(dāng)n變得很大時(shí),這n個(gè)等腰三角形的面積之和近似等于圓的面積,設(shè)圓的半徑為,每個(gè)等腰三角形的頂角為,所以每個(gè)等腰三角形的面積為,所以圓的面積為,即,所以當(dāng)時(shí),可得,故選:A【點(diǎn)睛】本題考查三角形面積公式的應(yīng)用,考查閱讀分析能力.12.A【解析】

根據(jù)圖象可知,函數(shù)為奇函數(shù),以及函數(shù)在上單調(diào)遞增,且有一個(gè)零點(diǎn),即可對(duì)選項(xiàng)逐個(gè)驗(yàn)證即可得出.【詳解】首先對(duì)4個(gè)選項(xiàng)進(jìn)行奇偶性判斷,可知,為偶函數(shù),不符合題意,排除B;其次,在剩下的3個(gè)選項(xiàng),對(duì)其在上的零點(diǎn)個(gè)數(shù)進(jìn)行判斷,在上無零點(diǎn),不符合題意,排除D;然后,對(duì)剩下的2個(gè)選項(xiàng),進(jìn)行單調(diào)性判斷,在上單調(diào)遞減,不符合題意,排除C.故選:A.【點(diǎn)睛】本題主要考查圖象的識(shí)別和函數(shù)性質(zhì)的判斷,意在考查學(xué)生的直觀想象能力和邏輯推理能力,屬于容易題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據(jù)滿足約束條件,畫出可行域,將目標(biāo)函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時(shí)的點(diǎn),此時(shí),目標(biāo)函數(shù)取得最小值.【詳解】由滿足約束條件,畫出可行域如圖所示陰影部分:將目標(biāo)函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時(shí)的點(diǎn)此時(shí),目標(biāo)函數(shù)取得最小值,最小值為故答案為:-1【點(diǎn)睛】本題主要考查線性規(guī)劃求最值,還考查了數(shù)形結(jié)合的思想方法,屬于基礎(chǔ)題.14.2【解析】

由得,算出,再代入算出即可.【詳解】,,,,解得:,,則.故答案為:2【點(diǎn)睛】本題主要考查了向量的坐標(biāo)運(yùn)算,向量垂直的性質(zhì),向量的模的計(jì)算.15.20【解析】

設(shè)等差數(shù)列的公差為,由數(shù)列為等差數(shù)列,且,根據(jù)等差中項(xiàng)的性質(zhì)可得,,解方程求出公差,代入等差數(shù)列的通項(xiàng)公式即可求解.【詳解】設(shè)等差數(shù)列的公差為,由數(shù)列為等差數(shù)列知,,因?yàn)?所以,解得,所以數(shù)列的通項(xiàng)公式為,所以.故答案為:【點(diǎn)睛】本題考查等差數(shù)列的概念及其通項(xiàng)公式和等差中項(xiàng);考查運(yùn)算求解能力;等差中項(xiàng)的運(yùn)用是求解本題的關(guān)鍵;屬于基礎(chǔ)題.16.充分不必要【解析】

由余弦的二倍角公式可得,即或,即可判斷命題的關(guān)系.【詳解】由,所以或,所以“”是“”的充分不必要條件.故答案為:充分不必要【點(diǎn)睛】本題考查命題的充分條件與必要條件的判斷,考查余弦的二倍角公式的應(yīng)用.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ).(Ⅱ).【解析】

(Ⅰ)時(shí),根據(jù)絕對(duì)值不等式的定義去掉絕對(duì)值,求不等式的解集即可;(Ⅱ)不等式的解集為,等價(jià)于,求出在的最小值即可.【詳解】(Ⅰ)當(dāng)時(shí),時(shí),不等式化為,解得,即時(shí),不等式化為,不等式恒成立,即時(shí),不等式化為,解得,即綜上所述,不等式的解集為(Ⅱ)不等式的解集為對(duì)任意恒成立當(dāng)時(shí),取得最小值為實(shí)數(shù)的取值范圍是【點(diǎn)睛】本題考查了絕對(duì)值不等式的解法與應(yīng)用問題,也考查了函數(shù)絕對(duì)值三角不等式的應(yīng)用問題,屬于常規(guī)題型.18.【解析】

討論和的情況,然后再分對(duì)稱軸和區(qū)間之間的關(guān)系,最后求出最小值【詳解】當(dāng)時(shí),,它在上是減函數(shù)故函數(shù)的最小值為當(dāng)時(shí),函數(shù)的圖象思維對(duì)稱軸方程為當(dāng)時(shí),,函數(shù)的最小值為當(dāng)時(shí),,函數(shù)的最小值為當(dāng)時(shí),,函數(shù)的最小值為綜上,【點(diǎn)睛】本題主要考查了二次函數(shù)在閉區(qū)間上的最值,二次函數(shù)的性質(zhì)的應(yīng)用,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題。19.(1)證明見解析(2)【解析】

(1)由得令可得,進(jìn)而得到,同理,利用數(shù)量積坐標(biāo)計(jì)算即可;(2),分,兩種情況討論即可.【詳解】(1)證明:點(diǎn)的坐標(biāo)為.聯(lián)立方程,消去后整理為有,可得,,.可得點(diǎn)的坐標(biāo)為.當(dāng)時(shí),可求得點(diǎn)的坐標(biāo)為,,.有,故有.(2)若點(diǎn)在軸上方,因?yàn)?,所以有,由?)知①因?yàn)闀r(shí).由(1)知,由函數(shù)單調(diào)遞增,可得此時(shí).②當(dāng)時(shí),由(1)知令由,故當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增:當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減,又由,故函數(shù)的最小值,函數(shù)取最小值時(shí),可求得.由①②知,若點(diǎn)在軸上方,當(dāng)?shù)拿娣e最小時(shí),直線的斜率為.【點(diǎn)睛】本題考查直線與橢圓的位置關(guān)系,涉及到分類討論求函數(shù)的最值,考查學(xué)生的運(yùn)算求解能力,是一道難題.20.(1);(2).【解析】

(1)直接根據(jù)特殊角的三角函數(shù)值求出,結(jié)合正弦定理求出;(2)結(jié)合第一問的結(jié)論以及余弦定理即可求解.【詳解】解:(1)∵,且,∴,由正弦定理,∴,∵∴銳角,∴(2)∵,∴∴∴在中,由余弦定理得∴【點(diǎn)睛】本題主要考查了正弦定理和余弦定理的運(yùn)用.考查了學(xué)生對(duì)三角函數(shù)基礎(chǔ)知識(shí)的綜合運(yùn)用.21.(1)證明見解析(2)【解析】

(1)證明平面即平面平面得證;(2)分別以所在直線為x軸,y軸.軸,建立如圖所示的空間直角坐標(biāo)系C-xyz,再利用向量方法求二面角的余弦值.【詳解】(1)證明:因?yàn)槠矫鍭BC,所以因?yàn)?所以.即又.所以平面因?yàn)槠矫?所以平面平面(2)解:由題可得兩兩垂直,所以分別以所在直線為x軸,y軸.軸,建立如圖所示的空間直角坐標(biāo)系C-xyz,則,所以設(shè)平面的一個(gè)法向量為,由.得令,得又平面,所以平面的一個(gè)法向量為.所以二面角的余弦值為.【點(diǎn)睛】本題主要考查空間幾何位置關(guān)系的證明,考查二面角的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.22.(1),眾數(shù)為150;(2);(3)【解析】

(1)由頻率直方圖分別求出各組距內(nèi)的頻率,由此能求出這個(gè)開學(xué)季內(nèi)市場需求量的眾數(shù)和

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論