版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022高考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復(fù)數(shù)滿足,則對應(yīng)的點位于復(fù)平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.是虛數(shù)單位,則()A.1 B.2 C. D.3.在平面直角坐標系中,銳角頂點在坐標原點,始邊為x軸正半軸,終邊與單位圓交于點,則()A. B. C. D.4.若,則實數(shù)的大小關(guān)系為()A. B. C. D.5.設(shè),,則()A. B. C. D.6.已知是雙曲線的左、右焦點,是的左、右頂點,點在過且斜率為的直線上,為等腰三角形,,則的漸近線方程為()A. B. C. D.7.已知正四面體的內(nèi)切球體積為v,外接球的體積為V,則()A.4 B.8 C.9 D.278.已知非零向量滿足,若夾角的余弦值為,且,則實數(shù)的值為()A. B. C.或 D.9.趙爽是我國古代數(shù)學家、天文學家,大約公元222年,趙爽為《周髀算經(jīng)》一書作序時,介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長得到的正方形是由個全等的直角三角形再加上中間的一個小正方形組成的,如圖(1)),類比“趙爽弦圖”,可類似地構(gòu)造如圖(2)所示的圖形,它是由個全等的三角形與中間的一個小正六邊形組成的一個大正六邊形,設(shè),若在大正六邊形中隨機取一點,則此點取自小正六邊形的概率為()A. B.C. D.10.已知拋物線y2=4x的焦點為F,拋物線上任意一點P,且PQ⊥y軸交y軸于點Q,則的最小值為()A. B. C.l D.111.正三棱柱中,,是的中點,則異面直線與所成的角為()A. B. C. D.12.在函數(shù):①;②;③;④中,最小正周期為的所有函數(shù)為()A.①②③ B.①③④ C.②④ D.①③二、填空題:本題共4小題,每小題5分,共20分。13.已知,為正實數(shù),且,則的最小值為________________.14.如圖,的外接圓半徑為,為邊上一點,且,,則的面積為______.15.有甲、乙、丙、丁四位歌手參加比賽,其中只有一位獲獎,有人走訪了四位歌手,甲說“是乙或丙獲獎.”乙說:“甲、丙都未獲獎.”丙說:“我獲獎了”.丁說:“是乙獲獎.”四位歌手的話只有兩句是對的,則獲獎的歌手是__________.16.已知是同一球面上的四個點,其中平面,是正三角形,,則該球的表面積為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,是正方形,點在以為直徑的半圓弧上(不與,重合),為線段的中點,現(xiàn)將正方形沿折起,使得平面平面.(1)證明:平面.(2)三棱錐的體積最大時,求二面角的余弦值.18.(12分)在平面直角坐標系中,以原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線:.過點的直線:(為參數(shù))與曲線相交于,兩點.(1)求曲線的直角坐標方程和直線的普通方程;(2)若,求實數(shù)的值.19.(12分)在直角坐標系中,長為3的線段的兩端點分別在軸、軸上滑動,點為線段上的點,且滿足.記點的軌跡為曲線.(1)求曲線的方程;(2)若點為曲線上的兩個動點,記,判斷是否存在常數(shù)使得點到直線的距離為定值?若存在,求出常數(shù)的值和這個定值;若不存在,請說明理由.20.(12分)在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足bcosA﹣asinB=1.(1)求A;(2)已知a=2,B=,求△ABC的面積.21.(12分)己知的內(nèi)角的對邊分別為.設(shè)(1)求的值;(2)若,且,求的值.22.(10分)如圖1,四邊形是邊長為2的菱形,,為的中點,以為折痕將折起到的位置,使得平面平面,如圖2.(1)證明:平面平面;(2)求點到平面的距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
利用復(fù)數(shù)模的計算、復(fù)數(shù)的除法化簡復(fù)數(shù),再根據(jù)復(fù)數(shù)的幾何意義,即可得答案;【詳解】,對應(yīng)的點,對應(yīng)的點位于復(fù)平面的第四象限.故選:D.【點睛】本題考查復(fù)數(shù)模的計算、復(fù)數(shù)的除法、復(fù)數(shù)的幾何意義,考查運算求解能力,屬于基礎(chǔ)題.2.C【解析】
由復(fù)數(shù)除法的運算法則求出,再由模長公式,即可求解.【詳解】由.故選:C.【點睛】本題考查復(fù)數(shù)的除法和模,屬于基礎(chǔ)題.3.A【解析】
根據(jù)單位圓以及角度范圍,可得,然后根據(jù)三角函數(shù)定義,可得,最后根據(jù)兩角和的正弦公式,二倍角公式,簡單計算,可得結(jié)果.【詳解】由題可知:,又為銳角所以,根據(jù)三角函數(shù)的定義:所以由所以故選:A【點睛】本題考查三角函數(shù)的定義以及兩角和正弦公式,還考查二倍角的正弦、余弦公式,難點在于公式的計算,識記公式,簡單計算,屬基礎(chǔ)題.4.A【解析】
將化成以為底的對數(shù),即可判斷的大小關(guān)系;由對數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì),可判斷出與1的大小關(guān)系,從而可判斷三者的大小關(guān)系.【詳解】依題意,由對數(shù)函數(shù)的性質(zhì)可得.又因為,故.故選:A.【點睛】本題考查了指數(shù)函數(shù)的性質(zhì),考查了對數(shù)函數(shù)的性質(zhì),考查了對數(shù)的運算性質(zhì).兩個對數(shù)型的數(shù)字比較大小時,底數(shù)相同,則構(gòu)造對數(shù)函數(shù),結(jié)合對數(shù)的單調(diào)性可判斷大?。蝗粽鏀?shù)相同,則結(jié)合對數(shù)函數(shù)的圖像或者換底公式可判斷大小;若真數(shù)和底數(shù)都不相同,則可與中間值如1,0比較大小.5.D【解析】
集合是一次不等式的解集,分別求出再求交集即可【詳解】,,則故選【點睛】本題主要考查了一次不等式的解集以及集合的交集運算,屬于基礎(chǔ)題.6.D【解析】
根據(jù)為等腰三角形,可求出點P的坐標,又由的斜率為可得出關(guān)系,即可求出漸近線斜率得解.【詳解】如圖,因為為等腰三角形,,所以,,,又,,解得,所以雙曲線的漸近線方程為,故選:D【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),屬于中檔題.7.D【解析】
設(shè)正四面體的棱長為,取的中點為,連接,作正四面體的高為,首先求出正四面體的體積,再利用等體法求出內(nèi)切球的半徑,在中,根據(jù)勾股定理求出外接球的半徑,利用球的體積公式即可求解.【詳解】設(shè)正四面體的棱長為,取的中點為,連接,作正四面體的高為,則,,,設(shè)內(nèi)切球的半徑為,內(nèi)切球的球心為,則,解得:;設(shè)外接球的半徑為,外接球的球心為,則或,,在中,由勾股定理得:,,解得,,故選:D【點睛】本題主要考查了多面體的內(nèi)切球、外接球問題,考查了椎體的體積公式以及球的體積公式,需熟記幾何體的體積公式,屬于基礎(chǔ)題.8.D【解析】
根據(jù)向量垂直則數(shù)量積為零,結(jié)合以及夾角的余弦值,即可求得參數(shù)值.【詳解】依題意,得,即.將代入可得,,解得(舍去).故選:D.【點睛】本題考查向量數(shù)量積的應(yīng)用,涉及由向量垂直求參數(shù)值,屬基礎(chǔ)題.9.D【解析】
設(shè),則,小正六邊形的邊長為,利用余弦定理可得大正六邊形的邊長為,再利用面積之比可得結(jié)論.【詳解】由題意,設(shè),則,即小正六邊形的邊長為,所以,,,在中,由余弦定理得,即,解得,所以,大正六邊形的邊長為,所以,小正六邊形的面積為,大正六邊形的面積為,所以,此點取自小正六邊形的概率.故選:D.【點睛】本題考查概率的求法,考查余弦定理、幾何概型等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題.10.A【解析】
設(shè)點,則點,,利用向量數(shù)量積的坐標運算可得,利用二次函數(shù)的性質(zhì)可得最值.【詳解】解:設(shè)點,則點,,,,當時,取最小值,最小值為.故選:A.【點睛】本題考查拋物線背景下的向量的坐標運算,考查學生的計算能力,是基礎(chǔ)題.11.C【解析】
取中點,連接,,根據(jù)正棱柱的結(jié)構(gòu)性質(zhì),得出//,則即為異面直線與所成角,求出,即可得出結(jié)果.【詳解】解:如圖,取中點,連接,,由于正三棱柱,則底面,而底面,所以,由正三棱柱的性質(zhì)可知,為等邊三角形,所以,且,所以平面,而平面,則,則//,,∴即為異面直線與所成角,設(shè),則,,,則,∴.故選:C.【點睛】本題考查通過幾何法求異面直線的夾角,考查計算能力.12.A【解析】逐一考查所給的函數(shù):,該函數(shù)為偶函數(shù),周期;將函數(shù)圖象x軸下方的圖象向上翻折即可得到的圖象,該函數(shù)的周期為;函數(shù)的最小正周期為;函數(shù)的最小正周期為;綜上可得最小正周期為的所有函數(shù)為①②③.本題選擇A選項.點睛:求三角函數(shù)式的最小正周期時,要盡可能地化為只含一個三角函數(shù)的式子,否則很容易出現(xiàn)錯誤.一般地,經(jīng)過恒等變形成“y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)”的形式,再利用周期公式即可.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由,為正實數(shù),且,可知,于是,可得,再利用基本不等式即可得出結(jié)果.【詳解】解:,為正實數(shù),且,可知,,.當且僅當時取等號.的最小值為.故答案為:.【點睛】本題考查了基本不等式的性質(zhì)應(yīng)用,恰當變形是解題的關(guān)鍵,屬于中檔題.14.【解析】
先由正弦定理得到,再在三角形ABD、ADC中分別由正弦定理進一步得到B=C,最后利用面積公式計算即可.【詳解】依題意可得,由正弦定理得,即,由圖可知是鈍角,所以,,在三角形ABD中,,,在三角形ADC中,由正弦定理得即,所以,,故,,,故的面積為.故答案為:.【點睛】本題考查正弦定理解三角形,考查學生的基本計算能力,要靈活運用正弦定理公式及三角形面積公式,本題屬于中檔題.15.丙【解析】若甲獲獎,則甲、乙、丙、丁說的都是錯的,同理可推知乙、丙、丁獲獎的情況,可知獲獎的歌手是丙.考點:反證法在推理中的應(yīng)用.16.【解析】
求得等邊三角形的外接圓半徑,利用勾股定理求得三棱錐外接球的半徑,進而求得外接球的表面積.【詳解】設(shè)是等邊三角形的外心,則球心在其正上方處.設(shè),由正弦定理得.所以得三棱錐外接球的半徑,所以外接球的表面積為.故答案為:【點睛】本小題主要考查幾何體外接球表面積的計算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)【解析】
(1)利用面面垂直的性質(zhì)定理證得平面,由此證得,根據(jù)圓的幾何性質(zhì)證得,由此證得平面.(2)判斷出三棱錐的體積最大時點的位置.建立空間直角坐標系,通過平面和平面的法向量,計算出二面角的余弦值.【詳解】(1)證明:因為平面平面是正方形,所以平面.因為平面,所以.因為點在以為直徑的半圓弧上,所以.又,所以平面.(2)解:顯然,當點位于的中點時,的面積最大,三棱錐的體積也最大.不妨設(shè),記中點為,以為原點,分別以的方向為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,則,設(shè)平面的法向量為,則令,得.設(shè)平面的法向量為,則令,得,所以.由圖可知,二面角為銳角,故二面角的余弦值為.【點睛】本小題主要考查線面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18.(1),;(2).【解析】
(1)將代入求解,由(為參數(shù))消去即可.(2)將(為參數(shù))與聯(lián)立得,設(shè),兩點對應(yīng)的參數(shù)為,,則,,再根據(jù),即,利用韋達定理求解.【詳解】(1)把代入,得,由(為參數(shù)),消去得,∴曲線的直角坐標方程和直線的普通方程分別是,.(2)將(為參數(shù))代入得,設(shè),兩點對應(yīng)的參數(shù)為,,則,,由得,所以,即,所以,而,解得.【點睛】本題主要考查參數(shù)方程、極坐標方程、直角坐標方程的轉(zhuǎn)化和直線參數(shù)方程的應(yīng)用,還考查了運算求解的能力,屬于中檔題.19.(1)(2)存在;常數(shù),定值【解析】
(1)設(shè)出的坐標,利用以及,求得曲線的方程.(2)當直線的斜率存在時,設(shè)出直線的方程,求得到直線的距離.聯(lián)立直線的方程和曲線的方程,寫出根與系數(shù)關(guān)系,結(jié)合以及為定值,求得的值.當直線的斜率不存在時,驗證.由此得到存在常數(shù),且定值.【詳解】(1)解析:(1)設(shè),,由題可得,解得又,即,消去得:(2)當直線的斜率存在時,設(shè)直線的方程為設(shè),由可得:由點到的距離為定值可得(為常數(shù))即得:即,又為定值時,,此時,且符合當直線的斜率不存在時,設(shè)直線方程為由題可得,時,,經(jīng)檢驗,符合條件綜上可知,存在常數(shù),且定值【點睛】本小題主要考查軌跡方程的求法,考查直線和橢圓的位置關(guān)系,考查運算求解能力,考查橢圓中的定值問題,屬于難題.20.(1);(2).【解析】
(1)由正弦定理化簡已知等式可得sinBcosA﹣sinAsinB=1,結(jié)合sinB>1,可求tanA=,結(jié)合范圍A∈(1,π),可得A的值;(2)由已知可求C=,可求b的值,根據(jù)三角形的面積公式即可計算得解.【詳解】(1)∵bcosA﹣asinB=1.∴由正弦定理可得:sinBcosA﹣sinAsinB=1,∵sinB>1,∴cosA=sinA,∴tanA=,∵A∈(1,π),∴A=;(2)∵a=2,B=,A=,∴C=,根據(jù)正弦定理得到∴b=6,∴S△ABC=ab==6.【點睛】本題主要考查了正弦定理,三角形的面積公式在解三角形中的綜合應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.21.(1)(2)【解析】
(1)由正弦定理將,轉(zhuǎn)化,即,由余弦定理求得,再由平方關(guān)系得再求解.(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《老年人能力綜合評估規(guī)范》標準修訂編制說明
- DB11T 1031-2013 低層蒸壓加氣混凝土承重建筑技術(shù)規(guī)程
- 農(nóng)業(yè)機械采購招投標文件范本
- 智慧城市解決方案研發(fā)外包制度
- 活動策劃師聘用合同模板
- 汽車維修招投標操作規(guī)程
- 醫(yī)藥電商子公司用戶體驗改進
- 教育機構(gòu)硬化地面施工合同
- 城鎮(zhèn)醫(yī)療救助管理辦法綜合
- 教育公司消防管道安裝合同
- 預(yù)防傾倒綜合征
- GB 21258-2024燃煤發(fā)電機組單位產(chǎn)品能源消耗限額
- 完整2024年國有企業(yè)管理人員處分條例專題課件
- 2024-2025一年級上冊科學教科版2.5《通過感官來發(fā)現(xiàn)》課件
- 中華民族共同體概論課件專家版8第八講 共奉中國與中華民族聚力發(fā)展
- GB/T 32066-2024煤基費托合成液體石蠟
- 術(shù)中獲得性壓力損傷預(yù)防
- 國開電大本科工程數(shù)學(本)在線形考(形成性考核作業(yè)4)試題及答案
- 機器視覺課件
- 六年級上冊美術(shù)課件-第1課 建筑藝術(shù)的美 ▏人美版 (共20張PPT)
- 公路頂管穿越施工方案(中文)
評論
0/150
提交評論