新高考數(shù)學(xué)二輪復(fù)習(xí)專題五 統(tǒng)計(jì)與概率第3講 概率及隨機(jī)變量的分布列原卷版_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)專題五 統(tǒng)計(jì)與概率第3講 概率及隨機(jī)變量的分布列原卷版_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)專題五 統(tǒng)計(jì)與概率第3講 概率及隨機(jī)變量的分布列原卷版_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)專題五 統(tǒng)計(jì)與概率第3講 概率及隨機(jī)變量的分布列原卷版_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)專題五 統(tǒng)計(jì)與概率第3講 概率及隨機(jī)變量的分布列原卷版_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第3講概率及隨機(jī)變量的分布列目錄第一部分:知識強(qiáng)化第二部分:重難點(diǎn)題型突破突破一:古典概型突破二:互斥(對立)事件,事件相互獨(dú)立突破三:條件概率突破四:離散型隨機(jī)變量的數(shù)學(xué)期望和方差突破五:超幾何分布突破六:二項(xiàng)分布突破七:正態(tài)分布第三部分:沖刺重難點(diǎn)特訓(xùn)第一部分:知識強(qiáng)化1、古典概型的概率計(jì)算公式一般地,設(shè)試驗(yàn)SKIPIF1<0是古典概型,樣本空間SKIPIF1<0包含SKIPIF1<0個(gè)樣本點(diǎn),事件SKIPIF1<0包含其中的SKIPIF1<0個(gè)樣本點(diǎn),則定義事件SKIPIF1<0的概率SKIPIF1<0.其中,SKIPIF1<0和SKIPIF1<0分別表示事件SKIPIF1<0和樣本空間SKIPIF1<0包含的樣本點(diǎn)個(gè)數(shù).2、概率的基本性質(zhì)(性質(zhì)1、性質(zhì)2、性質(zhì)5)性質(zhì)1:對任意的事件SKIPIF1<0,都有SKIPIF1<0;性質(zhì)2:必然事件的概率為1,不可能事件的概率為0,即SKIPIF1<0,SKIPIF1<0;性質(zhì)5:如果SKIPIF1<0,那么SKIPIF1<0,由該性質(zhì)可得,對于任意事件SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0.性質(zhì)3:如果事件SKIPIF1<0與事件SKIPIF1<0互斥,那么SKIPIF1<0;注意:只有事件SKIPIF1<0與事件SKIPIF1<0互斥,才可以使用性質(zhì)3,否則不能使用該加法公式.性質(zhì)4:如果事件SKIPIF1<0與事件SKIPIF1<0互為對立事件,那么SKIPIF1<0,SKIPIF1<0;性質(zhì)6:設(shè)SKIPIF1<0,SKIPIF1<0是一個(gè)隨機(jī)試驗(yàn)中的兩個(gè)事件,有SKIPIF1<03、相互獨(dú)立事件的概念對任意兩個(gè)事件SKIPIF1<0與SKIPIF1<0,如果SKIPIF1<0成立,則稱事件SKIPIF1<0與事件SKIPIF1<0相互獨(dú)立(mutuallyindependent),簡稱為獨(dú)立.性質(zhì)1:必然事件SKIPIF1<0、不可能事件SKIPIF1<0與任意事件相互獨(dú)立性質(zhì)2:如果事件SKIPIF1<0與SKIPIF1<0相互獨(dú)立,則SKIPIF1<0與SKIPIF1<0,SKIPIF1<0與SKIPIF1<0,SKIPIF1<0與SKIPIF1<0也相互獨(dú)立則:SKIPIF1<0,SKIPIF1<0,SKIPIF1<04、條件概率(1)一般地,設(shè)SKIPIF1<0,SKIPIF1<0為兩個(gè)隨機(jī)事件,且SKIPIF1<0,我們稱SKIPIF1<0為在事件SKIPIF1<0發(fā)生的條件下,事件SKIPIF1<0發(fā)生的條件概率,簡稱條件概率.①一般地,每個(gè)隨機(jī)試驗(yàn)都是在一定條件下進(jìn)行的,這里所說的條件概率是指隨機(jī)試驗(yàn)結(jié)果的部分信息已知(即在原試驗(yàn)條件下,再加上一定的條件),求另一事件在此條件下發(fā)生的概率.②事件SKIPIF1<0在“事件SKIPIF1<0已發(fā)生”這個(gè)附加條件下的概率與沒有這個(gè)附加條件下的概率在很多情況下是不同的.③當(dāng)題目涉及“在…前提下”等字眼時(shí),一般為條件概率.若題目沒有出現(xiàn)上述字眼,但已知事件的發(fā)生影響了所求事件的概率,也是條件概率.④在條件概率的定義中,要強(qiáng)調(diào)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),不能用這一方法定義事件SKIPIF1<0發(fā)生的條件下,事件SKIPIF1<0發(fā)生的概率.(2)條件概率的性質(zhì)條件概率只是縮小了樣本空間,因此條件概率同樣具有概率的性質(zhì).設(shè)SKIPIF1<0,則①SKIPIF1<0;②如果SKIPIF1<0和SKIPIF1<0是兩個(gè)互斥事件,則SKIPIF1<0;③設(shè)SKIPIF1<0和SKIPIF1<0互為對立事件,則SKIPIF1<0.④任何事件的條件概率都在0和1之間,即:SKIPIF1<0.5、事件的相互獨(dú)立性(1)事件SKIPIF1<0與事件SKIPIF1<0相互獨(dú)立:對任意的兩個(gè)事件SKIPIF1<0與SKIPIF1<0,如果SKIPIF1<0成立,則稱事件SKIPIF1<0與事件SKIPIF1<0相互獨(dú)立,簡稱為獨(dú)立.(2)性質(zhì):若事件SKIPIF1<0與事件SKIPIF1<0相互獨(dú)立,則SKIPIF1<0與SKIPIF1<0,SKIPIF1<0與SKIPIF1<0,SKIPIF1<0與SKIPIF1<0也都相互獨(dú)立,SKIPIF1<0,SKIPIF1<0.(3)易混淆“相互獨(dú)立”和“事件互斥”兩事件互斥是指兩事件不可能同時(shí)發(fā)生,兩事件相互獨(dú)立是指一個(gè)事件的發(fā)生與否對另一個(gè)事件發(fā)生的概率沒有影響,兩個(gè)事件相互獨(dú)立不一定互斥.6、離散型隨機(jī)變量的均值和方差一般地,若離散型隨機(jī)變量SKIPIF1<0的概率分布為:SKIPIF1<0SKIPIF1<0SKIPIF1<0…SKIPIF1<0…SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0…SKIPIF1<0…SKIPIF1<0(1)則稱SKIPIF1<0為隨機(jī)變量SKIPIF1<0的均值(mean)或數(shù)學(xué)期望(mathematicalexpectation),數(shù)學(xué)期望簡稱期望.(2)稱SKIPIF1<0SKIPIF1<0為隨機(jī)變量SKIPIF1<0的方差,有時(shí)也記為SKIPIF1<0.稱SKIPIF1<0為隨機(jī)變量SKIPIF1<0的標(biāo)準(zhǔn)差.7、SKIPIF1<0重伯努利試驗(yàn)的概率公式一般地,如果在一次試驗(yàn)中事件SKIPIF1<0發(fā)生的概率是SKIPIF1<0,事件SKIPIF1<0在SKIPIF1<0次試驗(yàn)中發(fā)生SKIPIF1<0次,共有SKIPIF1<0種情形,由試驗(yàn)的獨(dú)立性知,每種情形下,SKIPIF1<0在SKIPIF1<0次試驗(yàn)中發(fā)生,而在其余SKIPIF1<0次試驗(yàn)中不發(fā)生的概率都是SKIPIF1<0,所以由概率加法公式知,在SKIPIF1<0重伯努利試驗(yàn)中,事件SKIPIF1<0恰好發(fā)生次的概率為SKIPIF1<0(SKIPIF1<0).8、二項(xiàng)分布(1)一般地,在SKIPIF1<0重伯努利試驗(yàn)中,設(shè)每次試驗(yàn)中事件SKIPIF1<0發(fā)生的概率為SKIPIF1<0(SKIPIF1<0),用SKIPIF1<0表示事件SKIPIF1<0發(fā)生的次數(shù),則SKIPIF1<0的分布列為SKIPIF1<0,SKIPIF1<0.如果隨機(jī)變量SKIPIF1<0的分布列具有上式的形式,則稱隨機(jī)變量SKIPIF1<0服從二項(xiàng)分布,記作SKIPIF1<0.(2)二項(xiàng)分布的均值與方差若隨機(jī)變量SKIPIF1<0服從參數(shù)為SKIPIF1<0,SKIPIF1<0的二項(xiàng)分布,即SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.9、超幾何分布一般地,假設(shè)一批產(chǎn)品共有SKIPIF1<0件,其中有SKIPIF1<0件次品,從SKIPIF1<0件產(chǎn)品中隨機(jī)抽取SKIPIF1<0件(不放回),用SKIPIF1<0表示抽取的SKIPIF1<0件產(chǎn)品中的次品數(shù),則SKIPIF1<0的分布列為SKIPIF1<0,SKIPIF1<0.其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.如果隨機(jī)變量SKIPIF1<0的分布列具有上式的形式,那么稱隨機(jī)變量SKIPIF1<0服從超幾何分布.10、正態(tài)分布(1)正態(tài)分布若隨機(jī)變量SKIPIF1<0的概率密度函數(shù)為SKIPIF1<0,(SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0為參數(shù)),稱隨機(jī)變量SKIPIF1<0服從正態(tài)分布,記為SKIPIF1<0.(2)標(biāo)準(zhǔn)正態(tài)分布若隨機(jī)變量SKIPIF1<0,則當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),稱隨機(jī)變量SKIPIF1<0服從標(biāo)準(zhǔn)正態(tài)分布,標(biāo)準(zhǔn)正態(tài)分布的密度函數(shù)解析式為SKIPIF1<0,SKIPIF1<0,其相應(yīng)的密度曲線稱為標(biāo)準(zhǔn)正態(tài)曲線.(3)正態(tài)分布的SKIPIF1<0原則:正態(tài)分布在三個(gè)特殊區(qū)間的概率值假設(shè)SKIPIF1<0,可以證明:對給定的SKIPIF1<0是一個(gè)只與SKIPIF1<0有關(guān)的定值.特別地,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.上述結(jié)果可用右圖表示.此看到,盡管正態(tài)變量的取值范圍是SKIPIF1<0,但在一次試驗(yàn)中,SKIPIF1<0的值幾乎總是落在區(qū)間SKIPIF1<0內(nèi),而在此區(qū)間以外取值的概率大約只有0.0027,通常認(rèn)為這種情況幾乎不可能發(fā)生.在實(shí)際應(yīng)用中,通常認(rèn)為服從于正態(tài)分布SKIPIF1<0的隨機(jī)變量SKIPIF1<0只取SKIPIF1<0中的值,這在統(tǒng)計(jì)學(xué)中稱為SKIPIF1<0原則.第二部分:重難點(diǎn)題型突破突破一:古典概型1.(2022·廣西·模擬預(yù)測(理))將3個(gè)1和4個(gè)0隨機(jī)排成一行,則3個(gè)1任意兩個(gè)1都不相鄰的概率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·四川雅安·模擬預(yù)測(理))甲、乙、丙、丁4名志愿者參加新冠疫情防控志愿者活動(dòng),現(xiàn)有A,B,C三個(gè)小區(qū)可供選擇,每個(gè)志愿者只能選其中一個(gè)小區(qū)去服務(wù).則甲不在A小區(qū)、乙不在B小區(qū)服務(wù)的概率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·河南安陽·模擬預(yù)測(文))為推動(dòng)就業(yè)與培養(yǎng)有機(jī)聯(lián)動(dòng)、人才供需有效對接,促進(jìn)高校畢業(yè)生更加充分更高質(zhì)量就業(yè),教育部今年首次實(shí)施供需對接就業(yè)育人項(xiàng)目.現(xiàn)安排甲、乙兩所高校與3家用人單位開展項(xiàng)目對接,若每所高校至少對接兩家用人單位,則兩所高校的選擇涉及到全部3家用人單位的概率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2022·上海·華師大二附中模擬預(yù)測)5個(gè)同學(xué)報(bào)名參加志愿者活動(dòng),每人可從3項(xiàng)活動(dòng)中任選一項(xiàng)參加.則其中恰有2項(xiàng)活動(dòng)有同學(xué)報(bào)名的概率是__________.5.(2022·內(nèi)蒙古赤峰·模擬預(yù)測(理))龍馬負(fù)圖如圖所示.?dāng)?shù)千年來被認(rèn)為是中華文化的源頭,傳說伏羲通過龍馬身上的圖案(河圖)畫出“八卦”.其結(jié)構(gòu)是一與六共宗居下,二與七為朋居上,三與八為友居左,四與九同道居右,五與十相守居中,其中白圈為陽數(shù),墨點(diǎn)為陰數(shù).若從陽數(shù)和陰數(shù)中分別隨機(jī)抽出1個(gè),則被抽到的2個(gè)數(shù)的數(shù)字之和超過12的概率為______.6.(2022·河南新鄉(xiāng)·一模(文))某機(jī)構(gòu)為調(diào)查我國公民對申辦奧運(yùn)會(huì)的態(tài)度,隨機(jī)選了100位市民調(diào)查,結(jié)果統(tǒng)計(jì)如下.支持不支持合計(jì)年齡不大于50歲30年齡大于50歲1025合計(jì)100(1)根據(jù)已有數(shù)據(jù),把表格填寫完整.(2)能否有SKIPIF1<0的把握認(rèn)為年齡不同與是否支持申辦奧運(yùn)會(huì)有關(guān)?(3)已知在被調(diào)查的年齡大于50歲的支持者中有6名男性,其中3名是醫(yī)生,現(xiàn)從這6名男性中隨機(jī)抽取3人,求至少有2名醫(yī)生的概率.附:SKIPIF1<0,SKIPIF1<0.SKIPIF1<00.1000.0500.0250.010SKIPIF1<02.7063.8415.0246.6357.(2022·貴州·模擬預(yù)測(文))2022年“中國航天日”線上啟動(dòng)儀式在4月24日上午舉行,為普及航天知識,某校開展了“航天知識競賽”活動(dòng),現(xiàn)從參加該競賽的學(xué)生中隨機(jī)抽取50名,統(tǒng)計(jì)他們的成績(滿分100分),其中成績不低于80分的學(xué)生被評為“航天達(dá)人”,將數(shù)據(jù)整理后繪制成如圖所示的頻率分布直方圖.(1)求頻率分布直方圖中SKIPIF1<0的值,并估計(jì)這50名同學(xué)的平均成績;(2)先用分層抽樣的方法從評分在SKIPIF1<0和SKIPIF1<0的同學(xué)中抽取5名同學(xué),再從抽取的這5名同學(xué)中抽取2名,求這2名同學(xué)的分?jǐn)?shù)在同一區(qū)間的概率.突破二:互斥(對立)事件,事件相互獨(dú)立1.(2022·湖北·丹江口市第一中學(xué)模擬預(yù)測)一個(gè)口袋中有大小、形狀完全相同的4個(gè)紅球,3個(gè)藍(lán)球,3個(gè)白球,現(xiàn)從袋中隨機(jī)抽取3個(gè)球.事件甲:3個(gè)球的顏色互不相同;事件乙:恰有2個(gè)紅球;事件丙:至多有1個(gè)藍(lán)球;事件?。?個(gè)球顏色均相同.則下列結(jié)論正確的是(

)A.事件甲與事件丁為對立事件 B.事件乙的概率是事件丁的6倍C.事件丙和事件丁相互獨(dú)立 D.事件甲與事件丙相互獨(dú)立2.(2022·江蘇·二模)隨著北京冬奧會(huì)的舉辦,中國冰雪運(yùn)動(dòng)的參與人數(shù)有了突飛猛進(jìn)的提升.某校為提升學(xué)生的綜合素養(yǎng)、大力推廣冰雪運(yùn)動(dòng),號召青少年成為“三億人參與冰雪運(yùn)動(dòng)的主力軍”,開設(shè)了“陸地冰壺”“陸地冰球”“滑冰”“模擬滑雪”四類冰雪運(yùn)動(dòng)體驗(yàn)課程.甲、乙兩名同學(xué)各自從中任意挑選兩門課程學(xué)習(xí),設(shè)事件SKIPIF1<0“甲乙兩人所選課程恰有一門相同”,事件SKIPIF1<0“甲乙兩人所選課程完全不同”,事件SKIPIF1<0“甲乙兩人均未選擇陸地冰壺課程”,則(

)A.A與B為對立事件 B.A與C互斥C.A與C相互獨(dú)立 D.B與C相互獨(dú)立3.(2022·廣西·南寧三中二模(文))從裝有兩個(gè)紅球和兩個(gè)黑球的口袋內(nèi)任取兩個(gè)球,現(xiàn)有如下說法:①至少有一個(gè)黑球與都是黑球是互斥事件;②至少有一個(gè)黑球與至少有一個(gè)紅球不是互斥事件;③恰好有一個(gè)黑球與恰好有兩個(gè)黑球是互斥事件;④至少有一個(gè)黑球與都是紅球是對立事件.在上述說法中正確的個(gè)數(shù)為(

)A.1 B.2 C.3 D.44.(2022·全國·模擬預(yù)測)分別擲兩枚質(zhì)地均勻的硬幣,“第一枚為正面”記為事件SKIPIF1<0,“第二枚為正面”記為事件SKIPIF1<0,“兩枚結(jié)果相同”記為事件SKIPIF1<0,那么事件SKIPIF1<0與SKIPIF1<0,SKIPIF1<0與SKIPIF1<0間的關(guān)系是(

)A.SKIPIF1<0與SKIPIF1<0,SKIPIF1<0與SKIPIF1<0均相互獨(dú)立 B.SKIPIF1<0與SKIPIF1<0相互獨(dú)立,SKIPIF1<0與SKIPIF1<0互斥C.SKIPIF1<0與SKIPIF1<0,SKIPIF1<0與SKIPIF1<0均互斥 D.SKIPIF1<0與SKIPIF1<0互斥,SKIPIF1<0與SKIPIF1<0相互獨(dú)立突破三:條件概率1.(2022·湖南永州·一模)現(xiàn)有甲?乙?丙?丁四個(gè)人到九嶷山?陽明山?云冰山?舜皇山4處景點(diǎn)旅游,每人只去一處景點(diǎn),設(shè)事件SKIPIF1<0為“4個(gè)人去的景點(diǎn)各不相同”,事件SKIPIF1<0為“只有甲去了九嶷山”,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·福建·莆田華僑中學(xué)模擬預(yù)測)甲罐中有3個(gè)紅球、2個(gè)黑球,乙罐中有2個(gè)紅球、2個(gè)黑球,先從甲罐中隨機(jī)取出一球放入乙罐,以A表示事件“由甲罐取出的球是黑球”,再從乙罐中隨機(jī)取出一球,以B表示事件“由乙罐取出的球是黑球”,則下列說法錯(cuò)誤的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·河南洛陽·模擬預(yù)測(理))我國中醫(yī)藥選出的“三藥三方”對治療新冠肺炎均有顯著效果,“三藥”分別為金花清感顆粒、連花清瘟膠囊、血必凈注射液;“三方”分別為清肺排毒湯、化濕敗毒方、宜肺敗毒方.若某醫(yī)生從“三藥三方”中隨機(jī)選出三種藥方,事件A表示選出的三種藥方中至少有一藥,事件B表示選出的三種藥方中至少有一方,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2022·黑龍江·哈爾濱三中模擬預(yù)測(理))若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·山東威?!と#┰O(shè)隨機(jī)事件A、B,已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0______,SKIPIF1<0______.6.(2022·湖南·長沙一中一模)有6個(gè)相同的球,分別標(biāo)有數(shù)字1,2,3,4,5,6.從中有放回的隨機(jī)取兩次,每次取1個(gè)球,A表示事件“第一次取出的球的數(shù)字是1”,B表示事件“第二次取出的球的數(shù)字是2”.C表示事件“兩次取出的球的數(shù)字之和是8”,D表示事件“兩次取出的球的數(shù)字之和是7”,則下列命題正確的序號有______.①A與C互斥;②SKIPIF1<0;③A與D相互獨(dú)立;④B與C相互獨(dú)立.7.(2022·遼寧鞍山·一模)根據(jù)以往的臨床記錄,某種診斷癌癥的試驗(yàn)具有如下的效果:若以SKIPIF1<0表示事件“試驗(yàn)反應(yīng)為陽性”,以SKIPIF1<0表示事件“被診斷者患有癌癥”,則有SKIPIF1<0,SKIPIF1<0.現(xiàn)在對自然人群進(jìn)行普查,設(shè)被試驗(yàn)的人患有癌癥的概率為SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0__________.8.(2022·天津市新華中學(xué)模擬預(yù)測)某志愿者召開春季運(yùn)動(dòng)會(huì),為了組建一支朝氣蓬勃?訓(xùn)練有素的賽會(huì)志愿者隊(duì)伍,欲從4名男志愿者,3名女志愿者中隨機(jī)抽取3人聘為志愿者隊(duì)的隊(duì)長,則在“抽取的3人中至少有一名男志愿者”的前提下“抽取的3人中全是男志愿者”的概率是__________;至少有一名是女志愿者的概率為__________.9.(2022·天津河北·一模)袋子中有5個(gè)大小相同的小球,其中3個(gè)紅球,2個(gè)白球.每次從袋子中隨機(jī)摸出1個(gè)球,摸出的球不再放回,則兩次都摸到紅球的概率為_______;在第一次摸到紅球的條件下,第二次摸到紅球的概率為_______.突破四:離散型隨機(jī)變量的數(shù)學(xué)期望和方差1.(2022·湖南·寧鄉(xiāng)市教育研究中心模擬預(yù)測)已知盒中裝有1個(gè)黑球與2個(gè)白球,每次從盒子中隨機(jī)摸出1個(gè)球,并換入一個(gè)黑球.設(shè)三次摸球后盒子中所剩黑球的個(gè)數(shù)為SKIPIF1<0,則SKIPIF1<0為(

)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.SKIPIF1<02.(2022·廣西桂林·模擬預(yù)測(文))設(shè)0<a<1.隨機(jī)變量X的分布列是X0a1PSKIPIF1<0SKIPIF1<0SKIPIF1<0則當(dāng)a在(0,1)內(nèi)增大時(shí),(

)A.E(X)不變 B.E(X)減小 C.V(X)先增大后減小 D.V(X)先減小后增大3.(2022·河南洛陽·模擬預(yù)測(理))隨機(jī)變量SKIPIF1<0的概率分布列為SKIPIF1<0,k=1,2,3,其中c是常數(shù),則SKIPIF1<0的值為(

)A.10 B.117 C.38 D.354.(2022·浙江紹興·模擬預(yù)測)設(shè)SKIPIF1<0,隨機(jī)變量SKIPIF1<0的分布列分別如下,則(

)SKIPIF1<0012PSKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0012PSKIPIF1<0SKIPIF1<0SKIPIF1<0A.若SKIPIF1<0,則SKIPIF1<0 B.若SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0 D.若SKIPIF1<0,則SKIPIF1<05.(2022·山東淄博·三模)設(shè)隨機(jī)變量SKIPIF1<0,滿足SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0_____.6.(2022·江蘇·徐州市第七中學(xué)模擬預(yù)測)若隨機(jī)變量SKIPIF1<0等可能的在SKIPIF1<0,SKIPIF1<0,SKIPIF1<0中取值,其中SKIPIF1<0,則SKIPIF1<0的最小值為______.7.(2022·云南·昆明一中模擬預(yù)測(理))某蛋糕店每天制作生日蛋糕若干個(gè),每個(gè)生日蛋糕成本為60元,售價(jià)為100元.如果賣不完,剩下的蛋糕作垃圾處理,現(xiàn)收集并整理了該店100天生日蛋糕的日需求量(單位:個(gè))如下表:需求量101112131415頻數(shù)8202427147將這100天記錄的各需求量的頻率作為每天各需求量發(fā)生的概率.(1)若蛋糕店某一天制作生日蛋糕13個(gè),X表示當(dāng)天的利潤(單位:元),求X的分布列和數(shù)學(xué)期望;(2)若蛋糕店計(jì)劃一天制作13個(gè)或14個(gè)生日蛋糕,以每日銷售利潤的數(shù)學(xué)期望為決策依據(jù),你認(rèn)為應(yīng)制作13個(gè)還是14個(gè)?請說明理由.8.(2022·北京十四中高三期中)開展中小學(xué)生課后服務(wù),是促進(jìn)學(xué)生健康成長、幫助家長解決接送學(xué)生困難的重要舉措,是進(jìn)一步增強(qiáng)教育服務(wù)能力、使人民群眾具有更多獲得感和幸福感的民生工程.某校為確保學(xué)生課后服務(wù)工作順利開展,制定了兩套工作方案,為了解學(xué)生對這兩個(gè)方案的支持情況,現(xiàn)隨機(jī)抽取100個(gè)學(xué)生進(jìn)行調(diào)查,獲得數(shù)據(jù)如下表:男女支持方案一2416支持方案二2535假設(shè)用頻率估計(jì)概率,且所有學(xué)生對活動(dòng)方案是否支持相互獨(dú)立.(1)從樣本中抽1人,求已知抽到的學(xué)生支持方案二的條件下,該學(xué)生是女生的概率;(2)從該校支持方案一和支持方案二的學(xué)生中各隨機(jī)抽取1人,設(shè)SKIPIF1<0為抽出兩人中女生的個(gè)數(shù),求SKIPIF1<0的分布列與數(shù)學(xué)期望;(3)在(2)中,SKIPIF1<0表示抽出兩人中男生的個(gè)數(shù),試判斷方差SKIPIF1<0與SKIPIF1<0的大小.(直接寫結(jié)果)突破五:超幾何分布1.(2022·山東·濟(jì)南市歷城第二中學(xué)模擬預(yù)測)從一批含有13件正品,2件次品的產(chǎn)品中不放回地抽3次,每次抽取1件,設(shè)抽取的次品數(shù)為ξ,則E(5ξ+1)=(

)A.2 B.1 C.3 D.42.(2022·河南·上蔡縣衡水實(shí)驗(yàn)中學(xué)高三階段練習(xí)(理))在含有3件次品的50件產(chǎn)品中,任取2件,則至少取到1件次品的概率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·全國·高三專題練習(xí))某地SKIPIF1<0個(gè)貧困村中有SKIPIF1<0個(gè)村是深度貧困,現(xiàn)從中任意選SKIPIF1<0個(gè)村,下列事件中概率等于SKIPIF1<0的是(

)A.至少有SKIPIF1<0個(gè)深度貧困村 B.有SKIPIF1<0個(gè)或SKIPIF1<0個(gè)深度貧困村C.有SKIPIF1<0個(gè)或SKIPIF1<0個(gè)深度貧困村 D.恰有SKIPIF1<0個(gè)深度貧困村4.(2022·全國·高三專題練習(xí))已知SKIPIF1<0件產(chǎn)品中有SKIPIF1<0件次品,從中任取SKIPIF1<0件,則任意取出的SKIPIF1<0件產(chǎn)品中次品數(shù)的數(shù)學(xué)期望為________.5.(2022·江蘇·蘇州中學(xué)高三階段練習(xí))文化月活動(dòng)中,某班級在宣傳欄貼出標(biāo)語“學(xué)好數(shù)學(xué)好”,可以不同斷句產(chǎn)生不同意思,“學(xué)/好數(shù)學(xué)/好”指要學(xué)好的數(shù)學(xué),“學(xué)好/數(shù)學(xué)/好”強(qiáng)調(diào)數(shù)學(xué)學(xué)習(xí)的重要性,假設(shè)一段時(shí)間后,隨機(jī)有SKIPIF1<0個(gè)字脫落.(1)若SKIPIF1<0,用隨機(jī)變量SKIPIF1<0表示脫落的字中“學(xué)”的個(gè)數(shù),求隨機(jī)變量SKIPIF1<0的分布列及期望;(2)若SKIPIF1<0,假設(shè)某同學(xué)檢起后隨機(jī)貼回,求標(biāo)語恢復(fù)原樣的概率.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,6.(2022·江蘇·南京師大附中高三階段練習(xí))隨著經(jīng)濟(jì)的發(fā)展,富裕起來的人們健康意識日益提升,越來越多的人走向公園、場館,投入健身運(yùn)動(dòng)中,成為一道美麗的運(yùn)動(dòng)風(fēng)景線.某興趣小組為了解本市不同年齡段的市民每周鍛煉時(shí)長情況,隨機(jī)抽取SKIPIF1<0人進(jìn)行調(diào)查,得到如下表的統(tǒng)計(jì)數(shù)據(jù):周平均鍛煉時(shí)間少于SKIPIF1<0小時(shí)周平均鍛煉時(shí)間不少于SKIPIF1<0小時(shí)合計(jì)SKIPIF1<0歲以下SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0歲以上(含SKIPIF1<0)SKIPIF1<0SKIPIF1<0SKIPIF1<0合計(jì)SKIPIF1<0SKIPIF1<0SKIPIF1<0(1)運(yùn)用獨(dú)立性檢驗(yàn)的思想方法判斷:是否有SKIPIF1<0以上的把握認(rèn)為,周平均鍛煉時(shí)長與年齡有關(guān)聯(lián)?并說明理由.(2)現(xiàn)從SKIPIF1<0歲以上(含SKIPIF1<0)的樣本中按周平均鍛煉時(shí)間是否少于SKIPIF1<0小時(shí),用分層抽樣法抽取SKIPIF1<0人做進(jìn)行一步訪談,最后再從這SKIPIF1<0人中隨機(jī)抽取SKIPIF1<0人填寫調(diào)查問卷.記抽取SKIPIF1<0人中周平均鍛煉時(shí)間是不少于SKIPIF1<0小時(shí)的人數(shù)為SKIPIF1<0,求SKIPIF1<0的分布列和數(shù)學(xué)期望.SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<07.(2022·福建省福州第一中學(xué)高三階段練習(xí))班主任為了對本班學(xué)生的考試成績進(jìn)行分析,決定從本班SKIPIF1<0名女同學(xué),SKIPIF1<0名男同學(xué)中隨機(jī)抽取一個(gè)容量為SKIPIF1<0的樣本進(jìn)行分析.(1)如果按照性別比例分層抽樣,可以得到多少個(gè)不同的樣本?(寫出算式即可,不必計(jì)算出結(jié)果)(2)如果隨機(jī)抽取的SKIPIF1<0名同學(xué)的數(shù)學(xué),物理成績(單位:分)對應(yīng)如下表:學(xué)生序號i1234567數(shù)學(xué)成績SKIPIF1<060657075858790物理成績SKIPIF1<070778085908693(i)若規(guī)定SKIPIF1<0分以上(包括SKIPIF1<0分)為優(yōu)秀,從這SKIPIF1<0名同學(xué)中抽取SKIPIF1<0名同學(xué),記SKIPIF1<0名同學(xué)中數(shù)學(xué)和物理成績均為優(yōu)秀的人數(shù)為SKIPIF1<0,求SKIPIF1<0的分布列和數(shù)學(xué)期望;(結(jié)果用最簡分?jǐn)?shù)表示)(ii)根據(jù)上表數(shù)據(jù),求物理成績SKIPIF1<0關(guān)于數(shù)學(xué)成績SKIPIF1<0的線性回歸方程(系數(shù)精確到SKIPIF1<0);若班上某位同學(xué)的數(shù)學(xué)成績?yōu)镾KIPIF1<0分,預(yù)測該同學(xué)的物理成績?yōu)槎嗌俜??附:線性回歸方程SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0.SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<076838125268.(2022·江蘇·句容碧桂園學(xué)校高三開學(xué)考試)為了研究高三年級學(xué)生的性別與體重是否超過55kg的關(guān)聯(lián)性,某機(jī)構(gòu)調(diào)查了某中學(xué)所有高三年級的學(xué)生,整理得到如下列聯(lián)表.性別體重合計(jì)超過55kg不超過kg男180120300女90110200合計(jì)270230500參考公式和數(shù)據(jù):SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0(1)依據(jù)小概率值SKIPIF1<0的獨(dú)立性檢驗(yàn),能否認(rèn)為該中學(xué)高三年級學(xué)生的性別與體重有關(guān)聯(lián)?(2)按性別采用分層隨機(jī)抽樣的方式在該中學(xué)高三年級體重超過55kg的學(xué)生中抽取9人,再從這9人中任意選取3人,記選中的女生數(shù)為X,求X的分布列與期望.突破六:二項(xiàng)分布1.(2022·上海奉賢·高三期中)甲乙兩選手進(jìn)行圍棋比賽,已知每局比賽甲獲勝的概率為0.6,乙獲勝的概率為0.4,若采用三局二勝制(前兩局各有勝負(fù)則進(jìn)行第三局),則甲最終獲勝的概率為(

)A.0.72 B.0.704 C.0.604 D.0.6482.(2022·全國·高三專題練習(xí))設(shè)SKIPIF1<0,其中SKIPIF1<0,且SKIPIF1<0,那么SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·全國·高三專題練習(xí))設(shè)隨機(jī)變量SKIPIF1<0,SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(

)A.3 B.SKIPIF1<0 C.4 D.SKIPIF1<04.(2022·全國·高三專題練習(xí))某工廠產(chǎn)品合格的概率均為SKIPIF1<0,各產(chǎn)品合格與否相互獨(dú)立.設(shè)SKIPIF1<0為該工廠生產(chǎn)的SKIPIF1<0件商品中合格的數(shù)量,其中SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·全國·高三專題練習(xí))將一顆質(zhì)地均勻的骰子(它是一種各面上分別標(biāo)有點(diǎn)數(shù)1、2、3、4、5、6的正方體玩具)先后拋擲3次,至少出現(xiàn)一次6點(diǎn)向上的概率是______.6.(2022·全國·高三專題練習(xí))已知隨機(jī)變量SKIPIF1<0,若SKIPIF1<0最大,則SKIPIF1<0______.7.(2022·山東·淄博市臨淄中學(xué)高三階段練習(xí))世界杯期間,明星隊(duì)和火車頭隊(duì)相遇,雙方要打n(n為奇數(shù))場比賽,某球隊(duì)至少有一半的場次贏球即為戰(zhàn)勝對方球隊(duì),其中明星隊(duì)每場贏球的概率為SKIPIF1<0,各場比賽間相互獨(dú)立.(1)若SKIPIF1<0,SKIPIF1<0,估計(jì)明星隊(duì)贏球多少場;(2)對任意的正整數(shù)k,找出p的范圍使得SKIPIF1<0比SKIPIF1<0對明星隊(duì)更合算.8.(2022·四川·綿陽中學(xué)高三階段練習(xí))小區(qū)為了加強(qiáng)對“新型冠狀病毒”的防控,確保居民在小區(qū)封閉期間生活不受影響,小區(qū)超市采取有力措施保障居民正常生活物資供應(yīng).為做好甲類生活物資的供應(yīng),超市對社區(qū)居民戶每天對甲類生活物資的購買量進(jìn)行了調(diào)查,得到了以下頻率分布直方圖.(1)從小區(qū)超市某天購買甲類生活物資的居民戶中任意選取5戶.若抽取的5戶中購買量在SKIPIF1<0(單位:SKIPIF1<0)的戶數(shù)為2戶,從5戶中選出3戶進(jìn)行生活情況調(diào)查,記3戶中需求量在SKIPIF1<0(單位:SKIPIF1<0)的戶數(shù)為SKIPIF1<0,求SKIPIF1<0的分布列和期望;(2)將某戶某天購買甲類生活物資的量與平均購買量比較,當(dāng)超出平均購買量不少于SKIPIF1<0時(shí),則該居民戶稱為“迫切需求戶”,若從小區(qū)隨機(jī)抽取10戶,且抽到k戶為“迫切需求戶”的可能性最大,試求k的值.9.(2022·湖南·湘潭一中高三期中)SKIPIF1<0年SKIPIF1<0月SKIPIF1<0日是中國傳統(tǒng)二十四節(jié)氣“立秋”,該日,“秋天的第一杯奶茶”再度出圈,據(jù)此,學(xué)校社會(huì)實(shí)踐小組隨機(jī)調(diào)查了該地區(qū)SKIPIF1<0位奶茶愛好者的年齡,得到如下樣本數(shù)據(jù)頻率分布直方圖.(1)估計(jì)奶茶愛好者的平均年齡;(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)(2)估計(jì)奶茶愛好者年齡位于區(qū)間SKIPIF1<0的概率;(3)以頻率替代概率進(jìn)行計(jì)算,若從該地區(qū)所有奶茶愛好者中任選SKIPIF1<0人,求SKIPIF1<0人中年齡在SKIPIF1<0歲以下的人數(shù)SKIPIF1<0的分布列和期望.10.(2022·甘肅·蘭州西北中學(xué)高三期中(理))為豐富學(xué)生的校園生活,提升學(xué)生的實(shí)踐能力和綜合素質(zhì)能力,培養(yǎng)學(xué)生的興趣愛好,某校計(jì)劃借課后托管服務(wù)平臺開設(shè)書法興趣班.為了解學(xué)生對這個(gè)興趣班的喜歡情況,該校隨機(jī)抽取了本校100名學(xué)生,調(diào)查他們對這個(gè)興趣班的喜歡情況,得到數(shù)據(jù)如下:喜愛不喜愛合計(jì)男402060女301040合計(jì)7030100以調(diào)查得到的男、女學(xué)生喜歡書法興趣班的頻率代替概率.(1)從該校隨機(jī)抽取1名男學(xué)生和1名女學(xué)生,求這2名學(xué)生中恰有1人喜歡書法興趣班的概率;(2)從該校隨機(jī)抽取4名女學(xué)生,記X為喜歡書法興趣班的女生人數(shù),求X的分布列與期望.突破七:正態(tài)分布1.(2022·上?!とA師大二附中高三期中)設(shè)SKIPIF1<0,SKIPIF1<0,這兩個(gè)正態(tài)分布密度曲線如圖所示.下列結(jié)論中正確的是(

)A.SKIPIF1<0B.SKIPIF1<0C.對任意正數(shù)SKIPIF1<0,SKIPIF1<0D.對任意正數(shù)SKIPIF1<0,SKIPIF1<02.(2022·湖北·高三階段練習(xí))已知隨機(jī)變量SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.9 B.8 C.SKIPIF1<0 D.63.(2022·四川省仁壽縣文宮中學(xué)高三階段練習(xí)(理))在某地區(qū)的高三第一次聯(lián)考中,數(shù)學(xué)考試成績近似服從正態(tài)分布SKIPIF1<0,試卷滿分SKIPIF1<0分,統(tǒng)計(jì)結(jié)果顯示數(shù)學(xué)成績高于120分的人數(shù)占總?cè)藬?shù)的SKIPIF1<0,數(shù)學(xué)考試成績在SKIPIF1<0分到SKIPIF1<0分(含SKIPIF1<0分和SKIPIF1<0分)之間的人數(shù)為SKIPIF1<0人,則可以估計(jì)參加本次聯(lián)考的總?cè)藬?shù)約為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2022·江蘇·南京市第一中學(xué)高三期中)2012年國家開始實(shí)施法定節(jié)假日高速公路免費(fèi)通行政策,某收費(fèi)站統(tǒng)計(jì)了2021年中秋節(jié)前后車輛通行數(shù)量,發(fā)現(xiàn)該站近幾天車輛通行數(shù)量SKIPIF1<0,若SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí)下列說法正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·河北·模擬預(yù)測)已知隨機(jī)變量SKIPIF1<0服從正態(tài)分布SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0___________.(附:若SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0)6.(2022·全國·高三專題練習(xí))為了監(jiān)控某種食品的生產(chǎn)包裝過程,檢驗(yàn)員每天從生產(chǎn)線上隨機(jī)抽取SKIPIF1<0包食品,并測量其質(zhì)量(單位:g).根據(jù)長期的生產(chǎn)經(jīng)驗(yàn),這條生產(chǎn)線正常狀態(tài)下每包食品質(zhì)量服從正態(tài)分布SKIPIF1<0.假設(shè)生產(chǎn)狀態(tài)正常,記SKIPIF1<0表示每天抽取的k包食品中其質(zhì)量在SKIPIF1<0之外的包數(shù),若SKIPIF1<0的數(shù)學(xué)期望SKIPIF1<0,則k的最小值為________.附:若隨機(jī)變量X服從正態(tài)分布SKIPIF1<0,則SKIPIF1<0.7.(2022·全國·高三專題練習(xí))某省2021年開始將全面實(shí)施新高考方案.在6門選擇性考試科目中,物理、歷史這兩門科目采用原始分計(jì)分;思想政治、地理、化學(xué)、生物這4門科目采用等級轉(zhuǎn)換賦分,將每科考生的原始分從高到低劃分為A,B,C,D,E共5個(gè)等級,各等級人數(shù)所占比例分別為15%,35%,35%,13%和2%,并按給定的公式進(jìn)行轉(zhuǎn)換賦分.該省組織了一次高一年級統(tǒng)一考試,并對思想政治、地理、化學(xué)、生物這4門科目的原始分進(jìn)行了等級轉(zhuǎn)換賦分.假設(shè)該省此次高一學(xué)生化學(xué)學(xué)科原始分Y服從正態(tài)分布SKIPIF1<0.若SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0.請解決下列問題:若以此次高一學(xué)生化學(xué)學(xué)科原始分D等級的最低分為實(shí)施分層教學(xué)的劃線分,試估計(jì)該劃線分大約為__________分(結(jié)果保留1位小數(shù))附:若SKIPIF1<0,SKIPIF1<0.8.(2022·福建省南安國光中學(xué)高三階段練習(xí))某中學(xué)在一次考試后,對本年級學(xué)生物理成績進(jìn)行分析,隨機(jī)抽取了300名同學(xué)的物理成績(均在50~100分之間),將抽取的成績分組為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,得到如圖所示的頻率分布直方圖.(1)求這300名同學(xué)物理平均成績SKIPIF1<0與第三四分位數(shù)的估計(jì)值;(結(jié)果精確到1)(2)已知全年級同學(xué)的物理成績服從正態(tài)分布SKIPIF1<0,其中SKIPIF1<0?。?)中的SKIPIF1<0,經(jīng)計(jì)算,SKIPIF1<0=11,現(xiàn)從全年級隨機(jī)選取一名同學(xué)的物理成績,求該成績在區(qū)間SKIPIF1<0的概率(結(jié)果精確到0.1);(3)根據(jù)(2)的條件,用頻率估計(jì)概率,現(xiàn)從全年級隨機(jī)選取n名同學(xué)的物理成績,若他們的成績都在SKIPIF1<0的概率不低于1%,求n的最大值(n為整數(shù)).附:SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.9.(2022·全國·高三專題練習(xí))十九大以來,某貧困地區(qū)扶貧辦積極貫徹落實(shí)國家精準(zhǔn)扶貧的政策要求,帶領(lǐng)廣大農(nóng)村地區(qū)人民群眾脫貧奔小康,經(jīng)過不懈的奮力拼搏,新農(nóng)村建設(shè)取得巨大進(jìn)步,農(nóng)民年收入也逐年增加,為了制定提升農(nóng)民收入力爭早日脫貧的工作計(jì)劃,該地扶貧辦統(tǒng)計(jì)了SKIPIF1<0年SKIPIF1<0位農(nóng)民的年收入并制成如下頻率分布直方圖:(1)根據(jù)頻率分布直方圖,估計(jì)SKIPIF1<0位農(nóng)民的年平均收入SKIPIF1<0(單位:千元)(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點(diǎn)值表示);(2)由頻率分布直方圖,可以認(rèn)為該貧困地區(qū)農(nóng)民收入SKIPIF1<0服從正態(tài)分布SKIPIF1<0,其中SKIPIF1<0近似為年平均收入SKIPIF1<0,SKIPIF1<0近似為樣本方差SKIPIF1<0,經(jīng)計(jì)算得SKIPIF1<0,利用該正態(tài)分布,求:①在扶貧攻堅(jiān)工作中,若使該地區(qū)約有SKIPIF1<0的農(nóng)民的年收入不低于扶貧辦制定的最低年收入標(biāo)準(zhǔn),則最低年收入大約為多少千元?②為了調(diào)研“精準(zhǔn)扶貧,不落一人”的政策要求落實(shí)情況,扶貧辦隨機(jī)走訪了SKIPIF1<0位農(nóng)民.若每位農(nóng)民的年收入互相獨(dú)立,這SKIPIF1<0位農(nóng)民中的年收入不少于SKIPIF1<0千元的人數(shù)為SKIPIF1<0,求SKIPIF1<0.附參考數(shù)據(jù):①SKIPIF1<0,②若隨機(jī)變量SKIPIF1<0服從正態(tài)分布SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.10.(2022·全國·高三專題練習(xí))某收費(fèi)APP(手機(jī)應(yīng)用程序)自上架以來,憑借簡潔的界面設(shè)計(jì)?方便的操作方式和實(shí)用的強(qiáng)大功能深得用戶喜愛.為回饋市場并擴(kuò)大用戶量,該APP在2022年以競價(jià)形式做出優(yōu)惠活動(dòng),活動(dòng)規(guī)則如下:①每月1到15日,大家可通過官網(wǎng)提交自己的報(bào)價(jià)(報(bào)價(jià)低于原價(jià)),但在報(bào)價(jià)時(shí)間截止之前無法得知其他人的報(bào)價(jià)和當(dāng)月參與活動(dòng)的總?cè)藬?shù);②當(dāng)月競價(jià)時(shí)間截止后的第二天,系統(tǒng)將根據(jù)當(dāng)期優(yōu)惠名額,按出價(jià)從高到低的順序給相應(yīng)人員分配優(yōu)惠名額,獲得優(yōu)惠名額的人的最低出價(jià)即為該APP在當(dāng)月的下載優(yōu)惠價(jià),出價(jià)不低于優(yōu)惠價(jià)的人將獲得數(shù)額為原價(jià)減去優(yōu)惠價(jià)的優(yōu)惠券,并可在當(dāng)月下載該APP時(shí)使用.小明擬參加2022年7月份的優(yōu)惠活動(dòng),為了預(yù)測最低成交價(jià),他根據(jù)網(wǎng)站的公告統(tǒng)計(jì)了今年2到6月參與活動(dòng)的人數(shù),如下表所示:時(shí)間t(月)23456參與活動(dòng)的人數(shù)y(萬人)0.50.611.41.7(1)若可用線性回歸模型擬合參與活動(dòng)的人數(shù)y(單位:萬人)與時(shí)間t(單位:月)之間的關(guān)系,請用最小二乘法求y關(guān)于t的回歸方程SKIPIF1<0,并預(yù)測今年7月參與活動(dòng)的人數(shù);(2)某自媒體對200位擬參加今年7月份活動(dòng)的人進(jìn)行了一個(gè)抽樣調(diào)查,得到如表所示的頻數(shù)表:報(bào)價(jià)X(單位:元)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0頻數(shù)206060302010①求這200人的報(bào)價(jià)X(單位:元)的平均值SKIPIF1<0和方差SKIPIF1<0(同一區(qū)間的報(bào)價(jià)用該價(jià)格區(qū)間的中點(diǎn)值代替);②假設(shè)所有參與活動(dòng)的人的報(bào)價(jià)X(單位:元)可視為服從正態(tài)分布SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0可分別由①中所求的樣本平均數(shù)SKIPIF1<0及SKIPIF1<0估計(jì),若2022年7月計(jì)劃發(fā)放優(yōu)惠名額數(shù)量為3173,請你合理預(yù)測該APP在當(dāng)月的下載優(yōu)惠價(jià),并說明理由.參考公式及數(shù)據(jù):①回歸方程SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;②SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;③若隨機(jī)變量X服從正態(tài)分布SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.第三部分:沖刺重難點(diǎn)特訓(xùn)一、單選題1.(2022·福建·高三階段練習(xí))某學(xué)習(xí)小組八名學(xué)生在一次物理測驗(yàn)中的得分(單位:分)如下:SKIPIF1<0,這八人成績的第60百分位數(shù)是SKIPIF1<0.若在該小組隨機(jī)選取兩名學(xué)生,則得分都比SKIPIF1<0低的概率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·河南省浚縣第一中學(xué)高三階段練習(xí)(文))第24屆冬季奧林匹克運(yùn)動(dòng)會(huì),即2022年北京冬季奧運(yùn)會(huì),是由中國舉辦的國際性奧林匹克賽事,于2022年2月4日開幕,2月20日閉幕.小林觀看了本屆冬奧會(huì)后,打算從冰壺?短道速滑?花樣滑冰?冬季兩項(xiàng)這四個(gè)項(xiàng)目中任意選兩項(xiàng)進(jìn)行系統(tǒng)的學(xué)習(xí),則小林沒有選擇冰壺的概率為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·全國·高三專題練習(xí))袋內(nèi)裝有大小、形狀完全相同的3個(gè)白球和2個(gè)黑球,從中不放回地摸球,設(shè)事件A=“第一次摸到白球”,事件B=“第二次摸到白球”,事件C=“第一次摸到黑球”,則下列說法中正確的是(

)A.A與B是互斥事件 B.A與B不是相互獨(dú)立事件C.B與C是對立事件 D.A與C是相互獨(dú)立事件4.(2022·全國·高三專題練習(xí))設(shè)靶子上的環(huán)數(shù)取1~10這10個(gè)正整數(shù),脫靶計(jì)為0環(huán).某人射擊一次,設(shè)事件SKIPIF1<0“中靶”,事件SKIPIF1<0“擊中環(huán)數(shù)大于5”,事件SKIPIF1<0“擊中環(huán)數(shù)大于1且小于6”,事件SKIPIF1<0“擊中環(huán)數(shù)大于0且小于6”,則下列關(guān)系正確的是(

)A.B與C互斥 B.B與C互為對立C.A與D互為對立 D.A與D互斥5.(2022·全國·高三專題練習(xí))已知隨機(jī)變量X的分布列如下:236PSKIPIF1<0SKIPIF1<0a則SKIPIF1<0的值為(

)A.2 B.6 C.8 D.186.(2022·河南·上蔡縣衡水實(shí)驗(yàn)中學(xué)高三階段練習(xí)(理))已知10名同學(xué)中有a名女生,若從這10名同學(xué)中隨機(jī)抽取2名作為學(xué)生代表,恰好抽到1名女生的概率是SKIPIF1<0,則SKIPIF1<0(

)A.1 B.4或6 C.4 D.67.(2022·江蘇南京·模擬預(yù)測)已知事件SKIPIF1<0,SKIPIF1<0,SKIPIF1<0相互獨(dú)立,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<08.(2022·全國·高三專題練習(xí))在某次數(shù)學(xué)考試中,學(xué)生成績SKIPIF1<0服從正態(tài)分布SKIPIF1<0.若SKIPIF1<0在SKIPIF1<0內(nèi)的概率是SKIPIF1<0,則從參加這次考試的學(xué)生中任意選取3名學(xué)生,恰有2名學(xué)生的成績不低于85的概率是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<09.(2022·全國·高三專題練習(xí))甲、乙兩人進(jìn)行乒乓球比賽,約定每局勝者得1分,負(fù)者得0分,比賽進(jìn)行到有一人比對方多2分或打滿6局時(shí)停止,設(shè)甲在每局中獲勝的概率為SKIPIF1<0,乙在每局中獲勝的概率為SKIPIF1<0,且各局勝負(fù)相互獨(dú)立,則比賽停止時(shí)已打局?jǐn)?shù)X的期望SKIPIF1<0為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<010.(2022·四川·南江中學(xué)高三階段練習(xí)(理))已知函數(shù)SKIPIF1<0在R上單調(diào)遞增的概率為SKIPIF1<0,且隨機(jī)變量SKIPIF1<0.則SKIPIF1<0等于(

)[附:若SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.]A.0.1359 B.0.1587 C.0.2718 D.0.3413二、多選題11.(2022·河北·廊坊市第一中學(xué)高三階段練習(xí))下列命題中,正確的命題的是(

)A.將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上同一個(gè)常數(shù)后,方差恒不變;B.已知隨機(jī)變量服從二項(xiàng)分布SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0;C.設(shè)隨機(jī)變量SKIPIF1<0服從正態(tài)分布SKIPIF1<0,若SKIPIF1<0,則

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論