新高考數(shù)學(xué)二輪復(fù)習(xí) 數(shù)列重難點(diǎn)提升專題08 數(shù)列求和-倒序相加、絕對值、奇偶性求和(原卷版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí) 數(shù)列重難點(diǎn)提升專題08 數(shù)列求和-倒序相加、絕對值、奇偶性求和(原卷版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí) 數(shù)列重難點(diǎn)提升專題08 數(shù)列求和-倒序相加、絕對值、奇偶性求和(原卷版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí) 數(shù)列重難點(diǎn)提升專題08 數(shù)列求和-倒序相加、絕對值、奇偶性求和(原卷版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí) 數(shù)列重難點(diǎn)提升專題08 數(shù)列求和-倒序相加、絕對值、奇偶性求和(原卷版)_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

專題08數(shù)列求和-倒序相加、絕對值、奇偶性求和◆倒序相加法求和等差數(shù)列的求和公式SKIPIF1<0,其過程正是利用倒序相加的原理.這類題之所以能夠利用倒序相加來求和,是因?yàn)槠渥陨砭邆涿黠@的特征,那就是首項(xiàng)與末項(xiàng)相加為定值.一般題中出現(xiàn)SKIPIF1<0(SKIPIF1<0為常數(shù)),SKIPIF1<0(SKIPIF1<0為常數(shù))時,可以采用倒序相加的方法進(jìn)行求和.【經(jīng)典例題1】已知函數(shù)SKIPIF1<0對任意的SKIPIF1<0,都有SKIPIF1<0,數(shù)列SKIPIF1<0滿足SKIPIF1<0…SKIPIF1<0.求數(shù)列SKIPIF1<0的通項(xiàng)公式.【練習(xí)1】已知正數(shù)數(shù)列SKIPIF1<0是公比不等于1的等比數(shù)列,且SKIPIF1<0,試用推導(dǎo)等差數(shù)列前??項(xiàng)和的方法探求:若SKIPIF1<0,則SKIPIF1<0(

)A.2018 B.4036 C.2019 D.4038【練習(xí)2】已知函數(shù)SKIPIF1<0,數(shù)列SKIPIF1<0是正項(xiàng)等比數(shù)列,且SKIPIF1<0,則SKIPIF1<0__________.【練習(xí)3】已知SKIPIF1<0,求SKIPIF1<0.【練習(xí)4】函數(shù)SKIPIF1<0對任意SKIPIF1<0,都有SKIPIF1<0.(I)求SKIPIF1<0的值;(II)若數(shù)列SKIPIF1<0滿足SKIPIF1<0,數(shù)列SKIPIF1<0是等差數(shù)列嗎?◆數(shù)列絕對值求和(1)對于首項(xiàng)小于0而公差大于0的等差數(shù)列SKIPIF1<0加絕對值后得到的數(shù)列SKIPIF1<0求和,設(shè)SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,數(shù)列SKIPIF1<0的第SKIPIF1<0項(xiàng)小于0而從第SKIPIF1<0項(xiàng)開始大于或等于0,于是有SKIPIF1<0(2)對于首項(xiàng)大于0而公差小于0的等差數(shù)列SKIPIF1<0加絕對值后得到的數(shù)列SKIPIF1<0求和,設(shè)SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,數(shù)列SKIPIF1<0的第SKIPIF1<0項(xiàng)大于0而從第SKIPIF1<0項(xiàng)開始小于或等于0,于是有SKIPIF1<0。【經(jīng)典例題1】已知SKIPIF1<0是數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,且SKIPIF1<0SKIPIF1<0.(1)求SKIPIF1<0;(2)求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【經(jīng)典例題2】已知等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0.(I)求SKIPIF1<0的通項(xiàng)公式;(II)求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【練習(xí)1】已知在前n項(xiàng)和為SKIPIF1<0的等差數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0.求數(shù)列SKIPIF1<0的前20項(xiàng)和SKIPIF1<0.【練習(xí)2】等差數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和.【練習(xí)3】數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,求數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0.【練習(xí)4】已知數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0,求數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0.◆數(shù)列奇偶性求和對于數(shù)列奇偶性的問題,基本原則有兩種手段:第一是所有的奇數(shù)項(xiàng)相加,所有的偶數(shù)項(xiàng)相加;第二是相鄰的奇數(shù)項(xiàng)與偶數(shù)項(xiàng)相加作為新的一項(xiàng).【經(jīng)典例題1】在數(shù)列SKIPIF1<0中,SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0________.【經(jīng)典例題2】數(shù)列SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的前60項(xiàng)和為_____.【經(jīng)典例題3】已知數(shù)列SKIPIF1<0滿足:當(dāng)SKIPIF1<0且SKIPIF1<0時,有SKIPIF1<0SKIPIF1<0.則數(shù)列SKIPIF1<0的前200項(xiàng)和為SKIPIF1<0A.300B.200C.100D.0【練習(xí)1】已知數(shù)列SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)記SKIPIF1<0,求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)記數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,求SKIPIF1<0.【練習(xí)2】已知數(shù)列數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和且SKIPIF1<0,且SKIPIF1<0.(1)求SKIPIF1<0的值,并證明:SKIPIF1<0;(2)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(3)求SKIPIF1<0的值.【練習(xí)3】已知數(shù)列SKIPIF1<0的首項(xiàng)SKIPIF1<0,前n項(xiàng)和為SKIPIF1<0,且數(shù)列SKIPIF1<0是公差為2的等差數(shù)列.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)若SKIPIF1<0,求數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0.【練習(xí)4】在數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0.(1)證明:SKIPIF1<0是等比數(shù)列;(2)求數(shù)列SKIPIF1<0的通項(xiàng)公式.【過關(guān)檢測】一、單選題1.已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,則數(shù)列SKIPIF1<0的前12項(xiàng)和為(

)A.93 B.94 C.95 D.962.德國數(shù)學(xué)家高斯是近代數(shù)學(xué)奠基者之一,有“數(shù)學(xué)王子”之稱,在歷史上有很大的影響.他幼年時就表現(xiàn)出超人的數(shù)學(xué)天才,10歲時,他在進(jìn)行SKIPIF1<0的求和運(yùn)算時,就提出了倒序相加法的原理,該原理基于所給數(shù)據(jù)前后對應(yīng)項(xiàng)的和呈現(xiàn)一定的規(guī)律生成,因此,此方法也稱之為高斯算法.已知數(shù)列SKIPIF1<0,則SKIPIF1<0(

)A.96 B.97 C.98 D.993.已知數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0,則SKIPIF1<0的值為(

)A.68 B.67 C.65 D.564.設(shè)SKIPIF1<0,SKIPIF1<0為數(shù)列的前n項(xiàng)和,求SKIPIF1<0的值是(

)A.SKIPIF1<0 B.0 C.59 D.SKIPIF1<05.已知數(shù)列{an}的前n項(xiàng)和為Sn=n2﹣5n+2,則數(shù)列{|an|}的前10項(xiàng)和為()A.56 B.58 C.62 D.606.在項(xiàng)數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項(xiàng)的和為165,所有偶數(shù)項(xiàng)的和為150,則n等于(

)A.9 B.10C.11 D.127.等差數(shù)列共有SKIPIF1<0項(xiàng),所有奇數(shù)項(xiàng)之和為132,所有偶數(shù)項(xiàng)之和為120,則SKIPIF1<0等于(

)A.6 B.8 C.10 D.128.已知等差數(shù)列SKIPIF1<0共有SKIPIF1<0項(xiàng),若數(shù)列SKIPIF1<0中奇數(shù)項(xiàng)的和為SKIPIF1<0,偶數(shù)項(xiàng)的和為SKIPIF1<0,SKIPIF1<0,則公差SKIPIF1<0的值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<09.已知某等差數(shù)列SKIPIF1<0的項(xiàng)數(shù)SKIPIF1<0為奇數(shù),前三項(xiàng)與最后三項(xiàng)這六項(xiàng)之和為SKIPIF1<0,所有奇數(shù)項(xiàng)的和為SKIPIF1<0,則這個數(shù)列的項(xiàng)數(shù)SKIPIF1<0為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<010.已知等差數(shù)列共有99項(xiàng),其中奇數(shù)項(xiàng)之和為300,則偶數(shù)項(xiàng)之和為(

)A.300 B.298 C.296 D.29411.已知數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,則此數(shù)列奇數(shù)項(xiàng)的前m項(xiàng)和為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、填空題12.已知函數(shù)SKIPIF1<0,數(shù)列SKIPIF1<0是正項(xiàng)等比數(shù)列,且SKIPIF1<0,SKIPIF1<0SKIPIF1<0______.13.在推導(dǎo)等差數(shù)列前n項(xiàng)和的過程中,我們使用了倒序相加的方法,類比可以求得SKIPIF1<0________.14.若數(shù)列SKIPIF1<0的前n項(xiàng)和是SKIPIF1<0,則SKIPIF1<0________.三、解答題15.等差數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.16.已知數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)若SKIPIF1<0,求數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0的公式.17.已知等差數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,且SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)求數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論