版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022學年江蘇省揚州市部分校中考數學模擬精編試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列運算錯誤的是()A.(m2)3=m6B.a10÷a9=aC.x3?x5=x8D.a4+a3=a72.的算術平方根為()A. B. C. D.3.一艘輪船和一艘漁船同時沿各自的航向從港口O出發(fā),如圖所示,輪船從港口O沿北偏西20°的方向行60海里到達點M處,同一時刻漁船已航行到與港口O相距80海里的點N處,若M、N兩點相距100海里,則∠NOF的度數為()A.50° B.60° C.70° D.80°4.函數y=x2+bx+c與y=x的圖象如圖所示,有以下結論:①b2﹣4c>1;②b+c+1=1;③3b+c+6=1;④當1<x<3時,x2+(b﹣1)x+c<1.其中正確的個數為A.1 B.2 C.3 D.45.估計﹣2的值應該在()A.﹣1﹣0之間 B.0﹣1之間 C.1﹣2之間 D.2﹣3之間6.下面四個立體圖形,從正面、左面、上面對空都不可能看到長方形的是A. B. C. D.7.如圖,正方形被分割成四部分,其中I、II為正方形,III、IV為長方形,I、II的面積之和等于III、IV面積之和的2倍,若II的邊長為2,且I的面積小于II的面積,則I的邊長為()A.4 B.3 C. D.8.搶微信紅包成為節(jié)日期間人們最喜歡的活動之一.對某單位50名員工在春節(jié)期間所搶的紅包金額進行統(tǒng)計,并繪制成了統(tǒng)計圖.根據如圖提供的信息,紅包金額的眾數和中位數分別是()A.20,20 B.30,20 C.30,30 D.20,309.已知關于x的不等式3x﹣m+1>0的最小整數解為2,則實數m的取值范圍是()A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤710.正方形ABCD和正方形BPQR的面積分別為16、25,它們重疊的情形如圖所示,其中R點在AD上,CD與QR相交于S點,則四邊形RBCS的面積為()A.8 B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.三角形的每條邊的長都是方程的根,則三角形的周長是.12.關于的分式方程的解為正數,則的取值范圍是___________.13.在四張背面完全相同的卡片上分別印有等腰三角形、平行四邊形、菱形和圓的圖案,現將印有圖案的一面朝下,混合后從中隨機抽取兩張,則抽到卡片上印有圖案都是軸對稱圖形的概率為_____.14.如圖,在邊長為1的小正方形網格中,點A、B、C、D都在這些小正方形的頂點上,AB、CD相交于點O,則tan∠AOD=________.15.分解因式x2﹣x=_______________________16.不解方程,判斷方程2x2+3x﹣2=0的根的情況是_____.17.如圖,兩個三角形相似,AD=2,AE=3,EC=1,則BD=_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在平面直角坐標系中,矩形DOBC的頂點O與坐標原點重合,B、D分別在坐標軸上,點C的坐標為(6,4),反比例函數y=(x>0)的圖象經過線段OC的中點A,交DC于點E,交BC于點F.(1)求反比例函數的解析式;(2)求△OEF的面積;(3)設直線EF的解析式為y=k2x+b,請結合圖象直接寫出不等式k2x+b>的解集.19.(5分)在矩形紙片ABCD中,AB=6,BC=8,現將紙片折疊,使點D與點B重合,折痕為EF,連接DF.(1)說明△BEF是等腰三角形;(2)求折痕EF的長.20.(8分)為落實“美麗撫順”的工作部署,市政府計劃對城區(qū)道路進行了改造,現安排甲、乙兩個工程隊完成.已知甲隊的工作效率是乙隊工作效率的倍,甲隊改造360米的道路比乙隊改造同樣長的道路少用3天.甲、乙兩工程隊每天能改造道路的長度分別是多少米?若甲隊工作一天需付費用7萬元,乙隊工作一天需付費用5萬元,如需改造的道路全長1200米,改造總費用不超過145萬元,至少安排甲隊工作多少天?21.(10分)已知,在平面直角坐標系xOy中,拋物線L:y=x2-4x+3與x軸交于A,B兩點(點A在點B的左側),頂點為C.(1)求點C和點A的坐標.(2)定義“L雙拋圖形”:直線x=t將拋物線L分成兩部分,首先去掉其不含頂點的部分,然后作出拋物線剩余部分關于直線x=t的對稱圖形,得到的整個圖形稱為拋物線L關于直線x=t的“L雙拋圖形”(特別地,當直線x=t恰好是拋物線的對稱軸時,得到的“L雙拋圖形”不變),①當t=0時,拋物線L關于直找x=0的“L雙拋圖形”如圖所示,直線y=3與“L雙拋圖形”有______個交點;②若拋物線L關于直線x=t的“L雙拋圖形”與直線y=3恰好有兩個交點,結合圖象,直接寫出t的取值范圍:______;③當直線x=t經過點A時,“L雙拋圖形”如圖所示,現將線段AC所在直線沿水平(x軸)方向左右平移,交“L雙拋圖形”于點P,交x軸于點Q,滿足PQ=AC時,求點P的坐標.22.(10分)如圖1,AB為半圓O的直徑,半徑的長為4cm,點C為半圓上一動點,過點C作CE⊥AB,垂足為點E,點D為弧AC的中點,連接DE,如果DE=2OE,求線段AE的長.小何根據學習函數的經驗,將此問題轉化為函數問題解決.小華假設AE的長度為xcm,線段DE的長度為ycm.(當點C與點A重合時,AE的長度為0cm),對函數y隨自變量x的變化而變化的規(guī)律進行探究.下面是小何的探究過程,請補充完整:(說明:相關數據保留一位小數).(1)通過取點、畫圖、測量,得到了x與y的幾組值,如下表:x/cm012345678y/cm01.62.53.34.04.75.85.7當x=6cm時,請你在圖中幫助小何完成作圖,并使用刻度尺度量此時線段DE的長度,填寫在表格空白處:(2)在圖2中建立平面直角坐標系,描出補全后的表中各組對應值為坐標的點,畫出該函數的圖象;(3)結合畫出的函數圖象解決問題,當DE=2OE時,AE的長度約為cm.23.(12分)如圖1,△ABC中,AB=AC=6,BC=4,點D、E分別在邊AB、AC上,且AD=AE=1,連接DE、CD,點M、N、P分別是線段DE、BC、CD的中點,連接MP、PN、MN.(1)求證:△PMN是等腰三角形;(2)將△ADE繞點A逆時針旋轉,①如圖2,當點D、E分別在邊AC兩側時,求證:△PMN是等腰三角形;②當△ADE繞點A逆時針旋轉到第一次點D、E、C在一條直線上時,請直接寫出此時BD的長.24.(14分)隨著“互聯網+”時代的到來,一種新型打車方式受到大眾歡迎,該打車方式的總費用由里程費和耗時費組成,其中里程費按x元/公里計算,耗時費按y元/分鐘計算(總費用不足9元按9元計價).小明、小剛兩人用該打車方式出行,按上述計價規(guī)則,其打車總費用、行駛里程數與打車時間如表:時間(分鐘)里程數(公里)車費(元)小明8812小剛121016(1)求x,y的值;(2)如果小華也用該打車方式,打車行駛了11公里,用了14分鐘,那么小華的打車總費用為多少?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】【分析】利用合并同類項法則,單項式乘以單項式法則,同底數冪的乘法、除法的運算法則逐項進行計算即可得.【詳解】A、(m2)3=m6,正確;B、a10÷a9=a,正確;C、x3?x5=x8,正確;D、a4+a3=a4+a3,錯誤,故選D.【點睛】本題考查了合并同類項、單項式乘以單項式、同底數冪的乘除法,熟練掌握各運算的運算法則是解題的關鍵.2、B【解析】分析:先求得的值,再繼續(xù)求所求數的算術平方根即可.詳解:∵=2,而2的算術平方根是,∴的算術平方根是,故選B.點睛:此題主要考查了算術平方根的定義,解題時應先明確是求哪個數的算術平方根,否則容易出現選A的錯誤.3、C【解析】
解:∵OM=60海里,ON=80海里,MN=100海里,∴OM2+ON2=MN2,∴∠MON=90°,∵∠EOM=20°,∴∠NOF=180°﹣20°﹣90°=70°.故選C.【點睛】本題考查直角三角形的判定,掌握方位角的定義及勾股定理逆定理是本題的解題關鍵.4、B【解析】分析:∵函數y=x2+bx+c與x軸無交點,∴b2﹣4c<1;故①錯誤。當x=1時,y=1+b+c=1,故②錯誤?!弋攛=3時,y=9+3b+c=3,∴3b+c+6=1。故③正確。∵當1<x<3時,二次函數值小于一次函數值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<1。故④正確。綜上所述,正確的結論有③④兩個,故選B。5、A【解析】
直接利用已知無理數得出的取值范圍,進而得出答案.【詳解】解:∵1<<2,∴1-2<﹣2<2-2,∴-1<﹣2<0即-2在-1和0之間.故選A.【點睛】此題主要考查了估算無理數大小,正確得出的取值范圍是解題關鍵.6、B【解析】
主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形依此找到從正面、左面、上面觀察都不可能看到長方形的圖形.【詳解】解:A、主視圖為三角形,左視圖為三角形,俯視圖為有對角線的矩形,故本選項錯誤;B、主視圖為等腰三角形,左視圖為等腰三角形,俯視圖為圓,從正面、左面、上面觀察都不可能看到長方形,故本選項正確;C、主視圖為長方形,左視圖為長方形,俯視圖為圓,故本選項錯誤;D、主視圖為長方形,左視圖為長方形,俯視圖為長方形,故本選項錯誤.故選:B.【點睛】本題重點考查三視圖的定義以及考查學生的空間想象能力.7、C【解析】
設I的邊長為x,根據“I、II的面積之和等于III、IV面積之和的2倍”列出方程并解方程即可.【詳解】設I的邊長為x根據題意有解得或(舍去)故選:C.【點睛】本題主要考查一元二次方程的應用,能夠根據題意列出方程是解題的關鍵.8、C【解析】
根據眾數和中位數的定義,出現次數最多的那個數就是眾數,把一組數據按照大小順序排列,中間那個數或中間兩個數的平均數叫中位數.【詳解】捐款30元的人數為20人,最多,則眾數為30,中間兩個數分別為30和30,則中位數是30,故選C.【點睛】本題考查了條形統(tǒng)計圖、眾數和中位數,這是基礎知識要熟練掌握.9、A【解析】
先解出不等式,然后根據最小整數解為2得出關于m的不等式組,解之即可求得m的取值范圍.【詳解】解:解不等式3x﹣m+1>0,得:x>,∵不等式有最小整數解2,∴1≤<2,解得:4≤m<7,故選A.【點睛】本題考查了一元一次不等式的整數解,解一元一次不等式組,正確解不等式,熟練掌握一元一次不等式、一元一次不等式組的解法是解答本題的關鍵.10、D【解析】
根據正方形的邊長,根據勾股定理求出AR,求出△ABR∽△DRS,求出DS,根據面積公式求出即可.【詳解】∵正方形ABCD的面積為16,正方形BPQR面積為25,∴正方形ABCD的邊長為4,正方形BPQR的邊長為5,在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,∵四邊形ABCD是正方形,∴∠A=∠D=∠BRQ=90°,∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,∴∠ABR=∠DRS,∵∠A=∠D,∴△ABR∽△DRS,∴,∴,∴DS=,∴∴陰影部分的面積S=S正方形ABCD-S△ABR-S△RDS=4×4-×4×3-××1=,故選:D.【點睛】本題考查了正方形的性質,相似三角形的性質和判定,能求出△ABR和△RDS的面積是解此題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、6或2或12【解析】
首先用因式分解法求得方程的根,再根據三角形的每條邊的長都是方程的根,進行分情況計算.【詳解】由方程,得=2或1.當三角形的三邊是2,2,2時,則周長是6;當三角形的三邊是1,1,1時,則周長是12;當三角形的三邊長是2,2,1時,2+2=1,不符合三角形的三邊關系,應舍去;當三角形的三邊是1,1,2時,則三角形的周長是1+1+2=2.綜上所述此三角形的周長是6或12或2.12、且.【解析】
方程兩邊同乘以x-1,化為整數方程,求得x,再列不等式得出m的取值范圍.【詳解】方程兩邊同乘以x-1,得,m-1=x-1,解得x=m-2,∵分式方程的解為正數,∴x=m-2>0且x-1≠0,即m-2>0且m-2-1≠0,∴m>2且m≠1,故答案為m>2且m≠1.13、【解析】
用字母A、B、C、D分別表示等腰三角形、平行四邊形、菱形和圓,畫樹狀圖展示所有12種等可能的結果數,再找出抽到卡片上印有圖案都是軸對稱圖形的結果數,然后根據概率公式求解.【詳解】解:用字母A、B、C、D分別表示等腰三角形、平行四邊形、菱形和圓,畫樹狀圖:共有12種等可能的結果數,其中抽到卡片上印有圖案都是軸對稱圖形的結果數為6,所以抽到卡片上印有圖案都是軸對稱圖形的概率.故答案為.【點睛】本題考查了列表法與樹狀圖法:利用列表法和樹狀圖法展示所有可能的結果求出n,再從中選出符合事件A或B的結果數目m,求出概率.也考查了軸對稱圖形.14、1【解析】
首先連接BE,由題意易得BF=CF,△ACO∽△BKO,然后由相似三角形的對應邊成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:1,在Rt△OBF中,即可求得tan∠BOF的值,繼而求得答案.【詳解】如圖,連接BE,∵四邊形BCEK是正方形,∴KF=CF=CK,BF=BE,CK=BE,BE⊥CK,∴BF=CF,根據題意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:1,∴KO=OF=CF=BF,在Rt△PBF中,tan∠BOF==1,∵∠AOD=∠BOF,∴tan∠AOD=1.故答案為1【點睛】此題考查了相似三角形的判定與性質,三角函數的定義.此題難度適中,解題的關鍵是準確作出輔助線,注意轉化思想與數形結合思想的應用.15、x(x-1)【解析】x2﹣x=x(x-1).故答案是:x(x-1).16、有兩個不相等的實數根.【解析】分析:先求一元二次方程的判別式,由△與0的大小關系來判斷方程根的情況.詳解:∵a=2,b=3,c=?2,∴∴一元二次方程有兩個不相等的實數根.故答案為有兩個不相等的實數根.點睛:考查一元二次方程根的判別式,當時,方程有兩個不相等的實數根.當時,方程有兩個相等的實數根.當時,方程沒有實數根.17、1【解析】
根據相似三角形的對應邊的比相等列出比例式,計算即可.【詳解】∵△ADE∽△ACB,∴=,即=,解得:BD=1.故答案為1.【點睛】本題考查的是相似三角形的性質,掌握相似三角形的對應邊的比相等是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)y=;(2);(3)<x<1.【解析】
(1)先利用矩形的性質確定C點坐標(1,4),再確定A點坐標為(3,2),根據反比例函數圖象上點的坐標特征得到k1=1,即反比例函數解析式為y=;(2)利用反比例函數解析式確定F點的坐標為(1,1),E點坐標為(,4),然后根據△OEF的面積=S矩形BCDO﹣S△ODE﹣S△OBF﹣S△CEF進行計算;(3)觀察函數圖象得到當<x<1時,一次函數圖象都在反比例函數圖象上方,即k2x+b>.【詳解】(1)∵四邊形DOBC是矩形,且點C的坐標為(1,4),∴OB=1,OD=4,∵點A為線段OC的中點,∴A點坐標為(3,2),∴k1=3×2=1,∴反比例函數解析式為y=;(2)把x=1代入y=得y=1,則F點的坐標為(1,1);把y=4代入y=得x=,則E點坐標為(,4),△OEF的面積=S矩形BCDO﹣S△ODE﹣S△OBF﹣S△CEF=4×1﹣×4×﹣×1×1﹣×(1﹣)×(4﹣1)=;(3)由圖象得:不等式不等式k2x+b>的解集為<x<1.【點睛】本題考查了反比例函數與一次函數的交點問題:求反比例函數與一次函數的交點坐標,把兩個函數關系式聯立成方程組求解即可.19、(1)見解析;(2).【解析】
(1)根據折疊得出∠DEF=∠BEF,根據矩形的性質得出AD∥BC,求出∠DEF=∠BFE,求出∠BEF=∠BFE即可;(2)過E作EM⊥BC于M,則四邊形ABME是矩形,根據矩形的性質得出EM=AB=6,AE=BM,根據折疊得出DE=BE,根據勾股定理求出DE、在Rt△EMF中,由勾股定理求出即可.【詳解】(1)∵現將紙片折疊,使點D與點B重合,折痕為EF,∴∠DEF=∠BEF.∵四邊形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,即△BEF是等腰三角形;(2)過E作EM⊥BC于M,則四邊形ABME是矩形,所以EM=AB=6,AE=BM.∵現將紙片折疊,使點D與點B重合,折痕為EF,∴DE=BE,DO=BO,BD⊥EF.∵四邊形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90°.在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=.在Rt△EMF中,由勾股定理得:EF==.故答案為.【點睛】本題考查了折疊的性質和矩形性質、勾股定理等知識點,能熟記折疊的性質是解答此題的關鍵.20、(1)乙工程隊每天能改造道路的長度為40米,甲工程隊每天能改造道路的長度為60米.(2)10天.【解析】
(1)設乙工程隊每天能改造道路的長度為x米,則甲工程隊每天能改造道路的長度為x米,根據工作時間=工作總量÷工作效率結合甲隊改造360米的道路比乙隊改造同樣長的道路少用3天,即可得出關于x的分式方程,解之經檢驗后即可得出結論;(2)設安排甲隊工作m天,則安排乙隊工作天,根據總費用=甲隊每天所需費用×工作時間+乙隊每天所需費用×工作時間結合總費用不超過145萬元,即可得出關于m的一元一次不等式,解之取其中的最大值即可得出結論.【詳解】(1)設乙工程隊每天能改造道路的長度為x米,則甲工程隊每天能改造道路的長度為x米,根據題意得:,解得:x=40,經檢驗,x=40是原分式方程的解,且符合題意,∴x=×40=60,答:乙工程隊每天能改造道路的長度為40米,甲工程隊每天能改造道路的長度為60米;(2)設安排甲隊工作m天,則安排乙隊工作天,根據題意得:7m+5×≤145,解得:m≥10,答:至少安排甲隊工作10天.【點睛】本題考查了分式方程的應用以及一元一次不等式的應用,解題的關鍵是:(1)找準等量關系,正確列出分式方程;(2)根據各數量間的關系,正確列出一元一次不等式.21、(1)C(2,-1),A(1,0);(2)①3,②0<t<1,③(+2,1)或(-+2,1)或(-1,0)【解析】
(1)令y=0得:x2-1x+3=0,然后求得方程的解,從而可得到A、B的坐標,然后再求得拋物線的對稱軸為x=2,最后將x=2代入可求得點C的縱坐標;(2)①拋物線與y軸交點坐標為(0,3),然后做出直線y=3,然后找出交點個數即可;②將y=3代入拋物線的解析式求得對應的x的值,從而可得到直線y=3與“L雙拋圖形”恰好有3個交點時t的取值,然后結合函數圖象可得到“L雙拋圖形”與直線y=3恰好有兩個交點時t的取值范圍;③首先證明四邊形ACQP為平行四邊形,由可得到點P的縱坐標為1,然后由函數解析式可求得點P的橫坐標.【詳解】(1)令y=0得:x2-1x+3=0,解得:x=1或x=3,∴A(1,0),B(3,0),∴拋物線的對稱軸為x=2,將x=2代入拋物線的解析式得:y=-1,∴C(2,-1);(2)①將x=0代入拋物線的解析式得:y=3,∴拋物線與y軸交點坐標為(0,3),如圖所示:作直線y=3,由圖象可知:直線y=3與“L雙拋圖形”有3個交點,故答案為3;②將y=3代入得:x2-1x+3=3,解得:x=0或x=1,由函數圖象可知:當0<t<1時,拋物線L關于直線x=t的“L雙拋圖形”與直線y=3恰好有兩個交點,故答案為0<t<1.③如圖2所示:∵PQ∥AC且PQ=AC,∴四邊形ACQP為平行四邊形,又∵點C的縱坐標為-1,∴點P的縱坐標為1,將y=1代入拋物線的解析式得:x2-1x+3=1,解得:x=+2或x=-+2.∴點P的坐標為(+2,1)或(-+2,1),當點P(-1,0)時,也滿足條件.綜上所述,滿足條件的點(+2,1)或(-+2,1)或(-1,0)【點睛】本題主要考查的是二次函數的綜合應用,解答本題需要同學們理解“L雙拋圖形”的定義,數形結合以及方程思想的應用是解題的關鍵.22、(1)5.3(2)見解析(3)2.5或6.9【解析】
(1)(2)按照題意取點、畫圖、測量即可.(3)中需要將DE=2OE轉換為y與x的函數關系,注意DE為非負數,函數為分段函數.【詳解】(1)根據題意取點、畫圖、測量的x=6時,y=5.3故答案為5.3(2)根據數據表格畫圖象得(3)當DE=2OE時,問題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 家具購銷合同案例
- 圖書出版合作協議書格式
- 汽車抵押借款合同協議書示例
- 個人合伙協議書格式
- 2024智能化工程維修合同
- 房地產抵押合同常見條款
- 教師臨時雇傭合同
- 2023年高考地理重點難點考點通練-環(huán)境安全與國家安全(原卷版)
- 工廠合作伙伴意向書
- 各類協議書的法律效力
- 3.4問題解決策略:歸納-2024-2025年北師大版《數學》七年級上冊
- 2024年全國社會保障基金理事會招聘18人歷年(高頻重點復習提升訓練)共500題附帶答案詳解
- DL∕T 5210.4-2018 電力建設施工質量驗收規(guī)程 第4部分:熱工儀表及控制裝置
- 2024年全國初中數學競賽試題含答案
- 殘疾兒童送教上門教案
- 醫(yī)療器械(耗材)項目投標服務投標方案(技術方案)
- (完整版)鏈傳動習題
- 出國留學高中成績單最強模板
- 食安員抽考必備知識考試題庫(含答案)
- profibus現場總線故障診斷與排除
- 大學生生涯決策平衡單樣表
評論
0/150
提交評論