導(dǎo)數(shù)中的極值點(diǎn)偏移問題(解析版)_第1頁
導(dǎo)數(shù)中的極值點(diǎn)偏移問題(解析版)_第2頁
導(dǎo)數(shù)中的極值點(diǎn)偏移問題(解析版)_第3頁
導(dǎo)數(shù)中的極值點(diǎn)偏移問題(解析版)_第4頁
導(dǎo)數(shù)中的極值點(diǎn)偏移問題(解析版)_第5頁
已閱讀5頁,還剩59頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1 1 1 1 5 8題型4指數(shù)型極值點(diǎn)偏移 題型5對數(shù)型極值點(diǎn)偏移 反饋訓(xùn)練 性。若函數(shù)f(x)在x=x0處取得極值,且函數(shù)y=f(x)與直線y=b交于A(x1,b),B(x2,b)兩點(diǎn),則AB的x0(1)對稱化構(gòu)造法:構(gòu)造輔助函數(shù):對結(jié)論x1+x2x1x2>(<)x型,構(gòu)造函數(shù)=f(x(-f(通過研究F(x)的單調(diào)性獲得不等式.數(shù)單調(diào)性證明.<1;【分析】(1)對函數(shù)f(x(=2xlnx-x2+1變形整理f(x(-1=2xlnx-x2=x(2lnx-x(,構(gòu)造函數(shù)結(jié)論成立.(2)對函數(shù)f(x(=2xlnx-x2+1進(jìn)行二次求導(dǎo),從而可判斷函數(shù)f(x(單調(diào)性,要證x1+x2>2,只需證x2>2-x1,結(jié)合f(x(在(0,+∞(上單調(diào)遞減知只需證f(x2(<f(2-x1(,即證f(x1(+f(2-x1(>0,進(jìn)而構(gòu)造函數(shù)F(x(=f(x(+f(2-x(判斷其單調(diào)性即可證明.【詳解】(1)由題意,f(x(-1=2xlnx-x2=x(2lnx-x(,設(shè)g(x(=2lnx-x(x>0(,則g/(x(=x(<0,∴g(x(單調(diào)遞減,從而g(x(max=g(2(=2ln2-2=2(∴f(x(-1=xg(x(<0,故f(x(<1.x(=2lnx+2-2x,fⅡ(x(=-2=,x>0,∴f從而f/(x(在(0,1(上單調(diào)遞增,在(1,+∞(上單調(diào)遞減,故f/(x(≤f/(1(=0,若0<x1<x2≤1,則f(x1(+f(x2(>0,不合題意,若1≤x1<x2,則f(x1(+f(x2(<0,不合題意,∴0<x1<1<x2,要證x1+x2>2,只需證x2>2-x1,結(jié)合f(x(在(0,+∞(上單調(diào)遞減知只需證f(x2(<f(2-x1(,又f(x1(+f(x2(=0,∴f(x2(=-f(x1(,故只需證-f(x1(<f(2-x1(,即證f(x1(+f(2-x1(>0①,令F(x(=f(x(+f(2-x(,0<x<1,則F/(x(=f/(x(-f/(2-x(=2lnx+2-2x-[2ln(2-x(+2-2(2-x([=2ln-+4-4x,F(xiàn),:F/(x(<0,從而F(x(在(0,1(上單調(diào)遞減,“F(1(=2f(1(=0,:F(x(>0,“0<x1<1,:F(x1(=f(x1(+f(2-x1(>0,即不等式①成立,故x1+x2>2.2.(2024·云南·二模)已知常數(shù)a>0,函數(shù)f(x)=x2-ax-2a2lnx.(1)若Vx>0,f(x)>-4a2,求a的取值范圍;x2>4a.(1)(0,(2)由(1)不妨設(shè)0<x1<2a<x2,設(shè)F(x)=f(x)-f(4a-x),利用導(dǎo)數(shù)說明函數(shù)的單調(diào)性,即可得到f(x1(>f(4a-x1(,結(jié)合f(x1(=f(x2(及f(x(的單調(diào)性,即可證明.(1)由已知得f(x)的定義域?yàn)閧x|x>0},且f/(x)=x-a-==.“a>0,:當(dāng)x∈(0,2a)時(shí),f/(x)<0,即f(x)在(0,2a)x)>0,即f(x)在(2a,+∞)上單調(diào)遞增.所以f(x(在x=2a處取得極小值即最小值,:f(x(min=f(2a(=-2a2ln(2a(,“Vx>0,f(x(>-4a2今f(x(min=-2a2ln(2a(>-4a2今ln(2a(<lne2,(2)由(1)知,f(x)的定義域?yàn)閧x|x>0},“x1設(shè)F(x)=f(x)-f(4a-x),則F/(x)=+=.x)<0,F/(2a)=0,即F(x)在(0,2a]上單調(diào)遞減.“0<x1<2a,∴F(x1(>F(2a)=0,即f(x1(>f(4a-x1(,∵f(x1(=f(x2(=0,∴f(x2(>f(4a-x1(,∴4a-x1>2a,又∵x2>2a證明不等式.3.(2024·四川南充·一模)已知函數(shù)f(x)=x-lnx-a有兩個(gè)不同的零點(diǎn)x1,x2.x2>2.(1)f(x(的定義域?yàn)?0,+∞(,所以f(x(在(0,1(上單調(diào)遞減,在(1,+∞(上單調(diào)遞增,(2)不妨設(shè)x1<x2<1,x2>1又f(x(在(1,+∞(上單調(diào)遞增,所以只需證f(2-x1(<f(x2(,即證f(2-x1(<f(x1(.記g(x(=f(2-x(-f(x(=2-2x-ln(2-x(+lnx,x∈(0,1(,則g/(x(=+--2=-,x(>0,g(x(單調(diào)遞增,又g(1(=f(2-1(-f(1(=0,所以g(x1(=f(2-x1(-f(x1(<0,即f(2-x1(<f(x1(.4.(2024·安徽淮南·二模)已知函數(shù)f(x)=(1-x-k(x-1),x>-1,k∈R.(1)k=0時(shí),函數(shù)f(x)=ex,x∈(-1,0),則f/(x)=ex>0,f(x)在(-1,0)上單調(diào)遞增,所以f(x)=ex<f(0)=-1.設(shè)函數(shù)F(x)=-k,F(xiàn)/(x)=x)>0,故F(x)在(-1,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增.設(shè)函數(shù)h(x)=F(x)-F(-x),x∈(-1,0),則h(x)=+,/(x)<0,即函數(shù)h(x)在(-1,0)上單調(diào)遞減,所以h(x)>h(0)=0,即有F(x2(=F(x1(>F(-x1(,所以x2>-x1,5.(23-24高三下·天津·階段練習(xí))已知函數(shù)f(x)=x2-2ax+4lnx.(1)討論f(x)的單調(diào)區(qū)間;個(gè)公共點(diǎn)x1,x2,x3(x1<x2<x3(;②求證:x3-x1<47.(1)答案見解析2>2λ1-x1,只需證f(x1(<f(2λ1-x1(,構(gòu)造函數(shù)g(x(=f(x(-3-x1=(x2+x3(證.(1)f/(x(=2x-2a+=,x>0,其中t(x(=x2-ax+2,Δ=a2-8,函數(shù)f(x(在區(qū)間(0,+∞(單調(diào)遞增,f/(x(>0在區(qū)間(0,+∞(上恒成立,即函數(shù)f(x(在區(qū)間(0,+∞(上單調(diào)遞增,x1=所以函數(shù)f(x(的單調(diào)遞增區(qū)間是(0,和,+∞(,f(x(的單調(diào)遞增區(qū)間是(0,+∞(;當(dāng)a>2·2時(shí),函數(shù)f(x(的單調(diào)遞增區(qū)間是(0,和,+∞(,又y=f(x)的圖象與y=b有三個(gè)公共點(diǎn)x1,x2,x3(x1<x2<x3(,故0<x1<λ1<x2<λ2<x3,則2λ1-x1>λ1,要證x1+x2>2λ1,即證x2>2λ1-x1,又2λ1-x1>λ1,且函數(shù)f(x(在(λ1,λ2(上單調(diào)遞減,即可證f(x2(<f(2λ1-x1(,又f(x1(=f(x2(=b,即可證f(x1(<f(2λ1-x1(,令g(x(=f(x(-f(2λ1-x(,x∈(0,λ1(,由f/(x(=2x-2a+==,則g/(x(=+x(2λ1-x(=2(x-λ1(?(x-λ2((2λ1-x(+x(x+x(2λ1-x(x(2λ1-x(=2(x-λ1(?-x2-2λ1λ2+2λ1x+λ2x+x2x(2λ1-x(故g/(x(在(0,λ1(上單調(diào)遞增,即g(x(<g(λ1(=f(λ1(-f(2λ1-λ1(=0,即f(x1(<f(2λ1-x1(恒成立,即得證;②由0<x1<λ1<x2<λ2<x3,則2λ2-x3<λ2,令h(x(=f(x(-f(2λ2-x(,x∈(λ2,+∞(,則h/(x(=+x(2λ2-x(=2(x-λ2(?(x-λ1((2λ2-x(+x(x+x(2λ2-x(=2(x-λ2(?-故h/(x(在(λ2,+∞(上單調(diào)遞增,即h(x(>h(λ2(=f(λ2(-f(2λ2-λ2(=0,時(shí),f(x(>f(2λ2-x(,由x3>λ2,故f(x3(>f(2λ2-x3(,又f(x3(=f(x2(,故f(x2(>f(2λ2-x3(,2-x3<λ2,λ1<x2<λ2,函數(shù)f(x(在(λ1,λ2(上單調(diào)遞減,故x2<2λ2-x3,即x2+x3<2λ2,又由①知x1+x2>2λ1,故x3-x1=(x2+x3(-(x2+x1(<2λ2-2λ1,2-2λ1=2(λ1+λ2(2-4λ1λ2=2a2-8≤262-8=47,故x3-x1<4、7.-x1=(x2+x3(-(x2+x1(<2λ2-2λ1.6.已知函數(shù)f(x(=3lnx+ax2-4x(a>0).(1)由題意可知:f(x(的定義域?yàn)?0,+∞(,f/(x(=+2ax-4=,即f/(x(>0在(0,+∞(內(nèi)恒成立,所以f(x(在(0,+∞(內(nèi)單調(diào)遞增.f/(x(=+x-4=,1<x<3,f/(x(<0;0<x<1,或x>3,f/(x(>0;故f(x(在(0,1(,(3,+∞(內(nèi)單調(diào)遞增,在(1,3(內(nèi)單調(diào)遞減,由題意可得:0<x1<1<x2<3<x3,因?yàn)閒(x1(=f(x2(=f(x3(=b,令g(x(=f(x(-f(2-x(,0<x<1,則g/(x(=f/(x(+f/(2-x(=+x-4(+-+2-x-4(=>0,可知g(x(在(0,1(內(nèi)單調(diào)遞增,則g(x(<g(1(=0,可得f(x(<f(2-x(在(0,1(內(nèi)恒成立,,則f(x1(=f(x2(<f(2-x1(,且1<2-x1<2,1<x2<3,f(x(在(1,3(內(nèi)單調(diào)遞減令h(x(=f(x(-f(6-x(,1<x<3,則h/(x(=f/(x(+f/(6-x(=+x-4(+-+6-x-4(=>0,可知h(x(在(1,3(內(nèi)單調(diào)遞增,則h(x(<h(3(=0,可得f(x(<f(6-x(在(1,3(內(nèi)恒成立,,則f(x2(=f(x3(<f(6-x2(,且3<6-x2<5,x3>3,f(x(在(3,+∞(內(nèi)單調(diào)遞增,由x1+x2>2和x2+x3<6可得x3-x1<4.x2>1<a<1;由=,設(shè)h(x(=g(x(-g,對h(x(求導(dǎo)可得g(x1(<g,又g(x1(=g(x2(,再由g(x(在f(x(=(1+lnx(eln=又f/(x(=1+lnx(?ax2=-lnx,由f/(x(=0,得xax2當(dāng)0<x<1時(shí),f/(x(>0,則f(x(在(0,1(上單當(dāng)x>1時(shí),f/(x(<0,則f(x(在(1,+∞(上單調(diào)遞減,<x1<1<x2,=, 設(shè)h(x(=g(x(-g=-x(1-lnx(,x(=+lnx=lnx≥0,所以h(x(在(0,+∞(上單調(diào)遞增,又h(1(=0,所以h(x1(=g(x1(-g<0,即g(x1(<g,又g(x1(=g(x2(,所以g(x2(<g,又x2>1,>1故x1x2>1.=g(x(-g,對h(x(求導(dǎo),得到h(x(的單調(diào)性和最值可證得g(x1(<g,即可證明x1x2>1.故f/(x)=+x-2==≥0,令g/(x)=0//即當(dāng)-1<a<-1時(shí),f(x)=ax2有兩個(gè)不同實(shí)根x1,x2,上述兩式相除得ln(x1x2)=x1+x2,lnx2-x1不妨設(shè)x1<x22>e2,設(shè)t=>1,令F(t)=lnt-=lnt+-2,則F′(t)=-=>0,2>e2.1x2<4.求導(dǎo)得f/(x)=ax-(2a+1)+=,若0<a<,當(dāng)0<x<2或x>時(shí),f/(x)>0,當(dāng)2<x<時(shí),f/(x)<0,若a>,當(dāng)0<x<或x>2時(shí),f/(x)>0,當(dāng)<x<2時(shí),f/(x)<0,所以a的取值范圍是a≤0.0<x1<2<x2,要證x1x2<4,只證x1<,即證f(x1(<f,就證f(x2(-f<0,令g(x)=f(x)-fx>2,求導(dǎo)得g/(x)=f/(x)-f/-=(ax-1)(x-2)+-1-2(?4=(ax-1)(x-2)(x-4a)xx2x=ax-1+=?)<0,即f(x2)-f<0?f(x2)<f,又f(x1)=f(x2),因此f(x1)<f,顯然0<x1<2,0<<2,又函數(shù)f(x)在(0,2)上單調(diào)遞增,則有x1<,所以x1x2<4.a+eb<1.f(x(min<0,求出m>-,結(jié)合題目條件,得到當(dāng)-<m<0時(shí),f>0,根據(jù)零點(diǎn)存在性定理得到f(x(在a-b=x(≤0,g(x(在定義域內(nèi)單調(diào)遞減,故g(t+1(<g(t(,即ln(1+t(+-<0,證明出結(jié)論.(x)=(x+1(ex,故f(x(在(-∞,-1(內(nèi)單調(diào)遞減,在(-1,+∞(單調(diào)遞增,故要使f(x(有兩個(gè)零點(diǎn),則需f(x(min=f(-1(=-e-1-m<0,故m>-,由題目條件m<0,可得-<m<0,當(dāng)-<m<0時(shí),因?yàn)閒=e>m-m=0,又<-e<-1,故f(x(在(-∞,-1(內(nèi)存在唯一零點(diǎn),又f(0(=-m>0,故f(x)在(-1,0(內(nèi)存在唯一零點(diǎn),則f(x(在R上存在兩個(gè)零點(diǎn),故滿足題意的實(shí)數(shù)m的取值范圍為(-,0(;a-b=,-at=t,故a=,要證ea+eb<1,即證e+e<1?elnt+1(<1?e+1(<1?eeln(t+1(<1?e+ln(t+1(<1,即證ln(1+t(+-<0,u(>0,故h(u(在(0,1(內(nèi)單調(diào)遞減,在(1,+∞(單調(diào)遞增,所以h(u(≥h(1(=0,所以u-1-lnu≥0,令u=得-1-ln≥0,x(在定義域內(nèi)單調(diào)遞減,11.(2023·湖北武漢·三模)已知函數(shù)f(x(=ax+(a-1(lnx+,a∈R.(1)討論函數(shù)f(x(的單調(diào)性;(2)若關(guān)于x的方程f(x(=xex-lnx+有兩個(gè)不相等的實(shí)數(shù)根x1、x2,(1)答案見解析出函數(shù)f(x(的增區(qū)間和減區(qū)間;(2)(i)將方程變形為ex+lnx=a(x+lnx(,令t(x(=x+lnx,令g(t(=,可知直線y=a與函數(shù)g(t((1)解:因?yàn)閒(x(=ax+(a-1(lnx+,所以f,(x(=a+-==,其中x>0.①當(dāng)a≤0時(shí),f,(x(<0,所以函②當(dāng)a>0時(shí),由f,(x(>0得x>,由f,(x(<0可得0<x<.所以函數(shù)f(x(的增區(qū)間為,+∞(,減區(qū)間為(0,.當(dāng)a>0時(shí),函數(shù)f(x(的增區(qū)間為,+∞(,減(2)解:(i)方程f(x(=xex-lnx+可化為xex=ax+alnx,即ex+lnx=a(x+lnx(.令t(x(=x+lnx,因?yàn)楹瘮?shù)t(x(在(0,+∞(上單調(diào)遞增,易知函數(shù)t(x(=x+lnx的值域?yàn)镽,t=at(*)有兩個(gè)不等的實(shí)根.由g,(t(<0可得t<0或0<t<1,由g,(t(>0可得t>1,所以,函數(shù)g(t(在(-∞,0(和(0,1(上單調(diào)遞減,在(1,+∞(上單調(diào)遞增.t(=>0.作出函數(shù)g(t(和y=a的圖象如下圖所示:t=at,所以只需證t1+t2>2.t1<1<t2.令p=(t>1(,只需證lnp>.令h(p(=lnp-,其中p>1,則h/(p(=-=>0,所以h(p(在(1,+∞(上單調(diào)遞增,故h(p所以原不等式得證.(1)直接構(gòu)造函數(shù)法:證明不等式f(x(>g(x((或f(x(<g(x()轉(zhuǎn)化為證明f(x(-g(x(>0(或f(x(-g(x(<0),進(jìn)而構(gòu)造輔助函數(shù)h(x(=f(x(-g(x(;(2)若函數(shù)g(x(=xf(x(-x+a有兩個(gè)不同的極值點(diǎn),記作x1,x2【分析】(1)對函數(shù)f(x(=lnx-3x求導(dǎo)后得f/(x(=,x>0,分別求出f/(x(>0和f/(x(<0的(2)由g(x(=xf(x(-x+a有兩個(gè)極值點(diǎn)x1,x2?lnx1=2ax1,lnx2=2ax2,從而要證lnx1+2lnx2>3?2ax1+4ax2>3?a>?->,令t=,t>1,構(gòu)建函數(shù)h(t(=lnt-【詳解】(1)由題意得f(x(=lnx-3x,則f/(x(=,x令f/(x(>0,解得0<x<;令f/(x(<0,解得x>,∴f(x(在(0,上單調(diào)遞增,在,+∞(上單調(diào)遞減,∴f(x)max=f=ln-3×=-ln3-1,∴f(x(無最小值,最大值為-ln3-1.(2)∵g(x(=xf(x(-x+a=xlnx-ax2-x+a,則g/(x(=lnx-2ax,又g(x(有兩個(gè)不同的極值點(diǎn)x1,x2,∴l(xiāng)nx1=2ax1,lnx2=2ax2,∵0<x1<x2,∴原式等價(jià)于證明a>①.x2-x1x1+2x2,x2-x1x1+2x2,即證ln>=.令h(t(=lnt-,則h/(t(=-=,∵t>1,∴h/(t(>0恒成立,∴h(t(在(1,+∞(上單調(diào)遞增,t(>h(1(=0,即lnt>,13.(2024高三下·全國·專題練習(xí))已知函數(shù)g(x(=lnx-ax2+(2-a(x(a∈R).(1)求g(x(的單調(diào)區(qū)間;(2)若函數(shù)f(x(=g(x(+(a+1(x2-2x,x1,x2(0<x1<x2(是函數(shù)f(x(的兩個(gè)零點(diǎn),證明:f/<(1)答案見解析h(t(=(1+t(lnt-2t+2,利用導(dǎo)數(shù)研究函數(shù)h(t(單調(diào)性,確定其最值,得到h(t(<h(1(=0,即可證得結(jié)論.(1)函數(shù)g(x(=lnx-ax2+(2-a(x的定義域?yàn)?0,+∞(,g/(x(=-2ax+2-a=-,,則g(x(在(0,+∞(上單調(diào)遞增;x(<0,則g(x(在(0,上單調(diào)遞增,在,+∞(上單調(diào)遞減.(2)因?yàn)閤1,x2(0<x1<x2(是f(x(=lnx+x2-ax的兩個(gè)零點(diǎn),所以lnx1+x-ax1=0,lnx2+x-ax2=0,將兩式作差可得a=+(x1+x2(,又f/(x(=+2x-a,所以f/=+x1+x2-a=-,所以要證f/<0,只須證明-<0,即證明>lnx1-lnx2,即證明>ln,令=t∈(0,1(,即證>lnt,2t-2>(1+t(lnt,令h(t(=(1+t(lnt-2t+2,則h/(t(=lnt+-1,令u(t(=h/(t(=lnt+-1,則u/(t(=-=<0在(0,1(上恒成立,∴h/(t(在(0,1(上遞減,又h/(t(>h/(1(=0,∴h(t(在(0,1(上遞增,則h(t(<h(1(=0,即(1+t(lnt<2t-2, 行求解.f(x(=圖象上(ii)證明:x+x>.ax-ex+ax2-1=lnx,進(jìn)行同構(gòu)eax+ax2=elnex+lnex,將問題轉(zhuǎn)化為方程ax2值范圍.e(ii)由2(x+x(>(x1+x2(2知,先證x1+x2>.2,即極值點(diǎn)偏移問題,構(gòu)造函數(shù)F(x(=h(x(-e得h(x1(<h-x1(即h(x2(<h-x1(,再由設(shè)h(x(=(x>1),則h/(x(=,由h/(x(>0?2lnx-ln2x>0?lnx(2-lnx(>0.因?yàn)閤>1,所以2-lnx>0?x<e2,所以h(x(在(1,e2(上單調(diào)遞增,在(e2,+∞(上單調(diào)遞減,所以h(x((2)(i)因?yàn)閒(x(=g(x(,即eax-ex+ax2-1=令u(t)=et+t,所以u(ax2(=u(lnex(,令h(x(=,所以h(x(=h(x(max=h=e.令F(x(=h(x(-h-x(,x∈(0,,因?yàn)镕(x(=-,所以F(x(=--,F(xiàn)=0,所以h(x(<h-x(.<h-x1(,又因?yàn)閔(x1(=h(x2(,所以h(x2(<h-x1(,2(x+x(>(x1+x2(2>所以x+x>.極值點(diǎn)偏移問題的一般方法--對稱化構(gòu)造的步驟如下:(1)求極值點(diǎn)x0:求出函數(shù)f(x(的極值點(diǎn)x0,結(jié)合函數(shù)f(x(的圖像,由f(x1(=f(x2(得出x2,x1的取值+x1>2x0的情況,構(gòu)造函數(shù)F(x(=f(x(-f(2x0-x(;①F/(x(=f/(x(+f/(2x0-x(>0,則F(x(單調(diào)遞增;②注意到F(x0(=0,則F(x1(=f(x1(-f(2x0-x1(<0即f(x1(<f(2x0-x1(;③f(x2(=f(x1(<f(2x0-x1(,根據(jù)f(x(在(x0,+∞(單調(diào)減,則x2>2x0-x1④得到結(jié)論x2+x1>2x0.-x1=-x1=轉(zhuǎn)化為f(x1(=f(x2(,再設(shè)x1<x2,數(shù)形結(jié)合得到<x1<1<x2,接著構(gòu)造函數(shù),利用函數(shù)的單調(diào)性得到x1+x2>2,最后利用放縮法證明不等式.-x1=得ex1-x1得x2(lnx1+1(=x1(lnx2+1(,即=,即f(x1(=f(x2(.而f=0,當(dāng)x>1時(shí),f(x)>0恒成立,不妨設(shè)x1<x2,則<x1<1<x2.記h(x)=f(x)-f(2-x),x∈,1(,則h/(x)=f/(x)+f/(2-x)=--> --=->0,所以函數(shù)h(x)在,1(上單調(diào)遞增,所以h(x)<f(1)-f(2-1)=0,即f(x)<f(2-x),x∈,1(,于是f(x2(=f(x1(<f(2-x1(,2-x1∈(1,2-,所以x+x>x+(2-x1(3=8-12x1+6x=6(x1-1(2+2>2.(2)構(gòu)造輔助函數(shù)(若要證x1+x2>(<)2x0,則構(gòu)造函數(shù)g(x)=f(x)-f(2x0-x(;若要證x1x2>(<)(3)代入x1,x2,利用f(x2(=f(x1(及f(x)的單調(diào)性即得所證結(jié)論.1.(2021·全國·統(tǒng)考高考真題)已知函數(shù)f(x(=x(1-lnx(.(1)討論f(x(的單調(diào)性;(1)f(x(的遞增區(qū)間為(0,1(,遞減區(qū)間為(1,+∞(;(2)證明見解析.調(diào)性.(1)f(x(的定義域?yàn)?0,+∞(.由f(x(=x(1-lnx(得,f/(x(=-lnx,故f(x(在區(qū)間(0,1[內(nèi)為增函數(shù),在區(qū)間[1,+∞(內(nèi)為減函數(shù),由blna-alnb=a-b得1-ln=1-ln,即f=f.①令g(x(=f(2-x(-f(x(,則g/(x)=ln(2-x)+lnx=ln(2x-x2)=ln[1-(x-1)2],從而f(2-x(>f(x(,所以f(2->f=f,由(1)得2-<即2<+.①令h(x(=x+f(x(,則h'(x(=1+f/(x(=1-lnx,從而x+f(x(<e,所以+f<e.又由∈(0,1),可得<1-ln=f=f,所以+<f+=e.②由①②得2<+<e.令=m,=n.則上式變?yōu)閙(1-lnm(=n(1-lnn(,于是命題轉(zhuǎn)換為證明:2<m+n<e.令f(x(=x(1-lnx(,則有f(m(=f(n(,不妨設(shè)m<n.由(1)知0<m<1,1<n<e,先證m+n>2.要證:m+n>2?n>2-m?f(n(<f(2-m(?f(m)<f(2-m(?f(m(-f(2-m(<0.令g(x(=f(x(-f(2-x(,x∈(0,1(,則g′(x(=-lnx-ln(2-x(=-ln[x(2-x([≥-ln1=0,再證m+n<e.因?yàn)閙(1-lnm(=n?(1-lnn(>m,所以需證n(1-lnn(+n<e?m+n<e.令h(x(=x(1-lnx(+x,x∈(1,e(,所以h(x(<h(e(=e.故h(n(<e,即m+n<e.綜合可知2<+<e.證明+>2同證法2.以下證明x1+x2<e.不妨設(shè)x2=tx1,則t=>1,1-lnx1)=x2(1-lnx2)得x1(1-lnx1)=tx1[1-ln(tx1)],lnx1=1--,t(x1<e,兩邊取對數(shù)得ln(1+t)+lnx1<1,記h(s)=-ln(1+s),則h′(s)=-<0,所以g(s(在區(qū)間(0,+∞(內(nèi)單調(diào)遞減.由t∈(1,+∞(得t-1∈(0,+∞(,所以g(t(<g(t-1(,由已知得-=-,令=x1,=x2,不妨設(shè)x1<x2,所以f(x1(=f(x2(.令φ(x)=lnx+-2(0<x<e),則φ′(x)=-=<0.所以φ(x(>φ(e(=0,h′(x(>0,h(x(在區(qū)間(0,e(內(nèi)單調(diào)遞增.又因?yàn)閒(x1(=f(x2(,所以=,>,即x-ex2<x-ex1,(x1-x2((x1+x2-e(>0.x2<e證明題中的不等式即可.在.2.設(shè)函數(shù)f(x(=lnx-ax(a∈R(.(2)若函數(shù)g(x(=xf(x(-x+a有兩個(gè)不同的極值點(diǎn),記作x1,x2【分析】(1)對函數(shù)f(x(=lnx-3x求導(dǎo)后得f/(x(=,x>0,分別求出f/(x(>0和f/(x(<0的(2)由g(x(=xf(x(-x+a有兩個(gè)極值點(diǎn)x1,x2?lnx1=2ax1,lnx2=2ax2,從而要證lnx1+2lnx2>3?2ax1+4ax2>3?a>?->,令t=,t>1,構(gòu)建函數(shù)h(t(=lnt-【詳解】(1)由題意得f(x(=lnx-3x,則f/(x(=,x令f/(x(>0,解得0<x<;令f/(x(<0,解得x>,∴f(x)max=f=ln-3×=-ln3-1,=xf(x(-x+a=xlnx-ax2-x+a,則g/(x(=lnx-2ax,又g(x(有兩個(gè)不同的極值點(diǎn)x1,x2,∴l(xiāng)nx1=2ax1,lnx2=2ax2,欲證lnx1+2lnx2>3,即證2ax1+4ax2>3,∵0<x1<x2,∴原式等價(jià)于證明a>①.x2-x1x1+2x2,x2-x1x1+2x2,即證ln>=.令t=,則t>1,上式等價(jià)于求證lnt>.令h(t(=lnt-,則h/(t(=-=,t(>h(1(=0,即lnt>,t=,t=x2+x1(;x2>1<a<1;由=,設(shè)h(x(=g(x(-g,對h(x(求導(dǎo)可得g(x1(<g,又g(x1(=g(x2(,再由g(x(在f(x(=(1+lnx(eln=又f/(x(=1+lnx(?ax2=-lnx,由f/(x(=0,得xax2當(dāng)0<x<1時(shí),f/(x(>0,則f(x(在(0,1(上單當(dāng)x>1時(shí),f/(x(<0,則f(x(在(1,+∞(上單調(diào)遞減,設(shè)h(x(=g(x(-g=-x(1-lnx(,h/(x(=+lnx=lnx≥0,所以h(x(在(0,+∞(上單調(diào)遞增,又h(1(=0,所以h(x1(=g(x1(-g<0,即g(x1(<g,又g(x1(=g(x2(,所以g(x2(<g,(x(在(1,+∞(上單調(diào)遞減,所以x2>,=g(x(-g,對h(x(求導(dǎo),得到h(x(的單調(diào)性和最值可證得g(x1(<g,即可證明x1x2>1.4.(23-24高二下·云南·期中)已知函數(shù)f(x(=3lnx+ax2-4x(a>0).(1)在(0,+∞(上單調(diào)遞增f(x(在(0,+∞(內(nèi)單調(diào)遞增;(2)f(x(=3lnx+x2-4x,求導(dǎo),得到函數(shù)單調(diào)性,得到0<x1<1<x2<3<x3,構(gòu)造g(x(=f(x(-f(2-x(,0<x<1,求導(dǎo)得到函數(shù)單調(diào)性,得到x1+x2>2,再構(gòu)造h(x(=f(x(-f(6-x(,1<x<3,(1)由題意可知:f(x(的定義域?yàn)?0,+∞(,f/(x(=+2ax-4=,Δ=16-24=-8<0,可知2x2-4x+3>0在(0,+∞(上恒成立,即f/(x(>0在(0,+∞(上恒成立,所以f(x(在(0,+∞(上單調(diào)遞增.f/(x(=+x-4=,1<x<3,f/(x(<0;0<x<1,或x>3,f/(x(>0;故f(x(在(0,1(,(3,+∞(上單調(diào)遞增,在(1,3(上單調(diào)遞減,由題意可得:0<x1<1<x2<3<x3,因?yàn)閒(x1(=f(x2(=f(x3(=b,令g(x(=f(x(-f(2-x(,0<x<1,則g/(x(=f/(x(+f/(2-x(=+x-4(+-+2-x-4(=>0,可知g(x(在(0,1(上單調(diào)遞增,則g(x(<g(1(=0,可得f(x(<f(2-x(在(0,1(上恒成立,,則f(x1(=f(x2(<f(2-x1(,且1<2-x1<2,1<x2<3,f(x(在(1,3(上單調(diào)遞減令h(x(=f(x(-f(6-x(,1<x<3,則h/(x(=f/(x(+f/(6-x(=+x-4(+-+6-x-4(=>0,可知h(x(在(1,3(上單調(diào)遞增,則h(x(<h(3(=0,可得f(x(<f(6-x(在(1,3(上恒成立,,則f(x2(=f(x3(<f(6-x2(,〈3,f(x(在(3,+∞(上單調(diào)遞增,由x1+x2>2和x2+x3<6可得x3-x1<4.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:構(gòu)造兩次差函數(shù),解決極值點(diǎn)偏移問題,即構(gòu)造g(x(=f(x(-f(2-x(,0<x<1,求導(dǎo)得到函數(shù)單調(diào)性,得到x1+x2>2,再構(gòu)造h(x(=f(x(-f(6-x(,1<x<3,求導(dǎo)得到函數(shù)單調(diào)2+x3<6.5.(2024·遼寧·模擬預(yù)測)已知函數(shù)f(x(=ex-ax2(a>0).(2)若f(x(有三個(gè)零點(diǎn)x1,x2,x3,且x1<x2<x3.(1)f(x(在(1,2(上單調(diào)遞減,在(2,+∞(上單調(diào)遞增將三個(gè)變量的問題轉(zhuǎn)化為單變量問題,即可構(gòu)造函數(shù)μ(x(=lnx-(x>1(,證明其在(1)當(dāng)a=時(shí),f(x(=ex-x2,f/(x(=ex-x,令g(x(=f/(x(=ex-x,g/(x(=ex-,令g/(x(=ex-=0,可得x=ln=2-ln2,-ln2,+∞(時(shí),g/(x(>0,即g(x(在(1,2-ln2(上單調(diào)遞減,在(2-ln2,+∞(上單調(diào)遞增,又g(1(=f/(1(=e-<0,g(2(=f/(2(=e2-e2=0,f/(x(>0,故f(x(在(1,2(上單調(diào)遞減,在(2,+∞(上單調(diào)遞增;(2)(i)f(x(有三個(gè)零點(diǎn),即ex-ax2=0有三個(gè)根,令h(x(=,h/(x(=,x(<0,即h(x(在(-∞,0(、(2,+∞(上單調(diào)遞增,在(0,2(上單調(diào)遞減,-+(ii)由h(x(在(-∞,0(上單調(diào)遞增,h(-

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論