2022屆江蘇省南通通州區(qū)重點中學中考數(shù)學猜題卷含解析_第1頁
2022屆江蘇省南通通州區(qū)重點中學中考數(shù)學猜題卷含解析_第2頁
2022屆江蘇省南通通州區(qū)重點中學中考數(shù)學猜題卷含解析_第3頁
2022屆江蘇省南通通州區(qū)重點中學中考數(shù)學猜題卷含解析_第4頁
2022屆江蘇省南通通州區(qū)重點中學中考數(shù)學猜題卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022屆江蘇省南通通州區(qū)重點中學中考數(shù)學猜題卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.二次函數(shù)y=ax2+bx+c(a≠0)和正比例函數(shù)y=﹣x的圖象如圖所示,則方程ax2+(b+)x+c=0(a≠0)的兩根之和()A.大于0 B.等于0 C.小于0 D.不能確定2.下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A. B.C. D.3.一元一次不等式組2x+1>A.4B.5C.6D.74.小強是一位密碼編譯愛好者,在他的密碼手冊中,有這樣一條信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分別對應下列六個字:昌、愛、我、宜、游、美,現(xiàn)將(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,結果呈現(xiàn)的密碼信息可能是()A.我愛美 B.宜晶游 C.愛我宜昌 D.美我宜昌5.在下列四個圖案中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C.. D.6.如圖,的三邊的長分別為20,30,40,點O是三條角平分線的交點,則等于()A.1∶1∶1 B.1∶2∶3 C.2∶3∶4 D.3∶4∶57.如圖,函數(shù)y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點,點C在第一象限,AC⊥AB,且AC=AB,則點C的坐標為()A.(2,1) B.(1,2) C.(1,3) D.(3,1)8.計算:得()A.- B.- C.- D.9.在3,0,-2,-2四個數(shù)中,最小的數(shù)是()A.3 B.0 C.-2 D.-210.下列實數(shù)中是無理數(shù)的是()A. B.2﹣2 C.5. D.sin45°二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在中,,,,,,點在上,交于點,交于點,當時,________.12.如果一個矩形的面積是40,兩條對角線夾角的正切值是,那么它的一條對角線長是__________.13.若一元二次方程x2﹣2x﹣m=0無實數(shù)根,則一次函數(shù)y=(m+1)x+m﹣1的圖象不經(jīng)過第_____象限.14.如圖,自左至右,第1個圖由1個正六邊形、6個正方形和6個等邊三角形組成;第2個圖由2個正六邊形、11個正方形和10個等邊三角形組成;第3個圖由3個正六邊形、16個正方形和14個等邊三角形組成;…按照此規(guī)律,第n個圖中正方形和等邊三角形的個數(shù)之和為______個.15.如圖,PA,PB是⊙O是切線,A,B為切點,AC是⊙O的直徑,若∠P=46°,則∠BAC=▲度.16.內(nèi)接于圓,設,圓的半徑為,則所對的劣弧長為_____(用含的代數(shù)式表示).三、解答題(共8題,共72分)17.(8分)定義:在三角形中,把一邊的中點到這條邊的高線的距離叫做這條邊的中垂距.例:如圖①,在△ABC中,D為邊BC的中點,AE⊥BC于E,則線段DE的長叫做邊BC的中垂距.(1)設三角形一邊的中垂距為d(d≥0).若d=0,則這樣的三角形一定是,推斷的數(shù)學依據(jù)是.(2)如圖②,在△ABC中,∠B=15°,AB=3,BC=8,AD為邊BC的中線,求邊BC的中垂距.(3)如圖③,在矩形ABCD中,AB=6,AD=1.點E為邊CD的中點,連結AE并延長交BC的延長線于點F,連結AC.求△ACF中邊AF的中垂距.18.(8分)每年4月23日是世界讀書日,某校為了解學生課外閱讀情況,隨機抽取20名學生,對每人每周用于課外閱讀的平均時間(單位:min)進行調查,過程如下:收集數(shù)據(jù):30608150401101301469010060811201407081102010081整理數(shù)據(jù):課外閱讀平均時間x(min)0≤x<4040≤x<8080≤x<120120≤x<160等級DCBA人數(shù)3a8b分析數(shù)據(jù):平均數(shù)中位數(shù)眾數(shù)80mn請根據(jù)以上提供的信息,解答下列問題:(1)填空:a=,b=;m=,n=;(2)已知該校學生500人,若每人每周用于課外閱讀的平均時間不少于80min為達標,請估計達標的學生數(shù);(3)設閱讀一本課外書的平均時間為260min,請選擇適當?shù)慕y(tǒng)計量,估計該校學生每人一年(按52周計)平均閱讀多少本課外書?19.(8分)計算:(1)(2)20.(8分)如圖,點A,B,C,D在同一條直線上,點E,F(xiàn)分別在直線AD的兩側,且AE=DF,∠A=∠D,AB=DC.(1)求證:四邊形BFCE是平行四邊形;(2)若AD=10,DC=3,∠EBD=60°,則BE=時,四邊形BFCE是菱形.21.(8分)如圖,在Rt△ABC中,CD,CE分別是斜邊AB上的高,中線,BC=a,AC=b.若a=3,b=4,求DE的長;直接寫出:CD=(用含a,b的代數(shù)式表示);若b=3,tan∠DCE=,求a的值.22.(10分)如圖,在矩形ABCD中,AB=3,BC=4,將矩形ABCD繞點C按順時針方向旋轉α角,得到矩形A'B'C'D',B'C與AD交于點E,AD的延長線與A'D'交于點F.(1)如圖①,當α=60°時,連接DD',求DD'和A'F的長;(2)如圖②,當矩形A'B'CD'的頂點A'落在CD的延長線上時,求EF的長;(3)如圖③,當AE=EF時,連接AC,CF,求AC?CF的值.23.(12分)如圖,已知Rt△ABC中,∠C=90°,D為BC的中點,以AC為直徑的⊙O交AB于點E.(1)求證:DE是⊙O的切線;(2)若AE:EB=1:2,BC=6,求⊙O的半徑.24.如圖所示,在△ABC中,BO、CO是角平分線.∠ABC=50°,∠ACB=60°,求∠BOC的度數(shù),并說明理由.題(1)中,如將“∠ABC=50°,∠ACB=60°”改為“∠A=70°”,求∠BOC的度數(shù).若∠A=n°,求∠BOC的度數(shù).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

設的兩根為x1,x2,由二次函數(shù)的圖象可知,;設方程的兩根為m,n,再根據(jù)根與系數(shù)的關系即可得出結論.【詳解】解:設的兩根為x1,x2,∵由二次函數(shù)的圖象可知,,.設方程的兩根為m,n,則.故選C.【點睛】本題考查的是拋物線與x軸的交點,熟知拋物線與x軸的交點與一元二次方程根的關系是解答此題的關鍵.2、D【解析】

根據(jù)中心對稱圖形的定義旋轉180°后能夠與原圖形完全重合即是中心對稱圖形,以及軸對稱圖形的定義即可判斷出.【詳解】解:A.∵此圖形旋轉180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤;B.∵此圖形旋轉180°后能與原圖形重合,∴此圖形是中心對稱圖形,不是軸對稱圖形,故此選項錯誤;C.∵此圖形旋轉180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤;D.∵此圖形旋轉180°后能與原圖形重合,∴此圖形是中心對稱圖形,也是軸對稱圖形,故此選項正確.故選:D.【點睛】本題考查了中心對稱圖形與軸對稱圖形的定義,解題的關鍵是熟練的掌握中心對稱圖形與軸對稱圖形的定義.3、C【解析】試題分析:∵解不等式2x+1>0得:x>-12,解不等式x-5≤0,得:x≤5,∴不等式組的解集是考點:一元一次不等式組的整數(shù)解.4、C【解析】試題分析:(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),因為x﹣y,x+y,a+b,a﹣b四個代數(shù)式分別對應愛、我,宜,昌,所以結果呈現(xiàn)的密碼信息可能是“愛我宜昌”,故答案選C.考點:因式分解.5、B【解析】試題分析:根據(jù)軸對稱圖形和中心對稱圖形的定義:如果一個平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形;中心對稱圖形的定義:把一個圖形繞著某一個點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心,因此:A、不是軸對稱圖形,是中心對稱圖形,不符合題意;B、是軸對稱圖形,也是中心對稱圖形,符合題意;C、不是軸對稱圖形,也不是中心對稱圖形,不符合題意;D、是軸對稱圖形,不是中心對稱圖形,不符合題意.故選B.考點:軸對稱圖形和中心對稱圖形6、C【解析】

作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,根據(jù)角平分線的性質得到OD=OE=OF,根據(jù)三角形的面積公式計算即可.【詳解】作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,

∵三條角平分線交于點O,OF⊥AB,OE⊥AC,OD⊥BC,

∴OD=OE=OF,

∴S△ABO:S△BCO:S△CAO=AB:BC:CA=20:30:40=2:3:4,

故選C.【點睛】考查的是角平分線的性質,掌握角的平分線上的點到角的兩邊的距離相等是解題的關鍵.7、D【解析】

過點C作CD⊥x軸與D,如圖,先利用一次函數(shù)圖像上點的坐標特征確定B(0,2),A(1,0),再證明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,則C點坐標可求.【詳解】如圖,過點C作CD⊥x軸與D.∵函數(shù)y=﹣2x+2的圖象分別與x軸,y軸交于A,B兩點,∴當x=0時,y=2,則B(0,2);當y=0時,x=1,則A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO=∠CAD.在△ABO和△CAD中,∠AOB=【點睛】本題主要考查一次函數(shù)的基本概念。角角邊定理、全等三角形的性質以及一次函數(shù)的應用,熟練掌握相關知識點是解答的關鍵.8、B【解析】

同級運算從左向右依次計算,計算過程中注意正負符號的變化.【詳解】-故選B.【點睛】本題考查的是有理數(shù)的混合運算,熟練掌握運算法則是解題的關鍵.9、C【解析】

根據(jù)比較實數(shù)大小的方法進行比較即可.根據(jù)正數(shù)都大于0,負數(shù)都小于0,兩個負數(shù)絕對值大的反而小即可求解.【詳解】因為正數(shù)大于負數(shù),兩個負數(shù)比較大小,絕對值較大的數(shù)反而較小,所以-2<-2所以最小的數(shù)是-2,故選C.【點睛】此題主要考查了實數(shù)的大小的比較,正數(shù)都大于0,負數(shù)都小于0,兩個負數(shù)絕對值大的反而?。?0、D【解析】A、是有理數(shù),故A選項錯誤;B、是有理數(shù),故B選項錯誤;C、是有理數(shù),故C選項錯誤;D、是無限不循環(huán)小數(shù),是無理數(shù),故D選項正確;故選:D.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】

如圖作PQ⊥AB于Q,PR⊥BC于R.由△QPE∽△RPF,推出==2,可得PQ=2PR=2BQ,由PQ∥BC,可得AQ:QP:AP=AB:BC:AC=1:4:5,設PQ=4x,則AQ=1x,AP=5x,BQ=2x,可得2x+1x=1,求出x即可解決問題.【詳解】如圖,作PQ⊥AB于Q,PR⊥BC于R.∵∠PQB=∠QBR=∠BRP=90°,∴四邊形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴==2,∴PQ=2PR=2BQ.∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=1:4:5,設PQ=4x,則AQ=1x,AP=5x,BQ=2x,∴2x+1x=1,∴x=,∴AP=5x=1.故答案為:1.【點睛】本題考查了相似三角形的判定和性質、勾股定理、矩形的判定和性質等知識,解題的關鍵是學會添加常用輔助線,構造相似三角形解決問題,屬于中考常考題型.12、1.【解析】

如圖,作BH⊥AC于H.由四邊形ABCD是矩形,推出OA=OC=OD=OB,設OA=OC=OD=OB=5a,由tan∠BOH,可得BH=4a,OH=3a,由題意:21a×4a=40,求出a即可解決問題.【詳解】如圖,作BH⊥AC于H.∵四邊形ABCD是矩形,∴OA=OC=OD=OB,設OA=OC=OD=OB=5a.∵tan∠BOH,∴BH=4a,OH=3a,由題意:21a×4a=40,∴a=1,∴AC=1.故答案為:1.【點睛】本題考查了矩形的性質、解直角三角形等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,學會利用參數(shù)構建方程解決問題.13、一【解析】∵一元二次方程x2-2x-m=0無實數(shù)根,

∴△=4+4m<0,解得m<-1,

∴m+1<0,m-1<0,

∴一次函數(shù)y=(m+1)x+m-1的圖象經(jīng)過二三四象限,不經(jīng)過第一象限.

故答案是:一.14、9n+1.【解析】

∵第1個圖由1個正六邊形、6個正方形和6個等邊三角形組成,∴正方形和等邊三角形的和=6+6=12=9+1;∵第2個圖由11個正方形和10個等邊三角形組成,∴正方形和等邊三角形的和=11+10=21=9×2+1;∵第1個圖由16個正方形和14個等邊三角形組成,∴正方形和等邊三角形的和=16+14=10=9×1+1,…,∴第n個圖中正方形和等邊三角形的個數(shù)之和=9n+1.故答案為9n+1.15、1.【解析】

由PA、PB是圓O的切線,根據(jù)切線長定理得到PA=PB,即三角形APB為等腰三角形,由頂角的度數(shù),利用三角形的內(nèi)角和定理求出底角的度數(shù),再由AP為圓O的切線,得到OA與AP垂直,根據(jù)垂直的定義得到∠OAP為直角,再由∠OAP-∠PAB即可求出∠BAC的度數(shù)【詳解】∵PA,PB是⊙O是切線,∴PA=PB.又∵∠P=46°,∴∠PAB=∠PBA=.又∵PA是⊙O是切線,AO為半徑,∴OA⊥AP.∴∠OAP=90°.∴∠BAC=∠OAP﹣∠PAB=90°﹣67°=1°.故答案為:1【點睛】此題考查了切線的性質,切線長定理,等腰三角形的性質,以及三角形的內(nèi)角和定理,熟練掌握定理及性質是解本題的關鍵.16、或【解析】

分0°<x°≤90°、90°<x°≤180°兩種情況,根據(jù)圓周角定理求出∠DOC,根據(jù)弧長公式計算即可.【詳解】解:當0°<x°≤90°時,如圖所示:連接OC,

由圓周角定理得,∠BOC=2∠A=2x°,

∴∠DOC=180°-2x°,

∴∠OBC所對的劣弧長=,

當90°<x°≤180°時,同理可得,∠OBC所對的劣弧長=.

故答案為:或.【點睛】本題考查了三角形的外接圓與外心、弧長的計算,掌握弧長公式、圓周角定理是解題的關鍵.三、解答題(共8題,共72分)17、(1)等腰三角形;線段的垂直平分線上的點到兩端的距離相等;(2)1;(3).【解析】試題分析:(1)根據(jù)線段的垂直平分線的性質即可判斷.(2)如圖②中,作AE⊥BC于E.根據(jù)已知得出AE=BE,再求出BD的長,即可求出DE的長.(3)如圖③中,作CH⊥AF于H,先證△ADE≌△FCE,得出AE=EF,利用勾股定理求出AE的長,然后證明△ADE∽△CHE,建立方程求出EH即可.解:(1)等腰三角形;線段的垂直平分線上的點到兩端的距離相等(2)解:如圖②中,作AE⊥BC于E.在Rt△ABE中,∵∠AEB=90°,∠B=15°,AB=3,∴AE=BE=3,∵AD為BC邊中線,BC=8,∴BD=DC=1,∴DE=BD﹣BE=1﹣3=1,∴邊BC的中垂距為1(3)解:如圖③中,作CH⊥AF于H.∵四邊形ABCD是矩形,∴∠D=∠EHC=∠ECF=90°,AD∥BF,∵DE=EC,∠AED=∠CEF,∴△ADE≌△FCE,∴AE=EF,在Rt△ADE中,∵AD=1,DE=3,∴AE==5,∵∠D=EHC,∠AED=∠CEH,∴△ADE∽△CHE,∴=,∴=,∴EH=,∴△ACF中邊AF的中垂距為18、(1)a=5,b=4;m=81,n=81;(2)300人;(3)16本【解析】

(1)根據(jù)統(tǒng)計表收集數(shù)據(jù)可求a,b,再根據(jù)中位數(shù)、眾數(shù)的定義可求m,n;(2)達標的學生人數(shù)=總人數(shù)×達標率,依此即可求解;(3)本題需先求出閱讀課外書的總時間,再除以平均閱讀一本課外書的時間即可得出結果.【詳解】解:(1)由統(tǒng)計表收集數(shù)據(jù)可知a=5,b=4,m=81,n=81;(2)(人).答:估計達標的學生有300人;(3)80×52÷260=16(本).答:估計該校學生每人一年(按52周計算)平均閱讀16本課外書.【點睛】本題主要考查統(tǒng)計表以及中位數(shù),眾數(shù),估計達標人數(shù)等,能夠從統(tǒng)計表中獲取有效信息是解題的關鍵.19、(1);(2)1.【解析】

(1)根據(jù)二次根式的混合運算法則即可;(2)根據(jù)特殊角的三角函數(shù)值即可計算.【詳解】解:(1)原式=;(2)原式.【點睛】本題考查了二次根式運算以及特殊角的三角函數(shù)值的運算,解題的關鍵是熟練掌握運算法則.20、(1)證明見試題解析;(2)1.【解析】

試題分析:(1)由AE=DF,∠A=∠D,AB=DC,易證得△AEC≌△DFB,即可得BF=EC,∠ACE=∠DBF,且EC∥BF,即可判定四邊形BFCE是平行四邊形;(2)當四邊形BFCE是菱形時,BE=CE,根據(jù)菱形的性質即可得到結果.試題解析:(1)∵AB=DC,∴AC=DB,在△AEC和△DFB中,∴△AEC≌△DFB(SAS),∴BF=EC,∠ACE=∠DBF,∴EC∥BF,∴四邊形BFCE是平行四邊形;(2)當四邊形BFCE是菱形時,BE=CE,∵AD=10,DC=3,AB=CD=3,∴BC=10﹣3﹣3=1,∵∠EBD=60°,∴BE=BC=1,∴當BE=1時,四邊形BFCE是菱形,故答案為1.【考點】平行四邊形的判定;菱形的判定.21、(1);(2);(3).【解析】

(1)求出BE,BD即可解決問題.(2)利用勾股定理,面積法求高CD即可.(3)根據(jù)CD=3DE,構建方程即可解決問題.【詳解】解:(1)在Rt△ABC中,∵∠ACB=91°,a=3,b=4,∴.∵CD,CE是斜邊AB上的高,中線,∴∠BDC=91°,.∴在Rt△BCD中,(2)在Rt△ABC中,∵∠ACB=91°,BC=a,AC=b,故答案為:.(3)在Rt△BCD中,,∴,又,∴CD=3DE,即.∵b=3,∴2a=9﹣a2,即a2+2a﹣9=1.由求根公式得(負值舍去),即所求a的值是.【點睛】本題考查解直角三角形的應用,直角三角形斜邊中線的性質,勾股定理等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.22、(1)DD′=1,A′F=4﹣;(2);(1).【解析】

(1)①如圖①中,∵矩形ABCD繞點C按順時針方向旋轉α角,得到矩形A'B'C'D',只要證明△CDD′是等邊三角形即可解決問題;②如圖①中,連接CF,在Rt△CD′F中,求出FD′即可解決問題;(2)由△A′DF∽△A′D′C,可推出DF的長,同理可得△CDE∽△CB′A′,可求出DE的長,即可解決問題;(1)如圖③中,作FG⊥CB′于G,由S△ACF=?AC?CF=?AF?CD,把問題轉化為求AF?CD,只要證明∠ACF=90°,證明△CAD∽△FAC,即可解決問題;【詳解】解:(1)①如圖①中,∵矩形ABCD繞點C按順時針方向旋轉α角,得到矩形A'B'C'D',∴A′D′=AD=B′C=BC=4,CD′=CD=A′B′=AB=1∠A′D′C=∠ADC=90°.∵α=60°,∴∠DCD′=60°,∴△CDD′是等邊三角形,∴DD′=CD=1.②如圖①中,連接CF.∵CD=CD′,CF=CF,∠CDF=∠CD′F=90°,∴△CDF≌△CD′F,∴∠DCF=∠D′CF=∠DCD′=10°.在Rt△CD′F中,∵tan∠D′CF=,∴D′F=,∴A′F=A′D′﹣D′F=4﹣.(2)如圖②中,在Rt△A′CD′中,∵∠D′=90°,∴A′C2=A′D′2+CD′2,∴A′C=5,A′D=2.∵∠DA′F=∠CA′D′,∠A′DF=∠D′=90°,∴△A′DF∽△A′D′C,∴,∴,∴DF=.同理可得△CDE∽△CB′A′,∴,∴,∴ED=,∴EF=ED+DF=.(1)如圖③中,作FG⊥CB′于G.∵四邊形A′B′CD′是矩形,∴GF=CD′=CD=1.∵S△CEF=?EF?DC=?CE?FG,∴CE=EF,∵AE=EF,∴AE=EF=CE,∴∠ACF=90°.∵∠ADC=∠ACF,∠CAD=∠FAC,∴△CAD∽△FAC,∴,∴AC2=AD?AF,∴AF=.∵S△ACF=?AC?CF=?AF?CD,∴AC?CF=AF?CD=.23、(1)證明見解析;(1)32【解析】試題分析:(1)求出∠OED=∠BCA=90

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論