2022屆江蘇省啟東市重點中學(xué)中考考前最后一卷數(shù)學(xué)試卷含解析_第1頁
2022屆江蘇省啟東市重點中學(xué)中考考前最后一卷數(shù)學(xué)試卷含解析_第2頁
2022屆江蘇省啟東市重點中學(xué)中考考前最后一卷數(shù)學(xué)試卷含解析_第3頁
2022屆江蘇省啟東市重點中學(xué)中考考前最后一卷數(shù)學(xué)試卷含解析_第4頁
2022屆江蘇省啟東市重點中學(xué)中考考前最后一卷數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022屆江蘇省啟東市重點中學(xué)中考考前最后一卷數(shù)學(xué)試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列關(guān)于x的方程中,屬于一元二次方程的是()A.x﹣1=0 B.x2+3x﹣5=0 C.x3+x=3 D.a(chǎn)x2+bx+c=02.估計﹣1的值為()A.1和2之間 B.2和3之間 C.3和4之間 D.4和5之間3.-4的相反數(shù)是()A. B. C.4 D.-44.若式子在實數(shù)范圍內(nèi)有意義,則x的取值范圍是()A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣15.小桐把一副直角三角尺按如圖所示的方式擺放在一起,其中,,,,則等于A. B. C. D.6.已知:如圖,點P是正方形ABCD的對角線AC上的一個動點(A、C除外),作PE⊥AB于點E,作PF⊥BC于點F,設(shè)正方形ABCD的邊長為x,矩形PEBF的周長為y,在下列圖象中,大致表示y與x之間的函數(shù)關(guān)系的是()A. B. C. D.7.的整數(shù)部分是()A.3 B.5 C.9 D.68.如圖是反比例函數(shù)(k為常數(shù),k≠0)的圖象,則一次函數(shù)的圖象大致是()A. B. C. D.9.分式有意義,則x的取值范圍是()A.x≠2 B.x=0 C.x≠﹣2 D.x=﹣710.某種植基地2016年蔬菜產(chǎn)量為80噸,預(yù)計2018年蔬菜產(chǎn)量達(dá)到100噸,求蔬菜產(chǎn)量的年平均增長率,設(shè)蔬菜產(chǎn)量的年平均增長率為x,則可列方程為()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=100二、填空題(共7小題,每小題3分,滿分21分)11.如圖,正方形ABCD中,E為AB的中點,AF⊥DE于點O,那么等于()A.; B.; C.; D..12.若關(guān)于x的不等式組恰有3個整數(shù)解,則字母a的取值范圍是_____.13.如圖,在?ABCD中,AC是一條對角線,EF∥BC,且EF與AB相交于點E,與AC相交于點F,3AE=2EB,連接DF.若S△AEF=1,則S△ADF的值為_____.14.如圖,P(m,m)是反比例函數(shù)在第一象限內(nèi)的圖象上一點,以P為頂點作等邊△PAB,使AB落在x軸上,則△POB的面積為_____.15.已知是銳角,那么cos=_________.16.分式有意義時,x的取值范圍是_____.17.若一元二次方程有兩個不相等的實數(shù)根,則k的取值范圍是.三、解答題(共7小題,滿分69分)18.(10分)如圖有A、B兩個大小均勻的轉(zhuǎn)盤,其中A轉(zhuǎn)盤被分成3等份,B轉(zhuǎn)盤被分成4等份,并在每一份內(nèi)標(biāo)上數(shù)字.小明和小紅同時各轉(zhuǎn)動其中一個轉(zhuǎn)盤,轉(zhuǎn)盤停止后(當(dāng)指針指在邊界線時視為無效,重轉(zhuǎn)),若將A轉(zhuǎn)盤指針指向的數(shù)字記作一次函數(shù)表達(dá)式中的k,將B轉(zhuǎn)盤指針指向的數(shù)字記作一次函數(shù)表達(dá)式中的b.請用列表或畫樹狀圖的方法寫出所有的可能;求一次函數(shù)y=kx+b的圖象經(jīng)過一、二、四象限的概率.19.(5分)在學(xué)習(xí)了矩形這節(jié)內(nèi)容之后,明明同學(xué)發(fā)現(xiàn)生活中的很多矩形都很特殊,如我們的課本封面、A4的打印紙等,這些矩形的長與寬之比都為:1,我們將具有這類特征的矩形稱為“完美矩形”如圖(1),在“完美矩形”ABCD中,點P為AB邊上的定點,且AP=AD.求證:PD=AB.如圖(2),若在“完美矩形“ABCD的邊BC上有一動點E,當(dāng)?shù)闹凳嵌嗌贂r,△PDE的周長最???如圖(3),點Q是邊AB上的定點,且BQ=BC.已知AD=1,在(2)的條件下連接DE并延長交AB的延長線于點F,連接CF,G為CF的中點,M、N分別為線段QF和CD上的動點,且始終保持QM=CN,MN與DF相交于點H,請問GH的長度是定值嗎?若是,請求出它的值,若不是,請說明理由.20.(8分)已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處,如圖1,已知折痕與邊BC交于點O,連接AP、OP、OA.若△OCP與△PDA的面積比為1:4,求邊CD的長.如圖2,在(Ⅰ)的條件下,擦去折痕AO、線段OP,連接BP.動點M在線段AP上(點M與點P、A不重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問當(dāng)動點M、N在移動的過程中,線段EF的長度是否發(fā)生變化?若變化,說明變化規(guī)律.若不變,求出線段EF的長度.21.(10分)班級的課外活動,學(xué)生們都很積極.梁老師在某班對同學(xué)們進(jìn)行了一次關(guān)于“我喜愛的體育項目”的調(diào)査,下面是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖.請根據(jù)圖中的信息,解答下列問題:調(diào)查了________名學(xué)生;補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中,“乒乓球”部分所對應(yīng)的圓心角度數(shù)為________;學(xué)校將舉辦運動會,該班將推選5位同學(xué)參加乒乓球比賽,有3位男同學(xué)和2位女同學(xué),現(xiàn)準(zhǔn)備從中選取兩名同學(xué)組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.22.(10分)如圖,已知正方形ABCD,E是AB延長線上一點,F(xiàn)是DC延長線上一點,且滿足BF=EF,將線段EF繞點F順時針旋轉(zhuǎn)90°得FG,過點B作FG的平行線,交DA的延長線于點N,連接NG.求證:BE=2CF;試猜想四邊形BFGN是什么特殊的四邊形,并對你的猜想加以證明.23.(12分)先化簡,再求值:,其中a是方程a(a+1)=0的解.24.(14分)已知:如圖,點A,F(xiàn),C,D在同一直線上,AF=DC,AB∥DE,AB=DE,連接BC,BF,CE.求證:四邊形BCEF是平行四邊形.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

根據(jù)一元二次方程必須同時滿足三個條件:①整式方程,即等號兩邊都是整式;方程中如果有分母,那么分母中無未知數(shù);②只含有一個未知數(shù);③未知數(shù)的最高次數(shù)是2進(jìn)行分析即可.【詳解】A.未知數(shù)的最高次數(shù)不是2

,不是一元二次方程,故此選項錯誤;

B.

是一元二次方程,故此選項正確;

C.

未知數(shù)的最高次數(shù)是3,不是一元二次方程,故此選項錯誤;

D.

a=0時,不是一元二次方程,故此選項錯誤;

故選B.【點睛】本題考查一元二次方程的定義,解題的關(guān)鍵是明白:一元二次方程必須同時滿足三個條件:①整式方程,即等號兩邊都是整式;方程中如果有分母,那么分母中無未知數(shù);②只含有一個未知數(shù);③未知數(shù)的最高次數(shù)是2.2、C【解析】分析:根據(jù)被開方數(shù)越大算術(shù)平方根越大,可得答案.詳解:∵<<,∴1<<5,∴3<﹣1<1.故選C.點睛:本題考查了估算無理數(shù)的大小,利用被開方數(shù)越大算術(shù)平方根越大得出1<<5是解題的關(guān)鍵,又利用了不等式的性質(zhì).3、C【解析】

根據(jù)相反數(shù)的定義即可求解.【詳解】-4的相反數(shù)是4,故選C.【點晴】此題主要考查相反數(shù),解題的關(guān)鍵是熟知相反數(shù)的定義.4、A【解析】

直接利用二次根式有意義的條件分析得出答案.【詳解】∵式子在實數(shù)范圍內(nèi)有意義,∴x﹣1>0,解得:x>1.故選:A.【點睛】此題主要考查了二次根式有意義的條件,正確把握定義是解題關(guān)鍵.5、C【解析】

根據(jù)三角形的內(nèi)角和定理和三角形外角性質(zhì)進(jìn)行解答即可.【詳解】如圖:,,,,∴==,故選C.【點睛】本題考查了三角形內(nèi)角和定理、三角形外角的性質(zhì)、熟練掌握相關(guān)定理及性質(zhì)以及一副三角板中各個角的度數(shù)是解題的關(guān)鍵.6、A【解析】由題意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周長等于2個正方形的邊長.則y=2x,為正比例函數(shù).故選A.7、C【解析】解:∵=﹣1,=﹣…=﹣+,∴原式=﹣1+﹣+…﹣+=﹣1+10=1.故選C.8、B【解析】根據(jù)圖示知,反比例函數(shù)的圖象位于第一、三象限,∴k>0,∴一次函數(shù)y=kx?k的圖象與y軸的交點在y軸的負(fù)半軸,且該一次函數(shù)在定義域內(nèi)是增函數(shù),∴一次函數(shù)y=kx?k的圖象經(jīng)過第一、三、四象限;故選:B.9、A【解析】

直接利用分式有意義則分母不為零進(jìn)而得出答案.【詳解】解:分式有意義,則x﹣1≠0,解得:x≠1.故選:A.【點睛】此題主要考查了分式有意義的條件,正確把握分式的定義是解題關(guān)鍵.當(dāng)分母不等于零時,分式有意義;當(dāng)分母等于零時,分式無意義.分式是否有意義與分子的取值無關(guān).10、A【解析】

利用增長后的量=增長前的量×(1+增長率),設(shè)平均每次增長的百分率為x,根據(jù)“從80噸增加到100噸”,即可得出方程.【詳解】由題意知,蔬菜產(chǎn)量的年平均增長率為x,根據(jù)2016年蔬菜產(chǎn)量為80噸,則2017年蔬菜產(chǎn)量為80(1+x)噸,2018年蔬菜產(chǎn)量為80(1+x)(1+x)噸,預(yù)計2018年蔬菜產(chǎn)量達(dá)到100噸,即:80(1+x)2=100,故選A.【點睛】本題考查了一元二次方程的應(yīng)用(增長率問題).解題的關(guān)鍵在于理清題目的含義,找到2017年和2018年的產(chǎn)量的代數(shù)式,根據(jù)條件找準(zhǔn)等量關(guān)系式,列出方程.二、填空題(共7小題,每小題3分,滿分21分)11、D【解析】

利用△DAO與△DEA相似,對應(yīng)邊成比例即可求解.【詳解】∠DOA=90°,∠DAE=90°,∠ADE是公共角,∠DAO=∠DEA∴△DAO∽△DEA∴即∵AE=AD∴故選D.12、﹣2≤a<﹣1.【解析】

先確定不等式組的整數(shù)解,再求出a的范圍即可.【詳解】∵關(guān)于x的不等式組恰有3個整數(shù)解,∴整數(shù)解為1,0,﹣1,∴﹣2≤a<﹣1,故答案為:﹣2≤a<﹣1.【點睛】本題考查了一元一次不等式組的整數(shù)解的應(yīng)用,能根據(jù)已知不等式組的解集和整數(shù)解確定a的取值范圍是解此題的關(guān)鍵.13、5【解析】

由3AE=2EB,和EF∥BC,證明△AEF∽△ABC,得S△AEFS△ABC=425,結(jié)合S△AEF=1,可知S△ADC=S△ABC=254,再由AFFC【詳解】解:∵3AE=2EB,設(shè)AE=2a,BE=3a,∵EF∥BC,∴△AEF∽△ABC,∴S△AEFS△ABC=(AEAB)2=(∵S△AEF=1,∴S△ABC=254∵四邊形ABCD為平行四邊形,∴S∵EF∥BC,∴AFFC=AEBE=2a∴S△ADFS△CDF∴S△ADF=25S△ADC=5故答案是:5【點睛】本題考查了圖形的相似和平行線分線段成比例定理,中等難度,找到相似比是解題關(guān)鍵.14、.【解析】

如圖,過點P作PH⊥OB于點H,∵點P(m,m)是反比例函數(shù)y=在第一象限內(nèi)的圖象上的一個點,∴9=m2,且m>0,解得,m=3.∴PH=OH=3.∵△PAB是等邊三角形,∴∠PAH=60°.∴根據(jù)銳角三角函數(shù),得AH=.∴OB=3+∴S△POB=OB?PH=.15、【解析】

根據(jù)已知條件設(shè)出直角三角形一直角邊與斜邊的長,再根據(jù)勾股定理求出另一直角邊的長,由三角函數(shù)的定義直接解答即可.【詳解】由sinα==知,如果設(shè)a=x,則c=2x,結(jié)合a2+b2=c2得b=x.∴cos==.故答案為.【點睛】本題考查的知識點是同角三角函數(shù)的關(guān)系,解題的關(guān)鍵是熟練的掌握同角三角函數(shù)的關(guān)系.16、x<1【解析】

要使代數(shù)式有意義時,必有1﹣x>2,可解得x的范圍.【詳解】根據(jù)題意得:1﹣x>2,解得:x<1.故答案為x<1.【點睛】考查了分式和二次根式有意義的條件.二次根式有意義,被開方數(shù)為非負(fù)數(shù),分式有意義,分母不為2.17、:k<1.【解析】

∵一元二次方程有兩個不相等的實數(shù)根,∴△==4﹣4k>0,解得:k<1,則k的取值范圍是:k<1.故答案為k<1.三、解答題(共7小題,滿分69分)18、(1)答案見解析;(2).【解析】

(1)k可能的取值為-1、-2、-3,b可能的取值為-1、-2、3、4,所以將所有等可能出現(xiàn)的情況用列表方式表示出來即可.(2)判斷出一次函數(shù)y=kx+b經(jīng)過一、二、四象限時k、b的正負(fù),在列表中找出滿足條件的情況,利用概率的基本概念即可求出一次函數(shù)y=kx+b經(jīng)過一、二、四象限的概率.【詳解】解:(1)列表如下:所有等可能的情況有12種;(2)一次函數(shù)y=kx+b的圖象經(jīng)過一、二、四象限時,k<0,b>0,情況有4種,則P==.19、(1)證明見解析(2)(3)【解析】

(1)根據(jù)題中“完美矩形”的定義設(shè)出AD與AB,根據(jù)AP=AD,利用勾股定理表示出PD,即可得證;(2)如圖,作點P關(guān)于BC的對稱點P′,連接DP′交BC于點E,此時△PDE的周長最小,設(shè)AD=PA=BC=a,表示出AB與CD,由AB-AP表示出BP,由對稱的性質(zhì)得到BP=BP′,由平行得比例,求出所求比值即可;(3)GH=,理由為:由(2)可知BF=BP=AB-AP,由等式的性質(zhì)得到MF=DN,利用AAS得到△MFH≌△NDH,利用全等三角形對應(yīng)邊相等得到FH=DH,再由G為CF中點,得到HG為中位線,利用中位線性質(zhì)求出GH的長即可.【詳解】(1)在圖1中,設(shè)AD=BC=a,則有AB=CD=a,∵四邊形ABCD是矩形,∴∠A=90°,∵PA=AD=BC=a,∴PD==a,∵AB=a,∴PD=AB;(2)如圖,作點P關(guān)于BC的對稱點P′,連接DP′交BC于點E,此時△PDE的周長最小,設(shè)AD=PA=BC=a,則有AB=CD=a,∵BP=AB-PA,∴BP′=BP=a-a,∵BP′∥CD,∴;(3)GH=,理由為:由(2)可知BF=BP=AB-AP,∵AP=AD,∴BF=AB-AD,∵BQ=BC,∴AQ=AB-BQ=AB-BC,∵BC=AD,∴AQ=AB-AD,∴BF=AQ,∴QF=BQ+BF=BQ+AQ=AB,∵AB=CD,∴QF=CD,∵QM=CN,∴QF-QM=CD-CN,即MF=DN,∵M(jìn)F∥DN,∴∠NFH=∠NDH,在△MFH和△NDH中,,∴△MFH≌△NDH(AAS),∴FH=DH,∵G為CF的中點,∴GH是△CFD的中位線,∴GH=CD=×2=.【點睛】此題屬于相似綜合題,涉及的知識有:相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),勾股定理,三角形中位線性質(zhì),平行線的判定與性質(zhì),熟練掌握相似三角形的性質(zhì)是解本題的關(guān)鍵.20、(1)10;(2).【解析】

(1)先證出∠C=∠D=90°,再根據(jù)∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可證出△OCP∽△PDA;根據(jù)△OCP與△PDA的面積比為1:4,得出CP=AD=4,設(shè)OP=x,則CO=8﹣x,由勾股定理得x2=(8﹣x)2+42,求出x,最后根據(jù)AB=2OP即可求出邊AB的長;(2)作MQ∥AN,交PB于點Q,求出MP=MQ,BN=QM,得出MP=MQ,根據(jù)ME⊥PQ,得出EQ=PQ,根據(jù)∠QMF=∠BNF,證出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,由(1)中的結(jié)論求出PB=,最后代入EF=PB即可得出線段EF的長度不變【詳解】(1)如圖1,∵四邊形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折疊可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP與△PDA的面積比為1:4,∴,∴CP=AD=4設(shè)OP=x,則CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得x2=(8﹣x)2+42,解得:x=5,∴AB=AP=2OP=10,∴邊CD的長為10;(2)作MQ∥AN,交PB于點Q,如圖2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP.∴MP=MQ,∵BN=PM,∴BN=QM.∵M(jìn)P=MQ,ME⊥PQ,∴EQ=PQ.∵M(jìn)Q∥AN,∴∠QMF=∠BNF,∴△MFQ≌△NFB.∴QF=FB,∴EF=EQ+QF=(PQ+QB)=PB,由(1)中的結(jié)論可得:PC=4,BC=8,∠C=90°,∴PB=,∴EF=PB=2,∴在(1)的條件下,當(dāng)點M、N在移動過程中,線段EF的長度不變,它的長度為2.【點睛】本題考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理、等腰三角形的性質(zhì),關(guān)鍵是做出輔助線,找出全等和相似的三角形21、50見解析(3)115.2°(4)【解析】試題分析:(1)用最喜歡籃球的人數(shù)除以它所占的百分比可得總共的學(xué)生數(shù);(2)用學(xué)生的總?cè)藬?shù)乘以各部分所占的百分比,可得最喜歡足球的人數(shù)和其他的人數(shù),即可把條形統(tǒng)計圖補充完整;(3)根據(jù)圓心角的度數(shù)=360o×它所占的百分比計算;(4)列出樹狀圖可知,共有20種等可能的結(jié)果,兩名同學(xué)恰為一男一女的有12種情況,從而可求出答案.解:(1)由題意可知該班的總?cè)藬?shù)=15÷30%=50(名)故答案為50;(2)足球項目所占的人數(shù)=50×18%=9(名),所以其它項目所占人數(shù)=50﹣15﹣9﹣16=10(名)補全條形統(tǒng)計圖如圖所示:(3)“乒乓球”部分所對應(yīng)的圓心角度數(shù)=360°×=115.2°,故答案為115.2°;(4)畫樹狀圖如圖.由圖可知,共有20種等可能的結(jié)果,兩名同學(xué)恰為一男一女的有12種情況,所以P(恰好選出一男一女)==.點睛:本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,概率的計算.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息及掌握概率的計算方法是解決問題的關(guān)鍵.22、(1)見解析;(2)四邊形BFGN是菱形,理由見解析.【解析】

(1)過F作FH⊥BE于點H,可證明四邊形BCFH為矩形,可得到BH=CF,且H為BE中點,可得BE=2CF;(2)由條件可證明△ABN≌△HFE,可得BN=EF,可得到BN=GF,且BN∥FG,可證得四邊形BFGN為菱形.【詳解】(1)證明:過F作FH⊥BE于H點,在四邊形BHFC中,∠BHF=∠CBH=∠BCF=90°,所以四邊形BHFC為矩形,∴CF=BH,∵BF=EF,F(xiàn)H

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論