2024屆吉林省農安縣新農中學中考數(shù)學模擬試題含解析_第1頁
2024屆吉林省農安縣新農中學中考數(shù)學模擬試題含解析_第2頁
2024屆吉林省農安縣新農中學中考數(shù)學模擬試題含解析_第3頁
2024屆吉林省農安縣新農中學中考數(shù)學模擬試題含解析_第4頁
2024屆吉林省農安縣新農中學中考數(shù)學模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆吉林省農安縣新農中學中考數(shù)學模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列運算中,計算結果正確的是()A.a(chǎn)2?a3=a6B.a(chǎn)2+a3=a5C.(a2)3=a6D.a(chǎn)12÷a6=a22.如圖,△ABC內接于⊙O,AD為⊙O的直徑,交BC于點E,若DE=2,OE=3,則tan∠ACB·tan∠ABC=()A.2 B.3 C.4 D.53.如圖,數(shù)軸上有A,B,C,D四個點,其中表示互為倒數(shù)的點是()A.點A與點B B.點A與點D C.點B與點D D.點B與點C4.如圖,點O為平面直角坐標系的原點,點A在x軸上,△OAB是邊長為4的等邊三角形,以O為旋轉中心,將△OAB按順時針方向旋轉60°,得到△OA′B′,那么點A′的坐標為()A.(2,2) B.(﹣2,4) C.(﹣2,2) D.(﹣2,2)5.如圖,正方形ABCD中,對角線AC、BD交于點O,∠BAC的平分線交BD于E,交BC于F,BH⊥AF于H,交AC于G,交CD于P,連接GE、GF,以下結論:①△OAE≌△OBG;②四邊形BEGF是菱形;③BE=CG;④﹣1;⑤S△PBC:S△AFC=1:2,其中正確的有()個.A.2 B.3 C.4 D.56.在銀行存款準備金不變的情況下,銀行的可貸款總量與存款準備金率成反比例關系.當存款準備金率為7.5%時,某銀行可貸款總量為400億元,如果存款準備金率上調到8%時,該銀行可貸款總量將減少多少億()A.20 B.25 C.30 D.357.在0,-2,5,,-0.3中,負數(shù)的個數(shù)是().A.1 B.2 C.3 D.48.下列計算正確的是()A.﹣a4b÷a2b=﹣a2bB.(a﹣b)2=a2﹣b2C.a(chǎn)2?a3=a6D.﹣3a2+2a2=﹣a29.2018年1月,“墨子號”量子衛(wèi)星實現(xiàn)了距離達7600千米的洲際量子密鑰分發(fā),這標志著“墨子號”具備了洲際量子保密通信的能力.數(shù)字7600用科學記數(shù)法表示為()A.0.76×104 B.7.6×103 C.7.6×104 D.76×10210.如圖,在矩形ABCD中,E是AD邊的中點,BE⊥AC,垂足為點F,連接DF,分析下列四個結論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正確的結論有()A.4個 B.3個 C.2個 D.1個二、填空題(共7小題,每小題3分,滿分21分)11.已知A、B兩地之間的距離為20千米,甲步行,乙騎車,兩人沿著相同路線,由A地到B地勻速前行,甲、乙行進的路程s與x(小時)的函數(shù)圖象如圖所示.(1)乙比甲晚出發(fā)___小時;(2)在整個運動過程中,甲、乙兩人之間的距離隨x的增大而增大時,x的取值范圍是___.12.化簡__________.13.計算兩個兩位數(shù)的積,這兩個數(shù)的十位上的數(shù)字相同,個位上的數(shù)字之和等于1.53×57=3021,38×32=1216,84×86=7224,71×79=2.(1)你發(fā)現(xiàn)上面每個數(shù)的積的規(guī)律是:十位數(shù)字乘以十位數(shù)字加一的積作為結果的千位和百位,兩個個位數(shù)字相乘的積作為結果的,請寫出一個符合上述規(guī)律的算式.(2)設其中一個數(shù)的十位數(shù)字為a,個位數(shù)字為b,請用含a,b的算式表示這個規(guī)律.14.如圖,△ABC內接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于點D,若☉O的半徑為2,則CD的長為_____15.反比例函數(shù)y=的圖象是雙曲線,在每一個象限內,y隨x的增大而減小,若點A(–3,y1),B(–1,y2),C(2,y3)都在該雙曲線上,則y1、y2、y3的大小關系為__________.(用“<”連接)16.舉重比賽的總成績是選手的挺舉與抓舉兩項成績之和,若其中一項三次挑戰(zhàn)失敗,則該項成績?yōu)?,甲、乙是同一重量級別的舉重選手,他們近三年六次重要比賽的成績如下(單位:公斤):如果你是教練,要選派一名選手參加國際比賽,那么你會選擇_____(填“甲”或“乙”),理由是___________.17.如圖,已知正方形ABCD中,∠MAN=45°,連接BD與AM,AN分別交于E,F(xiàn)點,則下列結論正確的有_____.①MN=BM+DN②△CMN的周長等于正方形ABCD的邊長的兩倍;③EF1=BE1+DF1;④點A到MN的距離等于正方形的邊長⑤△AEN、△AFM都為等腰直角三角形.⑥S△AMN=1S△AEF⑦S正方形ABCD:S△AMN=1AB:MN⑧設AB=a,MN=b,則≥1﹣1.三、解答題(共7小題,滿分69分)18.(10分)解不等式組:,并把解集在數(shù)軸上表示出來.19.(5分)如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,∠ABC的平分線交邊AC于點D,延長BD至點E,且BD=2DE,連接AE.(1)求線段CD的長;(2)求△ADE的面積.20.(8分)已知:不等式≤2+x(1)求不等式的解;(2)若實數(shù)a滿足a>2,說明a是否是該不等式的解.21.(10分)如圖,在平面直角坐標系xOy中,直線與x軸交于點A,與雙曲線的一個交點為B(-1,4).求直線與雙曲線的表達式;過點B作BC⊥x軸于點C,若點P在雙曲線上,且△PAC的面積為4,求點P的坐標.22.(10分)如圖,Rt△ABC中,∠C=90°,⊙O是Rt△ABC的外接圓,過點C作⊙O的切線交BA的延長線于點E,BD⊥CE于點D,連接DO交BC于點M.(1)求證:BC平分∠DBA;(2)若,求的值.23.(12分)當前,“精準扶貧”工作已進入攻堅階段,凡貧困家庭均要“建檔立卡”.某初級中學七年級共有四個班,已“建檔立卡”的貧困家庭的學生人數(shù)按一、二、三、四班分別記為A1,A2,A3,A4,現(xiàn)對A1,A2,A3,A4統(tǒng)計后,制成如圖所示的統(tǒng)計圖.(1)求七年級已“建檔立卡”的貧困家庭的學生總人數(shù);(2)將條形統(tǒng)計圖補充完整,并求出A1所在扇形的圓心角的度數(shù);(3)現(xiàn)從A1,A2中各選出一人進行座談,若A1中有一名女生,A2中有兩名女生,請用樹狀圖表示所有可能情況,并求出恰好選出一名男生和一名女生的概率.24.(14分)如圖,AB為⊙O的直徑,點D、E位于AB兩側的半圓上,射線DC切⊙O于點D,已知點E是半圓弧AB上的動點,點F是射線DC上的動點,連接DE、AE,DE與AB交于點P,再連接FP、FB,且∠AED=45°.(1)求證:CD∥AB;(2)填空:①當∠DAE=時,四邊形ADFP是菱形;②當∠DAE=時,四邊形BFDP是正方形.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

根據(jù)同底數(shù)冪相乘,底數(shù)不變指數(shù)相加;冪的乘方,底數(shù)不變指數(shù)相減;同底數(shù)冪相除,底數(shù)不變指數(shù)相減對各選項分析判斷即可得解.【詳解】A、a2?a3=a2+3=a5,故本選項錯誤;B、a2+a3不能進行運算,故本選項錯誤;C、(a2)3=a2×3=a6,故本選項正確;D、a12÷a6=a12﹣6=a6,故本選項錯誤.故選:C.【點睛】本題考查了同底數(shù)冪的乘法、冪的乘方、同底數(shù)冪的除法,熟練掌握運算法則是解題的關鍵.2、C【解析】

如圖(見解析),連接BD、CD,根據(jù)圓周角定理可得,再根據(jù)相似三角形的判定定理可得,然后由相似三角形的性質可得,同理可得;又根據(jù)圓周角定理可得,再根據(jù)正切的定義可得,然后求兩個正切值之積即可得出答案.【詳解】如圖,連接BD、CD在和中,同理可得:,即為⊙O的直徑故選:C.【點睛】本題考查了圓周角定理、相似三角形的判定定理與性質、正切函數(shù)值等知識點,通過作輔助線,結合圓周角定理得出相似三角形是解題關鍵.3、A【解析】

試題分析:主要考查倒數(shù)的定義和數(shù)軸,要求熟練掌握.需要注意的是:倒數(shù)的性質:負數(shù)的倒數(shù)還是負數(shù),正數(shù)的倒數(shù)是正數(shù),0沒有倒數(shù).倒數(shù)的定義:若兩個數(shù)的乘積是1,我們就稱這兩個數(shù)互為倒數(shù).根據(jù)倒數(shù)定義可知,-2的倒數(shù)是-,有數(shù)軸可知A對應的數(shù)為-2,B對應的數(shù)為-,所以A與B是互為倒數(shù).故選A.考點:1.倒數(shù)的定義;2.數(shù)軸.4、D【解析】分析:作BC⊥x軸于C,如圖,根據(jù)等邊三角形的性質得則易得A點坐標和O點坐標,再利用勾股定理計算出然后根據(jù)第二象限點的坐標特征可寫出B點坐標;由旋轉的性質得則點A′與點B重合,于是可得點A′的坐標.詳解:作BC⊥x軸于C,如圖,∵△OAB是邊長為4的等邊三角形∴∴A點坐標為(?4,0),O點坐標為(0,0),在Rt△BOC中,∴B點坐標為∵△OAB按順時針方向旋轉,得到△OA′B′,∴∴點A′與點B重合,即點A′的坐標為故選D.點睛:考查圖形的旋轉,等邊三角形的性質.求解時,注意等邊三角形三線合一的性質.5、C【解析】

根據(jù)AF是∠BAC的平分線,BH⊥AF,可證AF為BG的垂直平分線,然后再根據(jù)正方形內角及角平分線進行角度轉換證明EG=EB,F(xiàn)G=FB,即可判定②選項;設OA=OB=OC=a,菱形BEGF的邊長為b,由四邊形BEGF是菱形轉換得到CF=GF=BF,由四邊形ABCD是正方形和角度轉換證明△OAE≌△OBG,即可判定①;則△GOE是等腰直角三角形,得到GE=OG,整理得出a,b的關系式,再由△PGC∽△BGA,得到=1+,從而判斷得出④;得出∠EAB=∠GBC從而證明△EAB≌△GBC,即可判定③;證明△FAB≌△PBC得到BF=CP,即可求出,從而判斷⑤.【詳解】解:∵AF是∠BAC的平分線,∴∠GAH=∠BAH,∵BH⊥AF,∴∠AHG=∠AHB=90°,在△AHG和△AHB中,∴△AHG≌△AHB(ASA),∴GH=BH,∴AF是線段BG的垂直平分線,∴EG=EB,F(xiàn)G=FB,∵四邊形ABCD是正方形,∴∠BAF=∠CAF=×45°=22.5°,∠ABE=45°,∠ABF=90°,∴∠BEF=∠BAF+∠ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°,∴∠BEF=∠BFE,∴EB=FB,∴EG=EB=FB=FG,∴四邊形BEGF是菱形;②正確;設OA=OB=OC=a,菱形BEGF的邊長為b,∵四邊形BEGF是菱形,∴GF∥OB,∴∠CGF=∠COB=90°,∴∠GFC=∠GCF=45°,∴CG=GF=b,∠CGF=90°,∴CF=GF=BF,∵四邊形ABCD是正方形,∴OA=OB,∠AOE=∠BOG=90°,∵BH⊥AF,∴∠GAH+∠AGH=90°=∠OBG+∠AGH,∴∠OAE=∠OBG,在△OAE和△OBG中,∴△OAE≌△OBG(ASA),①正確;∴OG=OE=a﹣b,∴△GOE是等腰直角三角形,∴GE=OG,∴b=(a﹣b),整理得a=b,∴AC=2a=(2+)b,AG=AC﹣CG=(1+)b,∵四邊形ABCD是正方形,∴PC∥AB,∴===1+,∵△OAE≌△OBG,∴AE=BG,∴=1+,∴==1﹣,④正確;∵∠OAE=∠OBG,∠CAB=∠DBC=45°,∴∠EAB=∠GBC,在△EAB和△GBC中,∴△EAB≌△GBC(ASA),∴BE=CG,③正確;在△FAB和△PBC中,∴△FAB≌△PBC(ASA),∴BF=CP,∴====,⑤錯誤;綜上所述,正確的有4個,故選:C.【點睛】本題綜合考查了全等三角形的判定與性質,相似三角形,菱形的判定與性質等四邊形的綜合題.該題難度較大,需要學生對有關于四邊形的性質的知識有一系統(tǒng)的掌握.6、B【解析】設可貸款總量為y,存款準備金率為x,比例常數(shù)為k,則由題意可得:,,∴,∴當時,(億),∵400-375=25,∴該行可貸款總量減少了25億.故選B.7、B【解析】

根據(jù)負數(shù)的定義判斷即可【詳解】解:根據(jù)負數(shù)的定義可知,這一組數(shù)中,負數(shù)有兩個,即-2和-0.1.故選B.8、D【解析】

根據(jù)各個選項中的式子可以計算出正確的結果,從而可以解答本題.【詳解】-aa-b2a2-3a故選:D.【點睛】考查整式的除法,完全平方公式,同底數(shù)冪相乘以及合并同類項,比較基礎,難度不大.9、B【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:7600=7.6×103,故選B.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.10、A【解析】

①正確.只要證明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;②正確.由AD∥BC,推出△AEF∽△CBF,推出=,由AE=AD=BC,推出=,即CF=2AF;③正確.只要證明DM垂直平分CF,即可證明;④正確.設AE=a,AB=b,則AD=2a,由△BAE∽△ADC,有=,即b=a,可得tan∠CAD===.【詳解】如圖,過D作DM∥BE交AC于N.∵四邊形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∴∠EAC=∠ACB.∵BE⊥AC于點F,∴∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正確;∵AD∥BC,∴△AEF∽△CBF,∴=.∵AE=AD=BC,∴=,∴CF=2AF,故②正確;∵DE∥BM,BE∥DM,∴四邊形BMDE是平行四邊形,∴BM=DE=BC,∴BM=CM,∴CN=NF.∵BE⊥AC于點F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正確;設AE=a,AB=b,則AD=2a,由△BAE∽△ADC,有=,即b=a,∴tan∠CAD===.故④正確.故選A.【點睛】本題考查了相似三角形的判定和性質,矩形的性質,圖形面積的計算以及解直角三角形的綜合應用,正確的作出輔助線構造平行四邊形是解題的關鍵.解題時注意:相似三角形的對應邊成比例.二、填空題(共7小題,每小題3分,滿分21分)11、2,0≤x≤2或≤x≤2.【解析】

(2)由圖象直接可得答案;(2)根據(jù)圖象求出甲乙的函數(shù)解析式,再求出方程組的解集即可解答【詳解】(2)由函數(shù)圖象可知,乙比甲晚出發(fā)2小時.故答案為2.(2)在整個運動過程中,甲、乙兩人之間的距離隨x的增大而增大時,有兩種情況:一是甲出發(fā),乙還未出發(fā)時:此時0≤x≤2;二是乙追上甲后,直至乙到達終點時:設甲的函數(shù)解析式為:y=kx,由圖象可知,(4,20)在函數(shù)圖象上,代入得:20=4k,∴k=5,∴甲的函數(shù)解析式為:y=5x①設乙的函數(shù)解析式為:y=k′x+b,將坐標(2,0),(2,20)代入得:,解得,∴乙的函數(shù)解析式為:y=20x﹣20②由①②得,∴,故≤x≤2符合題意.故答案為0≤x≤2或≤x≤2.【點睛】此題考查函數(shù)的圖象和二元一次方程組的解,解題關鍵在于看懂圖中數(shù)據(jù)12、【解析】

根據(jù)分式的運算法則先算括號里面,再作乘法亦可利用乘法對加法的分配律求解.【詳解】解:法一、=(-)==2-m.

故答案為:2-m.

法二、原式===1-m+1

=2-m.

故答案為:2-m.【點睛】本題考查分式的加減和乘法,解決本題的關鍵是熟練運用運算法則或運算律.13、(1)十位和個位,44×46=2024;(2)10a(a+1)+b(1﹣b)【解析】分析:(1)、根據(jù)題意得出其一般性的規(guī)律,從而得出答案;(2)、利用代數(shù)式表示出其一般規(guī)律得出答案.詳解:(1)由已知等式知,每個數(shù)的積的規(guī)律是:十位數(shù)字乘以十位數(shù)字加一的積作為結果的千位和百位,兩個個位數(shù)字相乘的積作為結果的十位和個位,例如:44×46=2024,(2)(1a+b)(1a+1﹣b)=10a(a+1)+b(1﹣b).點睛:本題主要考查的是規(guī)律的發(fā)現(xiàn)與整理,屬于基礎題型.找出一般性的規(guī)律是解決這個問題的關鍵.14、【解析】

連接OA,OC,根據(jù)∠COA=2∠CBA=90°可求出AC=,然后在Rt△ACD中利用三角函數(shù)即可求得CD的長.【詳解】解:連接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=,故答案為.【點睛】本題考查了圓周角定理以及銳角三角函數(shù),根據(jù)題意作出常用輔助線是解題關鍵.15、y2<y1<y1.【解析】

先根據(jù)反比例函數(shù)的增減性判斷出2-m的符號,再根據(jù)反比例函數(shù)的性質判斷出此函數(shù)圖象所在的象限,由各點橫坐標的值進行判斷即可.【詳解】∵反比例函數(shù)y=的圖象是雙曲線,在每一個象限內,y隨x的增大而減小,∴2?m>0,∴此函數(shù)的圖象在一、三象限,∵?1<?1<0,∴0>y1>y2,∵2>0,∴y1>0,∴y2<y1<y1.故答案為y2<y1<y1.【點睛】本題考查的知識點是反比例函數(shù)圖像上點的坐標特征,解題的關鍵是熟練的掌握列反比例函數(shù)圖像上點的坐標特征.16、乙乙的比賽成績比較穩(wěn)定.【解析】

觀察表格中的數(shù)據(jù)可知:甲的比賽成績波動幅度較大,故甲的比賽成績不穩(wěn)定;乙的比賽成績波動幅度較小,故乙的比賽成績比較穩(wěn)定,據(jù)此可得結論.【詳解】觀察表格中的數(shù)據(jù)可得,甲的比賽成績波動幅度較大,故甲的比賽成績不穩(wěn)定;乙的比賽成績波動幅度較小,故乙的比賽成績比較穩(wěn)定;所以要選派一名選手參加國際比賽,應該選擇乙,理由是乙的比賽成績比較穩(wěn)定.故答案為乙,乙的比賽成績比較穩(wěn)定.【點睛】本題主要考查了方差,方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越??;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.17、①②③④⑤⑥⑦.【解析】

將△ABM繞點A逆時針旋轉,使AB與AD重合,得到△ADH.證明△MAN≌△HAN,得到MN=NH,根據(jù)三角形周長公式計算判斷①;判斷出BM=DN時,MN最小,即可判斷出⑧;根據(jù)全等三角形的性質判斷②④;將△ADF繞點A順時針性質90°得到△ABH,連接HE.證明△EAH≌△EAF,得到∠HBE=90°,根據(jù)勾股定理計算判斷③;根據(jù)等腰直角三角形的判定定理判斷⑤;根據(jù)等腰直角三角形的性質、三角形的面積公式計算,判斷⑥,根據(jù)點A到MN的距離等于正方形ABCD的邊長、三角形的面積公式計算,判斷⑦.【詳解】將△ABM繞點A逆時針旋轉,使AB與AD重合,得到△ADH.則∠DAH=∠BAM,∵四邊形ABCD是正方形,∴∠BAD=90°,∵∠MAN=45°,∴∠BAN+∠DAN=45°,∴∠NAH=45°,在△MAN和△HAN中,,∴△MAN≌△HAN,∴MN=NH=BM+DN,①正確;∵BM+DN≥1,(當且僅當BM=DN時,取等號)∴BM=DN時,MN最小,∴BM=b,∵DH=BM=b,∴DH=DN,∵AD⊥HN,∴∠DAH=∠HAN=11.5°,在DA上取一點G,使DG=DH=b,∴∠DGH=45°,HG=DH=b,∵∠DGH=45°,∠DAH=11.5°,∴∠AHG=∠HAD,∴AG=HG=b,∴AB=AD=AG+DG=b+b=b=a,∴,∴,當點M和點B重合時,點N和點C重合,此時,MN最大=AB,即:,∴≤≤1,⑧錯誤;∵MN=NH=BM+DN∴△CMN的周長=CM+CN+MN=CM+BM+CN+DN=CB+CD,∴△CMN的周長等于正方形ABCD的邊長的兩倍,②結論正確;∵△MAN≌△HAN,∴點A到MN的距離等于正方形ABCD的邊長AD,④結論正確;如圖1,將△ADF繞點A順時針性質90°得到△ABH,連接HE.∵∠DAF+∠BAE=90°-∠EAF=45°,∠DAF=∠BAE,∴∠EAH=∠EAF=45°,∵EA=EA,AH=AD,∴△EAH≌△EAF,∴EF=HE,∵∠ABH=∠ADF=45°=∠ABD,∴∠HBE=90°,在Rt△BHE中,HE1=BH1+BE1,∵BH=DF,EF=HE,∵EF1=BE1+DF1,③結論正確;∵四邊形ABCD是正方形,∴∠ADC=90°,∠BDC=∠ADB=45°,∵∠MAN=45°,∴∠EAN=∠EDN,∴A、E、N、D四點共圓,∴∠ADN+∠AEN=180°,∴∠AEN=90°∴△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;⑤結論正確;∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,∴AM=AF,AN=AE,如圖3,過點M作MP⊥AN于P,在Rt△APM中,∠MAN=45°,∴MP=AMsin45°,∵S△AMN=AN?MP=AM?AN?sin45°,S△AEF=AE?AF?sin45°,∴S△AMN:S△AEF=1,∴S△AMN=1S△AEF,⑥正確;∵點A到MN的距離等于正方形ABCD的邊長,∴S正方形ABCD:S△AMN==1AB:MN,⑦結論正確.即:正確的有①②③④⑤⑥⑦,故答案為①②③④⑤⑥⑦.【點睛】此題是四邊形綜合題,主要考查了正方形的性質,全等三角形的判定和性質,等腰直角三角形的判定和性質,解本題的關鍵是構造全等三角形.三、解答題(共7小題,滿分69分)18、x≥【解析】分析:分別求解兩個不等式,然后按照不等式的確定方法求解出不等式組的解集,然后表示在數(shù)軸上即可.詳解:,由①得,x>﹣2;由②得,x≥,故此不等式組的解集為:x≥.在數(shù)軸上表示為:.點睛:本題考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎,熟知“同大取大;同小取??;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.19、(1)43;(2)S【解析】分析:(1)過點D作DH⊥AB,根據(jù)角平分線的性質得到DH=DC根據(jù)正弦的定義列出方程,解方程即可;(2)根據(jù)三角形的面積公式計算.詳解:(1)過點D作DH⊥AB,垂足為點H.∵BD平分∠ABC,∠C=90°,∴DH=DC=x,則AD=3﹣x.∵∠C=90°,AC=3,BC=4,∴AB=1.∵sin∠BAC=HDAD=(2)S△ABD∵BD=2DE,∴S△ABD點睛:本題考查的是角平分線的性質,掌握角的平分線上的點到角的兩邊的距離相等是解題的關鍵.20、(1)x≥﹣1;(2)a是不等式的解.【解析】

(1)根據(jù)解一元一次不等式基本步驟:去分母、去括號、移項、合并同類項、系數(shù)化為1可得.

(2)根據(jù)不等式的解的定義求解可得【詳解】解:(1)去分母得:2﹣x≤3(2+x),去括號得:2﹣x≤6+3x,移項、合并同類項得:﹣4x≤4,系數(shù)化為1得:x≥﹣1.(2)∵a>2,不等式的解集為x≥﹣1,而2>﹣1,∴a是不等式的解.【點睛】本題考查了解一元一次不等式,掌握解一元一次不等式的步驟是解題的關鍵21、(1)直線的表達式為,雙曲線的表達方式為;(2)點P的坐標為或【解析】分析:(1)將點B(-1,4)代入直線和雙曲線解析式求出k和m的值即可;(2)根據(jù)直線解析式求得點A坐標,由S△ACP=AC?|yP|=4求得點P的縱坐標,繼而可得答案.詳解:(1)∵直線與雙曲線()都經(jīng)過點B(-1,4),,,∴直線的表達式為,雙曲線的表達方式為.(2)由題意,得點C的坐標為C(-1,0),直線與x軸交于點A(3,0),,∵,,點P在雙曲線上,∴點P的坐標為或.點睛:本題主要考查反比例函數(shù)和一次函數(shù)的交點問題,熟練掌握待定系數(shù)法求函數(shù)解析式及三角形的面積是解題的關鍵.22、(1)證明見解析;(2)【解析】分析:(1)如下圖,連接OC,由已知易得OC⊥DE,結合BD⊥DE可得OC∥BD,從而可得∠1=∠2,結合由OB=OC所得的∠1=∠3,即可得到∠2=∠3,從而可得BC平分∠DBA;(2)由OC∥BD可得△EBD∽△EOC和△DBM∽△OCM,由根據(jù)相似三角形的性質可得得,由,設EA=2k,AO=3k可得OC=OA=OB=3k,由此即可得到.詳解:(1)證明:連結OC,∵DE與⊙O相切于點C,∴OC⊥DE.∵BD⊥DE,∴OC∥BD..∴∠1=∠2,∵OB=OC,∴∠1=∠3,∴∠2=∠3,即BC平分∠DBA..(2)∵OC∥BD

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論