2024年秋新人教版七年級上冊數(shù)學教學課件 5.3 實際問題與一元一次方程 第1課時 配套問題和工程問題_第1頁
2024年秋新人教版七年級上冊數(shù)學教學課件 5.3 實際問題與一元一次方程 第1課時 配套問題和工程問題_第2頁
2024年秋新人教版七年級上冊數(shù)學教學課件 5.3 實際問題與一元一次方程 第1課時 配套問題和工程問題_第3頁
2024年秋新人教版七年級上冊數(shù)學教學課件 5.3 實際問題與一元一次方程 第1課時 配套問題和工程問題_第4頁
2024年秋新人教版七年級上冊數(shù)學教學課件 5.3 實際問題與一元一次方程 第1課時 配套問題和工程問題_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版·七年級上冊第1課時配套問題和工程問題學習目標1.會運用一元一次方程解決物品配套問題

和工程問題.2.掌握用一元一次方程解決實際問題的基

本思路和步驟.實際問題一元一次方程設未知數(shù)列方程分析實際問題中的數(shù)量關系,利用其中的相等關系列出方程,是解決實際問題的一種數(shù)學方法.例題【教材P133】例1某車間有22名工人,每人每天可以生產(chǎn)1200個螺栓或2000個螺母.1個螺栓需要配2個螺母,為使每天生產(chǎn)的螺栓和螺母剛好配套,應安排生產(chǎn)螺栓和螺母的工人各多少名?如果設應安排x

名工人生產(chǎn)螺栓,則_______名工人生產(chǎn)螺母.螺栓的數(shù)量為___________,螺母的數(shù)量為____________.如何找出等量關系?1個螺釘需要配2個螺母,為使每天生產(chǎn)的螺釘和螺母剛好配套.等量關系:螺母數(shù)量=螺栓數(shù)量×2(22-x)1200x2000(22-x)例題【教材P133】例1某車間有22名工人,每人每天可以生產(chǎn)1200個螺栓或2000個螺母.1個螺栓需要配2個螺母,為使每天生產(chǎn)的螺栓和螺母剛好配套,應安排生產(chǎn)螺栓和螺母的工人各多少名?(22-x)1200x2000(22-x)解:設應安排x

名工人生產(chǎn)螺栓,(22-x)名工人生產(chǎn)螺母.根據(jù)螺母數(shù)量應是螺栓數(shù)量的2倍,列得方程2000(22-x)=2×1200x.解方程,得x=10.22-x=12.答:應安排10名工人生產(chǎn)螺栓,12名工人生產(chǎn)螺母.(22-x)1200x2000(22-x)如果設x名工人生產(chǎn)螺母,怎樣列方程?2000x=2×1200(22-x).例題【教材P133】例1某車間有22名工人,每人每天可以生產(chǎn)1200個螺栓或2000個螺母.1個螺栓需要配2個螺母,為使每天生產(chǎn)的螺栓和螺母剛好配套,應安排生產(chǎn)螺栓和螺母的工人各多少名?配套問題配套問題中的基本關系:可得相等關系:m×B的數(shù)量=n×A的數(shù)量.若m

個A和n

個B配成一套,則,A的數(shù)量B的數(shù)量mn=鞏固練習某服裝廠要生產(chǎn)一批校服,已知每米布料可以做2件上衣或3條褲子,1件上衣和2條褲子配成一套.現(xiàn)有1008m的布料,應怎樣計劃用料才能做盡可能多的成套校服?每米布料可以做2件上衣或3條褲子上衣的數(shù)量∶褲子的數(shù)量=1∶2可得:褲子的數(shù)量=上衣的數(shù)量×2上衣和褲子共用布料1008m條件分析解:設用xm布料做上衣,則用(1008-x)m布料做褲子.由題意,得3(1008-

x)=2x×2,解得x=432.所以1008-

x=576.答:用432m布料做上衣,576m布料做褲子,才能做盡可能多的成套校服.鞏固練習某服裝廠要生產(chǎn)一批校服,已知每米布料可以做2件上衣或3條褲子,1件上衣和2條褲子配成一套.現(xiàn)有1008m的布料,應怎樣計劃用料才能做盡可能多的成套校服?例題【教材P133】例2整理一批圖書,由1人整理需要40h完成.現(xiàn)計劃由一部分人先整理4h,然后增加2人與他們一起整理8h,完成這項工作.假設這些人的工作效率相同,應先安排多少人進行整理?分析:在工程問題中:工作量=人均效率×人數(shù)×時間如果把總工作量設為1,則人均效率為,如果設先安排x

人做4h,那么x

人先做4h完成的工作量為,增加2人后再做8h完成的工作量為,前部分工作總量+后部分工作總量=總工作量解:設先安排x

人整理4h.根據(jù)先后兩個時段的工作量之和等于總工作量,答:應先安排2人進行整理.列得方程,解得x=2.工程問題工程問題中常用的相等關系:(1)工作量=工作效率×工作時間(2)合作效率=各部分的工作效率之和(3)總工作量=各部分的工作量之和(4)總工作量=人均效率×人數(shù)×時間鞏固練習有一批零件加工任務,甲單獨做要40h完成,乙單獨做要30h完成.甲單獨做了一段時間后另有任務,剩下的任務由乙接手并單獨完成,最終完成任務時,乙比甲多做了2h.甲做了多少小時?甲的工作量+乙的工作量=總工作量“1”甲的工作效率×工作時間乙的工作效率×工作時間鞏固練習有一批零件加工任務,甲單獨做要40h完成,乙單獨做要30h完成.甲單獨做了一段時間后另有任務,剩下的任務由乙接手并單獨完成,最終完成任務時,乙比甲多做了2h.甲做了多少小時?解:設甲做了xh,則乙做了(x+2)h.根據(jù)題意,得,解得x=16.答:甲做了16h.歸納用一元一次方程解決實際問題的基本過程如下:實際問題一元一次方程實際問題的答案一元一次方程的解(x=m)設未知數(shù),列方程檢驗解方程這一過程一般包括設、列、解、檢、答等步驟,即設未知數(shù)、列方程、解方程、檢驗所得結果、確定答案.正確分析問題中的相等關系是列方程的基礎.練習【選自教材P134練習第1題】1.一條地下管線由甲工程隊單獨鋪設需要12天,由乙工程隊單獨鋪設需要24天,如果由這兩支工程隊從兩端同時施工,需要多少天可以鋪好這條管線?解:設需要x

天可以鋪好這條管線.根據(jù)題意,得.解得x=8.答:需要8天可以鋪好這條管線.2.在一次勞動課上,有27名同學在甲處勞動,有19名

同學在乙處勞動.現(xiàn)在從其他班級另調20人去支援,

使得在甲處的人數(shù)為在乙處人數(shù)的2倍,應調往甲、

乙兩處各多少人?解:設調往甲處x人,則調往乙處(20-

x)

人.根據(jù)題意,得27+x=2(19+20-

x).解得x=17.所以20-

x=3.答:應調往甲處17人,乙處3人.【選自教材P134練習第2題】3.一臺儀器由1個A部件和3個B部件構成.用1m3鋼材可以做40個A部件或240個B部件,現(xiàn)要用6m3鋼材制作這種儀器,應用多少立方米鋼材做A部件,多少立方米鋼材做B部件,才能制作盡可能多的儀器?最多能制成多少臺儀器?解:設用xm3鋼材做A部件,則用(6-

x)m3

鋼材做B部件.根據(jù)題意,3×40x=240(6-

x).解得x=4.所以6-

x=2,40x=160.答:應用4m3

鋼材做A部件,2m3鋼材做B部件,才能制作盡可能多的儀器,最多能制成

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論