江蘇省沭陽如東中學2024-2025學年高一數(shù)學上學期周練試題10.7含解析_第1頁
江蘇省沭陽如東中學2024-2025學年高一數(shù)學上學期周練試題10.7含解析_第2頁
江蘇省沭陽如東中學2024-2025學年高一數(shù)學上學期周練試題10.7含解析_第3頁
江蘇省沭陽如東中學2024-2025學年高一數(shù)學上學期周練試題10.7含解析_第4頁
江蘇省沭陽如東中學2024-2025學年高一數(shù)學上學期周練試題10.7含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

PAGEPAGE18江蘇省沭陽如東中學2024-2025學年高一數(shù)學上學期周練試題(10.7,含解析)一、單項選擇題(本大題共8小題,每小題5分,共計40分.在每小題給出的四個選項中,只有一個是符合題目要求的,請把答案添涂在答題卡相應位置上)1.設集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},則a=()A.–4 B.–2C.2 D.42.設,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.關于的不等式的解集是()A. B. C. D.或4.聞名的Dirichlet函數(shù),則等于()A.0 B.1C. D.5.函數(shù)的定義域為()A. B.C. D.6.若函數(shù),那么()A.1 B.3 C.15 D.307.a,b都是正數(shù)a+b=1,則(a+1a)(b+1bA.4 B.6 C.8 D.8.若a>2,b>2,12log2(a+b)+log22a=12log21a+b+log2b2,則log2(a-2)+log2(b-2)等于A.0B.12 C.1 二、

多項選擇題(本大題共4小題,每小題5分,

共計20分.在每小題給出的四個選項中,至少有兩個是符合題目要求的,請把答案添涂在答題卡相應位置上)9.下列各組函數(shù)是同一函數(shù)的是(????)A.f(x)=-2x3與g(x)=x-2x;

B.f(x)=x與g(x)=x2;

C.f(x)=x0與10.下列命題正確的是()A.B.,使得C.是的充要條件D.若,則11.已知a>0,b>0,且a+b=1,則()A. B.12C. D.12.具有性質(zhì):f(1x)=-f(x)的函數(shù),我們稱為滿意“倒負”變換的函數(shù),下列函數(shù)其中滿意“倒負”變換的函數(shù)有A.y=x-1x B.y=x+1x

C.三、填空題.(本大題共4題,每題5分,共20分.請同學們將答案填到答題卷上對應的位置處.)13.若集合有且僅有2個子集,則滿意條件的實數(shù)的個數(shù)是______.14.已知一元二次不等式的解集為,求不等式的解集.15.已知,則=________.16.已知二次函數(shù)y=(lga)x2+2x+4lga的最小值為3,則(loga5)2+loga2·log三、解答題(本大題共有6小題,共70分.解答應寫出文字說明,證明過程或演算步驟.)17.(1)已知a+a-1=3,求的值;(2)化簡計算:.18.已知命題:“?x∈{x|-1<x<1},使等式x2-x-m=0(1)求實數(shù)m的取值集合M;(2)設關于x的不等式(x-a)(x+a-2)<0的解集為N,若“x∈N”是“x∈M”的必要條件,求a的取值范圍.19.已知函數(shù)f(x)=.(1)求f(2)+f(),f(3)+f()的值;(2)求證:f(x)+f()是定值;(3)求f(2)+f()+f(3)+f()+…+f(2012)+f()的值.20.如圖,要設計一張矩形廣告牌,該廣告牌含有大小相等的左右兩個矩形欄目即圖中陰影部分,這兩欄的面積之和為45?m2,四周空白的寬度為0.5?m(1)求廣告牌的面積關于x的函數(shù)Sx(2)求廣告牌的面積的最小值.21.設函數(shù).(1)若不等式的解集,求的值;(2)若,①,求的最小值;②若在上恒成立,求實數(shù)的取值范圍.22.關于x的方程lg(x-1)+lg(3-x)=lg(a-x),其中a是實常數(shù).

(1)當a=2時,解上述方程

(2)2024-2025學年度第一學期周練20241007高一數(shù)學試題一、單項選擇題(本大題共8小題,每小題5分,共計40分.在每小題給出的四個選項中,只有一個是符合題目要求的,請把答案添涂在答題卡相應位置上)1.設集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},則a=()A.–4 B.–2C.2 D.4【答案】B【解析】【分析】由題意首先求得集合A,B,然后結合交集的結果得到關于a的方程,求解方程即可確定實數(shù)a的值.【詳解】求解二次不等式可得,求解一次不等式可得.由于,故,解得.故選B.2.設,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】A【解析】【分析】首先求解二次不等式,然后結合不等式的解集即可確定充分性和必要性是否成馬上可.【詳解】求解二次不等式可得:或,據(jù)此可知:是的充分不必要條件.故選A.3.關于的不等式的解集是()A. B. C. D.或【答案】C【解析】,等價于不等式且,解得.故選:.4.聞名的Dirichlet函數(shù),則等于()A.0 B.1C. D.【答案】B【解析】∵函數(shù),∴是有理數(shù),∴DDx=15.函數(shù)的定義域為()A. B.C. D.【答案】C【解析】由,解得x≥且x≠2.∴函數(shù)的定義域為.故選:C.6.若函數(shù),那么()A.1 B.3 C.15 D.30【答案】C【解析】由于,當時,,故選C.7.a,b都是正數(shù)a+b=1,則(a+1aA.4 B.6 C.8 D.【答案】D【解析】解:因為a,b都是正數(shù)a+b=1,所以1=a+b≥2ab,即0<ab≤14.

又(a+1a)(b+1b)=ab+ab+ba8.若a>2,b>2,12log2(a+b)+log22a=12log21a+b+log2b2,則log2(a-2)+log2(b-2)A.0B.12 C.1 【答案】D【解析】由已知得12log2(a+b)-12log21a+b+log2a-log2b2=0,即log2(a+b)+log22ab=0,所以(a+b)2ab=1,整理得(二、

多項選擇題(本大題共4小題,每小題5分,

共計20分.在每小題給出的四個選項中,至少有兩個是符合題目要求的,請把答案添涂在答題卡相應位置上)9.下列各組函數(shù)是同一函數(shù)的是(????)A.f(x)=-2x3與g(x)=x-2x;

B.f(x)=x與g(x)=x2;

C.f(x)=x0與【答案】CD【解析】【分析】

本題考查了函數(shù)的基本概念,是基礎題.

依據(jù)兩個函數(shù)的定義域相同,對應關系也相同,即可推斷它們是同一函數(shù).

【解答】

解:對于A,f(x)=-2x3=|x|-2x=-x-2x,與g(x)=x-2x的對應關系不同,不是同一函數(shù);

對于B,f(x)=x(x∈R),g(x)=(x)2=x(x≥0),它們的定義域不同,不是同一函數(shù);

對于C,f(x)=x0=1,(x≠0),g(x)=1x10.下列命題正確的是()A.B.,使得C.是的充要條件D.若,則【答案】AD【解析】對于A選項,時,,故A選項正確.對于B選項,當時,不成立,故B選項錯誤.對于C選項,當“”時,“”成立;當“”時,如,此時,故“”不成立,也即“”是“”的充分不必要條件.故C選項錯誤.對于D選項,當時,,,由于,故,所以D選項正確.故填:AD.11.已知a>0,b>0,且a+b=1,則()A. B.12C. D.【答案】ABD【解析】對于A,,當且僅當時,等號成立,故A正確;對于B,(1對于C,,當且僅當時,等號成立,故C不正確;對于D,因為,所以,當且僅當時,等號成立,故D正確;故選:ABD.12.具有性質(zhì):f(1x)=-f(x)的函數(shù),我們稱為滿意“倒負”變換的函數(shù),下列函數(shù)其中滿意“倒負A.y=x-1x B.y=x+1x

C.【答案】AC【解析】【分析】

本題考查函數(shù)的解析式,屬于中檔題

利用“倒負”函數(shù)定義,分別比較三個函數(shù)的f(1x)與-f(x)的解析式,若符合定義,則為滿意“倒負”變換的函數(shù);若不符合,說明函數(shù)不符合定義,從而不是滿意“倒負”變換的函數(shù).

【解答】

解:由“倒負”f(1x)=-f(x)函數(shù)變換有,對于A,f(1x)=1x-x=-f(x)=1x-x成立,故A是“倒負”函數(shù);

對于B,f(1x)=1x+x≠-f(x)=-x-1x,故B不是“倒負”函數(shù);

對于C,f(1x)=1三、填空題.(本大題共4題,每題5分,共20分.請同學們將答案填到答題卷上對應的位置處.)13.若集合有且僅有2個子集,則滿意條件的實數(shù)的個數(shù)是______.【答案】3【解析】若集合有且只有2個子集,則方程有且只有1個實數(shù)根,即時,方程化為,,符合題意,即時,只需△,解得:或,故滿意條件的的值有3個,故答案為:3.14.已知一元二次不等式的解集為,求不等式的解集.【答案】.【解析】由題意,不等式的解集為,所以與是方程的兩個實數(shù)根,由根與系數(shù)的關系得解得所以不等式,即為,整理得,解得即不等式的解集為.15.已知,則=________.【答案】【解析】(1)法一(換元法):令,則,代入原式有,所以.故答案為:.法二(配湊法):,因為,所以.故答案為:.16.已知二次函數(shù)y=(lga)x2+2x+4lga的最小值為3,則(loga5)2+loga2·log【答案】1【解析】因為y=(lga)x2+2x+4lga的最小值為3,所以lga>0,且函數(shù)的最小值在x=-1lgymin=lga×-1lga2+2×-1lga即4(lga)2-3lga-1=0,所以(4lga+1)(lga-1)=0,則lga=1,所以a=10.而(loga5)2+loga2·loga50=(lg5)三、解答題(本大題共有6小題,共70分.解答應寫出文字說明,證明過程或演算步驟.)17.(1)已知a+a-1=3,求的值;(2)化簡計算:.【解析】(1),====(2)===1.18.已知命題:“?x∈{x|-1<x<1},使等式x2-x-m=0(1)求實數(shù)m的取值集合M;(2)設關于x的不等式(x-a)(x+a-2)<0的解集為N,若“x∈N”是“x∈M”的必要條件,求a的取值范圍.【答案】解:(1)由x2-x-m=0得m=x2-x,

當x=12時,x2-x取得最小值-14,

當x=-1時,x2-x取得最大值2,所以集合M={x|-14≤x<2};

(2)因為x∈N是x∈M的必要條件,

所以M?N.

當a=1時,解集N為空集,不滿意題意;

當a>1時,a>2-a,此時集合N={x|2-a<x<a},

則2-a<-19.已知函數(shù)f(x)=.(1)求f(2)+f(),f(3)+f()的值;(2)求證:f(x)+f()是定值;(3)求f(2)+f()+f(3)+f()+…+f(2012)+f()的值.【解析】(1)∵f(x)=,∴f(2)+f()=+=1,f(3)+f()=+=1.(2)證明:f(x)+f()=+=+==1.(3)由(2)知f(x)+f()=1,∴f(2)+f()=1,f(3)+f()=1,f(4)+f()=1,…,f(2012)+f()=1.∴f(2)+f()+f(3)+f()+…+f(2012)+f()=2011.20.如圖,要設計一張矩形廣告牌,該廣告牌含有大小相等的左右兩個矩形欄目即圖中陰影部分,這兩欄的面積之和為45?m2,四周空白的寬度為0.5?m,兩欄之間的中縫空白的寬度為(1)求廣告牌的面積關于x的函數(shù)Sx(2)求廣告牌的面積的最小值.【答案】解:(1)依題意廣告牌的高為tm,則(x-1)(t-1.25)=45,

所以t=1.25+45x-1,且x>1,

所以廣告牌的面積s(x)=tx=x(1.25+45x-1)(x>1).

(2)由(1)知,s(x)=tx=x(1.25+45x-1)

=1.25(x-1)+4521.設函數(shù).(1)若不等式的解集,求的值;(2)若,①,求的最小值;②若在上恒成立,求實數(shù)的取值范圍.【解析】由已知可知,的兩根是…………2分所以,解得.………………4分(2)①…………………5分,………………6分當時等號成立,因為,解得時等號成立,…………………7此時的最小值是9.…………………8分②在上恒成立,,…………………10分又因為代入上式可得解得:.…………………12分22.關于x的方程lg(x-1)+lg(3-x)=lg(a-x),其中a是實常數(shù).

(1)當a=2時,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論