版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省常州市二十四中學2022年中考數(shù)學最后沖刺模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中點,G是△ABC的重心,如果以點D為圓心DG為半徑的圓和以點C為圓心半徑為r的圓相交,那么r的取值范圍是()A.r<5 B.r>5 C.r<10 D.5<r<102.如圖,AB為⊙O的直徑,C,D為⊙O上的兩點,若AB=14,BC=1.則∠BDC的度數(shù)是()A.15° B.30° C.45° D.60°3.如圖,五邊形ABCDE中,AB∥CD,∠1、∠2、∠3分別是∠BAE、∠AED、∠EDC的外角,則∠1+∠2+∠3等于A.90° B.180° C.210° D.270°4.已知⊙O的半徑為3,圓心O到直線L的距離為2,則直線L與⊙O的位置關(guān)系是()A.相交 B.相切 C.相離 D.不能確定5.在2016年泉州市初中體育中考中,隨意抽取某校5位同學一分鐘跳繩的次數(shù)分別為:158,160,154,158,170,則由這組數(shù)據(jù)得到的結(jié)論錯誤的是()A.平均數(shù)為160 B.中位數(shù)為158 C.眾數(shù)為158 D.方差為20.36.下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A. B. C. D.7.計算的結(jié)果是()A.1 B.-1 C. D.8.在某?!拔业闹袊鴫簟毖葜v比賽中,有9名學生參加決賽,他們決賽的最終成績各不相同.其中的一名學生想要知道自己能否進入前5名,不僅要了解自己的成績,還要了解這9名學生成績的()A.眾數(shù) B.方差 C.平均數(shù) D.中位數(shù)9.如圖,數(shù)軸上表示的是下列哪個不等式組的解集()A. B. C. D.10.在下列二次函數(shù)中,其圖象的對稱軸為的是A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.計算()()的結(jié)果等于_____.12.如圖,已知AE∥BD,∠1=130°,∠2=28°,則∠C的度數(shù)為____.13.分解因式2x2﹣4x+2的最終結(jié)果是_____.14.定義一種新運算:x*y=,如2*1==3,則(4*2)*(﹣1)=_____.15.因式分解:a2b+2ab+b=.16.已知(x+y)2=25,(x﹣y)2=9,則x2+y2=_____.17.拋物線的頂點坐標是________.三、解答題(共7小題,滿分69分)18.(10分)綜合與實踐﹣﹣﹣折疊中的數(shù)學在學習完特殊的平行四邊形之后,某學習小組針對矩形中的折疊問題進行了研究.問題背景:在矩形ABCD中,點E、F分別是BC、AD上的動點,且BE=DF,連接EF,將矩形ABCD沿EF折疊,點C落在點C′處,點D落在點D′處,射線EC′與射線DA相交于點M.猜想與證明:(1)如圖1,當EC′與線段AD交于點M時,判斷△MEF的形狀并證明你的結(jié)論;操作與畫圖:(2)當點M與點A重合時,請在圖2中作出此時的折痕EF和折疊后的圖形(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡,標注相應的字母);操作與探究:(3)如圖3,當點M在線段DA延長線上時,線段C′D'分別與AD,AB交于P,N兩點時,C′E與AB交于點Q,連接MN并延長MN交EF于點O.求證:MO⊥EF且MO平分EF;(4)若AB=4,AD=4,在點E由點B運動到點C的過程中,點D'所經(jīng)過的路徑的長為.19.(5分)某中學采用隨機的方式對學生掌握安全知識的情況進行測評,并按成績高低分成優(yōu)、良、中、差四個等級進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請根據(jù)有關(guān)信息解答:(1)接受測評的學生共有________人,扇形統(tǒng)計圖中“優(yōu)”部分所對應扇形的圓心角為________°,并補全條形統(tǒng)計圖;(2)若該校共有學生1200人,請估計該校對安全知識達到“良”程度的人數(shù);(3)測評成績前五名的學生恰好3個女生和2個男生,現(xiàn)從中隨機抽取2人參加市安全知識競賽,請用樹狀圖或列表法求出抽到1個男生和1個女生的概率.20.(8分)如圖,BD是△ABC的角平分線,點E,F(xiàn)分別在BC,AB上,且DE∥AB,BE=AF.(1)求證:四邊形ADEF是平行四邊形;(2)若∠ABC=60°,BD=6,求DE的長.21.(10分)已知△ABC在平面直角坐標系中的位置如圖所示.分別寫出圖中點A和點C的坐標;畫出△ABC繞點C按順時針方向旋轉(zhuǎn)90°后的△A′B′C′;求點A旋轉(zhuǎn)到點A′所經(jīng)過的路線長(結(jié)果保留π).22.(10分)某公司10名銷售員,去年完成的銷售額情況如表:銷售額(單位:萬元)34567810銷售員人數(shù)(單位:人)1321111(1)求銷售額的平均數(shù)、眾數(shù)、中位數(shù);(2)今年公司為了調(diào)動員工積極性,提高年銷售額,準備采取超額有獎的措施,請根據(jù)(1)的結(jié)果,通過比較,合理確定今年每個銷售員統(tǒng)一的銷售額標準是多少萬元?23.(12分)中華文明,源遠流長;中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某校團委組織了一次全校3000名學生參加的“漢字聽寫”大賽.為了解本次大賽的成績,校團委隨機抽取了其中200名學生的成績作為樣本進行統(tǒng)計,制成如下不完整的統(tǒng)計圖表:頻數(shù)頻率分布表成績x(分)頻數(shù)(人)頻率50≤x<60100.0560≤x<70300.1570≤x<8040n80≤x<90m0.3590≤x≤100500.25根據(jù)所給信息,解答下列問題:(1)m=,n=;(2)補全頻數(shù)分布直方圖;(3)這200名學生成績的中位數(shù)會落在分數(shù)段;(4)若成績在90分以上(包括90分)為“優(yōu)”等,請你估計該校參加本次比賽的3000名學生中成績是“優(yōu)”等的約有多少人?24.(14分)周末,甲、乙兩名大學生騎自行車去距學校6000米的凈月潭公園.兩人同時從學校出發(fā),以a米/分的速度勻速行駛.出發(fā)4.5分鐘時,甲同學發(fā)現(xiàn)忘記帶學生證,以1.5a米/分的速度按原路返回學校,取完學生證(在學校取學生證所用時間忽略不計),繼續(xù)以返回時的速度追趕乙.甲追上乙后,兩人以相同的速度前往凈月潭.乙騎自行車的速度始終不變.設甲、乙兩名大學生距學校的路程為s(米),乙同學行駛的時間為t(分),s與t之間的函數(shù)圖象如圖所示.(1)求a、b的值.(2)求甲追上乙時,距學校的路程.(3)當兩人相距500米時,直接寫出t的值是.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】延長CD交⊙D于點E,∵∠ACB=90°,AC=12,BC=9,∴AB==15,∵D是AB中點,∴CD=,∵G是△ABC的重心,∴CG==5,DG=2.5,∴CE=CD+DE=CD+DF=10,∵⊙C與⊙D相交,⊙C的半徑為r,∴,故選D.【點睛】本題考查了三角形的重心的性質(zhì)、直角三角形斜邊中線等于斜邊一半、兩圓相交等,根據(jù)知求出CG的長是解題的關(guān)鍵.2、B【解析】
只要證明△OCB是等邊三角形,可得∠CDB=∠COB即可解決問題.【詳解】如圖,連接OC,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB是等邊三角形,∴∠COB=60°,∴∠CDB=∠COB=30°,故選B.【點睛】本題考查圓周角定理,等邊三角形的判定等知識,解題的關(guān)鍵是學會利用數(shù)形結(jié)合的首先解決問題,屬于中考??碱}型.3、B【解析】
試題分析:如圖,如圖,過點E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠1=∠4,∠3=∠5,∴∠1+∠2+∠3=∠2+∠4+∠5=180°,故選B4、A【解析】試題分析:根據(jù)圓O的半徑和,圓心O到直線L的距離的大小,相交:d<r;相切:d=r;相離:d>r;即可選出答案.解:∵⊙O的半徑為3,圓心O到直線L的距離為2,∵3>2,即:d<r,∴直線L與⊙O的位置關(guān)系是相交.故選A.考點:直線與圓的位置關(guān)系.5、D【解析】解:A.平均數(shù)為(158+160+154+158+170)÷5=160,正確,故本選項不符合題意;B.按照從小到大的順序排列為154,158,158,160,170,位于中間位置的數(shù)為158,故中位數(shù)為158,正確,故本選項不符合題意;C.數(shù)據(jù)158出現(xiàn)了2次,次數(shù)最多,故眾數(shù)為158,正確,故本選項不符合題意;D.這組數(shù)據(jù)的方差是S2=[(154﹣160)2+2×(158﹣160)2+(160﹣160)2+(170﹣160)2]=28.8,錯誤,故本選項符合題意.故選D.點睛:本題考查了眾數(shù)、平均數(shù)、中位數(shù)及方差,解題的關(guān)鍵是掌握它們的定義,難度不大.6、C【解析】試題解析:A.是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;B.是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;C.既是中心對稱圖又是軸對稱圖形,故本選項正確;D.是軸對稱圖形,不是中心對稱圖形,故本選項錯誤.故選C.7、C【解析】
原式通分并利用同分母分式的減法法則計算,即可得到結(jié)果.【詳解】解:==,故選:C.【點睛】此題考查了分式的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.8、D【解析】
根據(jù)中位數(shù)是一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個數(shù)(最中間兩個數(shù)的平均數(shù))的意義,9人成績的中位數(shù)是第5名的成績.參賽選手要想知道自己是否能進入前5名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.【詳解】由于總共有9個人,且他們的分數(shù)互不相同,第5的成績是中位數(shù),要判斷是否進入前5名,故應知道中位數(shù)的多少.故本題選:D.【點睛】本題考查了統(tǒng)計量的選擇,熟練掌握眾數(shù),方差,平均數(shù),中位數(shù)的概念是解題的關(guān)鍵.9、B【解析】
根據(jù)數(shù)軸上不等式解集的表示方法得出此不等式組的解集,再對各選項進行逐一判斷即可.【詳解】解:由數(shù)軸上不等式解集的表示方法得出此不等式組的解集為:x≥-3,
A、不等式組的解集為x>-3,故A錯誤;B、不等式組的解集為x≥-3,故B正確;C、不等式組的解集為x<-3,故C錯誤;D、不等式組的解集為-3<x<5,故D錯誤.故選B.【點睛】本題考查的是在數(shù)軸上表示一元一次不等式組的解集,根據(jù)題意得出數(shù)軸上不等式組的解集是解答此題的關(guān)鍵.10、A【解析】y=(x+2)2的對稱軸為x=–2,A正確;y=2x2–2的對稱軸為x=0,B錯誤;y=–2x2–2的對稱軸為x=0,C錯誤;y=2(x–2)2的對稱軸為x=2,D錯誤.故選A.1.二、填空題(共7小題,每小題3分,滿分21分)11、4【解析】
利用平方差公式計算.【詳解】解:原式=()2-()2=7-3=4.故答案為:4.【點睛】本題考查了二次根式的混合運算.12、22°【解析】
由AE∥BD,根據(jù)平行線的性質(zhì)求得∠CBD的度數(shù),再由對頂角相等求得∠CDB的度數(shù),繼而利用三角形的內(nèi)角和等于180°求得∠C的度數(shù).【詳解】解:∵AE∥BD,∠1=130°,∠2=28°,∴∠CBD=∠1=130°,∠CDB=∠2=28°,∴∠C=180°﹣∠CBD﹣∠CDB=180°﹣130°﹣28°=22°.故答案為22°【點睛】本題考查了平行線的性質(zhì),對頂角相等及三角形內(nèi)角和定理.熟練運用相關(guān)知識是解決問題的關(guān)鍵.13、1(x﹣1)1【解析】
先提取公因式1,再根據(jù)完全平方公式進行二次分解.【詳解】解:1x1-4x+1,=1(x1-1x+1),=1(x-1)1.故答案為:1(x﹣1)1【點睛】本題考查提公因式法與公式法的綜合運用,難度不大.14、-1【解析】
利用題中的新定義計算即可求出值.【詳解】解:根據(jù)題中的新定義得:原式=*(﹣1)=3*(﹣1)==﹣1.故答案為﹣1.【點睛】本題考查了有理數(shù)的混合運算,熟練掌握運算法則是解答本題的關(guān)鍵.15、b2【解析】該題考查因式分解的定義首先可以提取一個公共項b,所以a2b+2ab+b=b(a2+2a+1)再由完全平方公式(x1+x2)2=x12+x22+2x1x2所以a2b+2ab+b=b(a2+2a+1)=b216、17【解析】
先利用完全平方公式展開,然后再求和.【詳解】根據(jù)(x+y)2=25,x2+y2+2xy=25;(x﹣y)2=9,x2+y2-2xy=9,所以x2+y2=17.【點睛】(1)完全平方公式:.(2)平方差公式:(a+b)(a-b)=.(3)常用等價變形:,,.17、(0,-1)【解析】∵a=2,b=0,c=-1,∴-=0,,∴拋物線的頂點坐標是(0,-1),故答案為(0,-1).三、解答題(共7小題,滿分69分)18、(1)△MEF是等腰三角形(2)見解析(3)證明見解析(4)【解析】
(1)由AD∥BC,可得∠MFE=∠CEF,由折疊可得,∠MEF=∠CEF,依據(jù)∠MFE=∠MEF,即可得到ME=MF,進而得出△MEF是等腰三角形;(2)作AC的垂直平分線,即可得到折痕EF,依據(jù)軸對稱的性質(zhì),即可得到D'的位置;(3)依據(jù)△BEQ≌△D'FP,可得PF=QE,依據(jù)△NC'P≌△NAP,可得AN=C'N,依據(jù)Rt△MC'N≌Rt△MAN,可得∠AMN=∠C'MN,進而得到△MEF是等腰三角形,依據(jù)三線合一,即可得到MO⊥EF且MO平分EF;(4)依據(jù)點D'所經(jīng)過的路徑是以O為圓心,4為半徑,圓心角為240°的扇形的弧,即可得到點D'所經(jīng)過的路徑的長.【詳解】(1)△MEF是等腰三角形.理由:∵四邊形ABCD是矩形,∴AD∥BC,∴∠MFE=∠CEF,由折疊可得,∠MEF=∠CEF,∴∠MFE=∠MEF,∴ME=MF,∴△MEF是等腰三角形.(2)折痕EF和折疊后的圖形如圖所示:(3)如圖,∵FD=BE,由折疊可得,D'F=DF,∴BE=D'F,在△NC'Q和△NAP中,∠C'NQ=∠ANP,∠NC'Q=∠NAP=90°,∴∠C'QN=∠APN,∵∠C'QN=∠BQE,∠APN=∠D'PF,∴∠BQE=∠D'PF,在△BEQ和△D'FP中,,∴△BEQ≌△D'FP(AAS),∴PF=QE,∵四邊形ABCD是矩形,∴AD=BC,∴AD﹣FD=BC﹣BE,∴AF=CE,由折疊可得,C'E=EC,∴AF=C'E,∴AP=C'Q,在△NC'Q和△NAP中,,∴△NC'P≌△NAP(AAS),∴AN=C'N,在Rt△MC'N和Rt△MAN中,,∴Rt△MC'N≌Rt△MAN(HL),∴∠AMN=∠C'MN,由折疊可得,∠C'EF=∠CEF,∵四邊形ABCD是矩形,∴AD∥BC,∴∠AFE=∠FEC,∴∠C'EF=∠AFE,∴ME=MF,∴△MEF是等腰三角形,∴MO⊥EF且MO平分EF;(4)在點E由點B運動到點C的過程中,點D'所經(jīng)過的路徑是以O為圓心,4為半徑,圓心角為240°的扇形的弧,如圖:故其長為L=.故答案為.【點睛】此題是四邊形綜合題,主要考查了折疊問題與菱形的判定與性質(zhì)、弧長計算公式,等腰三角形的判定與性質(zhì)以及全等三角形的判定與性質(zhì)的綜合應用,熟練掌握等腰三角形的判定定理和性質(zhì)定理是解本題的關(guān)鍵.19、(1)80,135°,條形統(tǒng)計圖見解析;(2)825人;(3)圖表見解析,(抽到1男1女).【解析】試題分析:(1)、根據(jù)“中”的人數(shù)和百分比得出總?cè)藬?shù),然后求出優(yōu)所占的百分比,得出圓心角的度數(shù);(2)、根據(jù)題意得出“良”和“優(yōu)”兩種所占的百分比,從而得出全校的總數(shù);(3)、根據(jù)題意利用列表法或者樹狀圖法畫出所有可能出現(xiàn)的情況,然后根據(jù)概率的計算法則求出概率.試題解析:(1)80,135°;條形統(tǒng)計圖如圖所示(2)該校對安全知識達到“良”程度的人數(shù):(人)(3)解法一:列表如下:所有等可能的結(jié)果為20種,其中抽到一男一女的為12種,所以(抽到1男1女).女1女2女3男1男2女1---女2女1女3女1男1女1男2女1女2女1女2---女3女2男1女2男2女2女3女1女3女2女3---男1女3男2女3男1女1男1女2男1女3男1---男2男1男2女1男2女2男2女3男2男1男2---解法二:畫樹狀圖如下:所有等可能的結(jié)果為20種,其中抽到一男一女的為12種,所以(抽到1男1女).20、(1)證明見解析;(2).【解析】
(1)由BD是△ABC的角平分線,DE∥AB,可證得△BDE是等腰三角形,且BE=DE;又由BE=AF,可得DE=AF,即可證得四邊形ADEF是平行四邊形;(2)過點E作EH⊥BD于點H,由∠ABC=60°,BD是∠ABC的平分線,可求得BH的長,從而求得BE、DE的長,即可求得答案.【詳解】(1)證明:∵BD是△ABC的角平分線,∴∠ABD=∠DBE,∵DE∥AB,∴∠ABD=∠BDE,∴∠DBE=∠BDE,∴BE=DE;∵BE=AF,∴AF=DE;∴四邊形ADEF是平行四邊形;(2)解:過點E作EH⊥BD于點H.∵∠ABC=60°,BD是∠ABC的平分線,∴∠ABD=∠EBD=30°,∴DH=BD=×6=3,∵BE=DE,∴BH=DH=3,∴BE==,∴DE=BE=.【點睛】此題考查了平行四邊形的判定與性質(zhì)、等腰三角形的判定與性質(zhì)以及三角函數(shù)等知識.注意掌握輔助線的作法.21、(1)、(2)見解析(3)【解析】試題分析:(1)根據(jù)點的平面直角坐標系中點的位置寫出點的坐標;(2)根據(jù)旋轉(zhuǎn)圖形的性質(zhì)畫出旋轉(zhuǎn)后的圖形;(3)點A所經(jīng)過的路程是以點C為圓心,AC長為半徑的扇形的弧長.試題解析:(1)A(0,4)C(3,1)(2)如圖所示:(3)根據(jù)勾股定理可得:AC=3,則.考點:圖形的旋轉(zhuǎn)、扇形的弧長計算公式.22、(1)平均數(shù)5.6(萬元);眾數(shù)是4(萬元);中位數(shù)是5(萬元);(2)今年每個銷售人員統(tǒng)一的銷售標準應是5萬元.【解析】
(1)根據(jù)平均數(shù)公式求得平均數(shù),根據(jù)次數(shù)出現(xiàn)最多的數(shù)確定眾數(shù),按從小到大順序排列好后求得中位數(shù).
(2)根據(jù)平均數(shù),中位數(shù),眾數(shù)的意義回答.【詳解】解:(1)平均數(shù)=(3×1+4×3+5×2+6×1+7×1+8×1+10×1)=5.6(萬元);出現(xiàn)次數(shù)最多的是4萬元,所以眾數(shù)是4(萬元);因為第五,第六個數(shù)均是5萬元,所以中位數(shù)是5(萬元).(2)今年每個銷售人員統(tǒng)一的銷售標準應是5萬元.理由如下:若規(guī)定平均數(shù)5.6萬元為標準,則多數(shù)人無法或不可能超額完成,會挫傷員工的積極性;若規(guī)定眾數(shù)4萬元為標準,則大多數(shù)人不必努力就可以超額完成,不利于提高年銷售額;若規(guī)定中位數(shù)5萬元為標準,則大多數(shù)人能完成或超額完成,少數(shù)人經(jīng)過努力也能完成.因此把5萬元定為標準比較合理.【點睛】本題考查的知識點是眾數(shù)、平均數(shù)以及中位數(shù),解題的關(guān)鍵是熟練的掌握眾數(shù)、平均數(shù)以及中位數(shù).23、(1)70,0.2;(2)補圖見解析;(3)80≤x<90;(4)750人.【解析】分析:(1)根據(jù)第一組的頻數(shù)是10,頻率是0.05,求得數(shù)據(jù)總數(shù),再用數(shù)據(jù)總數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生態(tài)旅游度假區(qū)招投標申請表
- 社會保險管理與城市規(guī)劃
- 石油化工設備使用與管理
- 水上樂園水電布線施工合同
- 農(nóng)村燃氣個人承包施工合同
- 2024年跨國醫(yī)療設備采購與技術(shù)支持合同
- 2024年河南漯河事業(yè)單位選拔100位人才3篇
- 2024年鏟車安全巡查記錄表3篇
- 2025年度跨境電商擔保抵押合同范本2篇
- 2025版物流園區(qū)土地及建筑物租賃承包協(xié)議3篇
- 采購合同范例壁布
- 公司員工出差車輛免責協(xié)議書
- 2024年陜西榆林市神木市公共服務輔助人員招聘775人歷年管理單位遴選500模擬題附帶答案詳解
- 2024年度抖音短視頻拍攝制作服務合同范本3篇
- 2024-2025學年高二上學期期末數(shù)學試卷(提高篇)(含答案)
- 安全生產(chǎn)事故案例分析
- 2024年07月22208政治學原理期末試題答案
- 期末檢測卷(一)(試卷)-2024-2025學年外研版(三起)英語六年級上冊(含答案含聽力原文無音頻)
- 《客戶開發(fā)技巧》課件
- 《防范于心反詐于行》中小學防范電信網(wǎng)絡詐騙知識宣傳課件
- 口腔執(zhí)業(yè)醫(yī)師定期考核試題(資料)帶答案
評論
0/150
提交評論