版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省阜陽市潁東區(qū)2023-2024學年中考數學全真模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.計算(-ab2)3÷(-ab)2的結果是()A.ab4B.-ab4C.ab3D.-ab32.如圖,點M為?ABCD的邊AB上一動點,過點M作直線l垂直于AB,且直線l與?ABCD的另一邊交于點N.當點M從A→B勻速運動時,設點M的運動時間為t,△AMN的面積為S,能大致反映S與t函數關系的圖象是()A. B. C. D.3.的平方根是()A.2 B. C.±2 D.±4.如果一組數據1、2、x、5、6的眾數是6,則這組數據的中位數是()A.1 B.2 C.5 D.65.下列計算結果是x5的為()A.x10÷x2B.x6﹣xC.x2?x3D.(x3)26.一個正方體的平面展開圖如圖所示,將它折成正方體后“建”字對面是()A.和 B.諧 C.涼 D.山7.下列四個圖形中,是中心對稱圖形的是()A. B. C. D.8.如圖,平行四邊形ABCD的對角線AC、BD相交于點O,AE平分∠BAD,分別交BC、BD于點E、P,連接OE,∠ADC=60°,AB=BC=1,則下列結論:①∠CAD=30°②BD=③S平行四邊形ABCD=AB?AC④OE=AD⑤S△APO=,正確的個數是()A.2 B.3 C.4 D.59.已知:如圖,AD是△ABC的角平分線,且AB:AC=3:2,則△ABD與△ACD的面積之比為()A.3:2 B.9:4 C.2:3 D.4:910.已知方程組,那么x+y的值()A.-1 B.1 C.0 D.5二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在平面直角坐標系中,矩形活動框架ABCD的長AB為2,寬AD為,其中邊AB在x軸上,且原點O為AB的中點,固定點A、B,把這個矩形活動框架沿箭頭方向推,使D落在y軸的正半軸上點D′處,點C的對應點C′的坐標為______.12.如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連結BD、DP,BD與CF相交于點H,給出下列結論:①△DFP~△BPH;②;③PD2=PH?CD;④,其中正確的是______(寫出所有正確結論的序號).13.已知兩圓相切,它們的圓心距為3,一個圓的半徑是4,那么另一個圓的半徑是_______.14.若代數式有意義,則x的取值范圍是__.15.計算:________.16.如圖,在邊長為1的小正方形網格中,點A、B、C、D都在這些小正方形的頂點上,AB、CD相交于點O,則tan∠AOD=________.17.因式分解:16a3﹣4a=_____.三、解答題(共7小題,滿分69分)18.(10分)某商場經營某種品牌的童裝,購進時的單價是60元.根據市場調查,在一段時間內,銷售單價是80元時,銷售量是200件,而銷售單價每降低1元,就可多售出20件.寫出銷售量y件與銷售單價x元之間的函數關系式;寫出銷售該品牌童裝獲得的利潤w元與銷售單價x元之間的函數關系式;若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,且商場要完成不少于240件的銷售任務,則商場銷售該品牌童裝獲得的最大利潤是多少?19.(5分)一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外完全相同,其中紅球有個,若從中隨機摸出一個球,這個球是白球的概率為.()請直接寫出袋子中白球的個數.()隨機摸出一個球后,放回并攪勻,再隨機摸出一個球,求兩次都摸到相同顏色的小球的概率.(請結合樹狀圖或列表解答)20.(8分)隨著交通道路的不斷完善,帶動了旅游業(yè)的發(fā)展,某市旅游景區(qū)有A、B、C、D、E等著名景點,該市旅游部門統計繪制出2017年“五?一”長假期間旅游情況統計圖,根據以下信息解答下列問題:2017年“五?一”期間,該市周邊景點共接待游客萬人,扇形統計圖中A景點所對應的圓心角的度數是,并補全條形統計圖.根據近幾年到該市旅游人數增長趨勢,預計2018年“五?一”節(jié)將有80萬游客選擇該市旅游,請估計有多少萬人會選擇去E景點旅游?甲、乙兩個旅行團在A、B、D三個景點中,同時選擇去同一景點的概率是多少?請用畫樹狀圖或列表法加以說明,并列舉所用等可能的結果.21.(10分)如圖是某貨站傳送貨物的平面示意圖.為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°.已知原傳送帶AB長為4米.(1)求新傳送帶AC的長度;(2)如果需要在貨物著地點C的左側留出2米的通道,試判斷距離B點4米的貨物MNQP是否需要挪走,并說明理由.(說明:⑴⑵的計算結果精確到0.1米,參考數據:≈1.41,≈1.73,≈2.24,≈2.45)22.(10分)如圖,已知點E,F分別是?ABCD的對角線BD所在直線上的兩點,BF=DE,連接AE,CF,求證:CF=AE,CF∥AE.23.(12分)如圖,正方形OABC繞著點O逆時針旋轉40°得到正方形ODEF,連接AF,求∠OFA的度數24.(14分)先化簡,再求值:,其中x=﹣1.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】根據積的乘方的運算法則,先分別計算積的乘方,然后再根據單項式除法法則進行計算即可得,(-ab2)3÷(-ab)2=-a3b6÷a2b2=-ab4,故選B.2、C【解析】分析:本題需要分兩種情況來進行計算得出函數解析式,即當點N和點D重合之前以及點M和點B重合之前,根據題意得出函數解析式.詳解:假設當∠A=45°時,AD=2,AB=4,則MN=t,當0≤t≤2時,AM=MN=t,則S=,為二次函數;當2≤t≤4時,S=t,為一次函數,故選C.點睛:本題主要考查的就是函數圖像的實際應用問題,屬于中等難度題型.解答這個問題的關鍵就是得出函數關系式.3、D【解析】
先化簡,然后再根據平方根的定義求解即可.【詳解】∵=2,2的平方根是±,∴的平方根是±.故選D.【點睛】本題考查了平方根的定義以及算術平方根,先把正確化簡是解題的關鍵,本題比較容易出錯.4、C【解析】分析:根據眾數的定義先求出x的值,再把數據按從小到大的順序排列,找出最中間的數,即可得出答案.詳解:∵數據1,2,x,5,6的眾數為6,∴x=6,把這些數從小到大排列為:1,2,5,6,6,最中間的數是5,則這組數據的中位數為5;故選C.點睛:本題考查了中位數的知識點,將一組數據按照從小到大的順序排列,如果數據的個數為奇數,則處于中間位置的數就是這組數據的中位數;如果這組數據的個數為偶數,則中間兩個數據的平均數就是這組數據的中位數.5、C【解析】解:A.x10÷x2=x8,不符合題意;B.x6﹣x不能進一步計算,不符合題意;C.x2x3=x5,符合題意;D.(x3)2=x6,不符合題意.故選C.6、D【解析】分析:本題考查了正方體的平面展開圖,對于正方體的平面展開圖中相對的面一定相隔一個小正方形,據此作答.詳解:對于正方體的平面展開圖中相對的面一定相隔一個小正方形,由圖形可知,與“建”字相對的字是“山”.故選:D.點睛:注意正方體的空間圖形,從相對面入手,分析及解答問題.7、D【解析】試題分析:根據中心對稱圖形的定義,結合選項所給圖形進行判斷即可.解:A、不是中心對稱圖形,故本選項錯誤;B、不是中心對稱圖形,故本選項錯誤;C、不是中心對稱圖形,故本選項錯誤;D、是中心對稱圖形,故本選項正確;故選D.考點:中心對稱圖形.8、D【解析】
①先根據角平分線和平行得:∠BAE=∠BEA,則AB=BE=1,由有一個角是60度的等腰三角形是等邊三角形得:△ABE是等邊三角形,由外角的性質和等腰三角形的性質得:∠ACE=30°,最后由平行線的性質可作判斷;②先根據三角形中位線定理得:OE=AB=,OE∥AB,根據勾股定理計算OC=和OD的長,可得BD的長;③因為∠BAC=90°,根據平行四邊形的面積公式可作判斷;④根據三角形中位線定理可作判斷;⑤根據同高三角形面積的比等于對應底邊的比可得:S△AOE=S△EOC=OE?OC=,,代入可得結論.【詳解】①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四邊形ABCD是平行四邊形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等邊三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正確;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC=,∵四邊形ABCD是平行四邊形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD=,∴BD=2OD=,故②正確;③由②知:∠BAC=90°,∴S?ABCD=AB?AC,故③正確;④由②知:OE是△ABC的中位線,又AB=BC,BC=AD,∴OE=AB=AD,故④正確;⑤∵四邊形ABCD是平行四邊形,∴OA=OC=,∴S△AOE=S△EOC=OE?OC=××,∵OE∥AB,∴,∴,∴S△AOP=S△AOE==,故⑤正確;本題正確的有:①②③④⑤,5個,故選D.【點睛】本題考查了平行四邊形的性質、等腰三角形的性質、直角三角形30度角的性質、三角形面積和平行四邊形面積的計算;熟練掌握平行四邊形的性質,證明△ABE是等邊三角形是解決問題的關鍵,并熟練掌握同高三角形面積的關系.9、A【解析】試題解析:過點D作DE⊥AB于E,DF⊥AC于F.∵AD為∠BAC的平分線,∴DE=DF,又AB:AC=3:2,故選A.點睛:角平分線上的點到角兩邊的距離相等.10、D【解析】
解:,①+②得:3(x+y)=15,則x+y=5,故選D二、填空題(共7小題,每小題3分,滿分21分)11、(2,1)【解析】
由已知條件得到AD′=AD=,AO=AB=1,根據勾股定理得到OD′==1,于是得到結論.【詳解】解:∵AD′=AD=,AO=AB=1,∴OD′==1,∵C′D′=2,C′D′∥AB,
∴C′(2,1),
故答案為:(2,1)【點睛】本題考查了矩形的性質,坐標與圖形的性質,勾股定理,正確的識別圖形是解題的關鍵.12、①②③【解析】
依據∠FDP=∠PBD,∠DFP=∠BPC=60°,即可得到△DFP∽△BPH;依據△DFP∽△BPH,可得,再根據BP=CP=CD,即可得到;判定△DPH∽△CPD,可得,即PD2=PH?CP,再根據CP=CD,即可得出PD2=PH?CD;根據三角形面積計算公式,結合圖形得到△BPD的面積=△BCP的面積+△CDP面積﹣△BCD的面積,即可得出.【詳解】∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH,故①正確;∵∠DCF=90°﹣60°=30°,∴tan∠DCF=,∵△DFP∽△BPH,∴,∵BP=CP=CD,∴,故②正確;∵PC=DC,∠DCP=30°,∴∠CDP=75°,又∵∠DHP=∠DCH+∠CDH=75°,∴∠DHP=∠CDP,而∠DPH=∠CPD,∴△DPH∽△CPD,∴,即PD2=PH?CP,又∵CP=CD,∴PD2=PH?CD,故③正確;如圖,過P作PM⊥CD,PN⊥BC,設正方形ABCD的邊長是4,△BPC為正三角形,則正方形ABCD的面積為16,∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,∴∠PCD=30°∴PN=PB?sin60°=4×=2,PM=PC?sin30°=2,∵S△BPD=S四邊形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD=×4×2+×2×4﹣×4×4=4+4﹣8=4﹣4,∴,故④錯誤,故答案為:①②③.【點睛】本題考查了正方形的性質、相似三角形的判定與性質、解直角三角形等知識,正確添加輔助線、靈活運用相關的性質定理與判定定理是解題的關鍵.13、1或1【解析】
由兩圓相切,它們的圓心距為3,其中一個圓的半徑為4,即可知這兩圓內切,然后分別從若大圓的半徑為4與若小圓的半徑為4去分析,根據兩圓位置關系與圓心距d,兩圓半徑R,r的數量關系間的聯系即可求得另一個圓的半徑.【詳解】∵兩圓相切,它們的圓心距為3,其中一個圓的半徑為4,∴這兩圓內切,∴若大圓的半徑為4,則另一個圓的半徑為:4-3=1,若小圓的半徑為4,則另一個圓的半徑為:4+3=1.故答案為:1或1【點睛】此題考查了圓與圓的位置關系.此題難度不大,解題的關鍵是注意掌握兩圓位置關系與圓心距d,兩圓半徑R,r的數量關系間的聯系,注意分類討論思想的應用.14、x3【解析】
由代數式有意義,得
x-30,
解得x3,
故答案為:x3.【點睛】本題考查了分式有意義的條件,從以下三個方面透徹理解分式的概念:分式無意義:分母為零;分式有意義:分母不為零;分式值為零:分子為零且分母不為零.15、【解析】
根據二次根式的運算法則先算乘法,再將分母有理化,然后相加即可.【詳解】解:原式==【點睛】本題考查了二次根式的混合運算:先把各二次根式化簡為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質,選擇恰當的解題途徑,往往能事半功倍.16、1【解析】
首先連接BE,由題意易得BF=CF,△ACO∽△BKO,然后由相似三角形的對應邊成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:1,在Rt△OBF中,即可求得tan∠BOF的值,繼而求得答案.【詳解】如圖,連接BE,∵四邊形BCEK是正方形,∴KF=CF=CK,BF=BE,CK=BE,BE⊥CK,∴BF=CF,根據題意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:1,∴KO=OF=CF=BF,在Rt△PBF中,tan∠BOF==1,∵∠AOD=∠BOF,∴tan∠AOD=1.故答案為1【點睛】此題考查了相似三角形的判定與性質,三角函數的定義.此題難度適中,解題的關鍵是準確作出輔助線,注意轉化思想與數形結合思想的應用.17、4a(2a+1)(2a﹣1)【解析】
首先提取公因式,再利用平方差公式分解即可.【詳解】原式=4a(4a2﹣1)=4a(2a+1)(2a﹣1),故答案為4a(2a+1)(2a﹣1)【點睛】本題考查了提公因式法與公式法的綜合運用,解題的關鍵是熟練掌握因式分解的方法.三、解答題(共7小題,滿分69分)18、(1);(2);(3)最多獲利4480元.【解析】
(1)銷售量y為200件加增加的件數(80﹣x)×20;(2)利潤w等于單件利潤×銷售量y件,即W=(x﹣60)(﹣20x+1800),整理即可;(3)先利用二次函數的性質得到w=﹣20x2+3000x﹣108000的對稱軸為x=75,而﹣20x+1800≥240,x≤78,得76≤x≤78,根據二次函數的性質得到當76≤x≤78時,W隨x的增大而減小,把x=76代入計算即可得到商場銷售該品牌童裝獲得的最大利潤.【詳解】(1)根據題意得,y=200+(80﹣x)×20=﹣20x+1800,所以銷售量y件與銷售單價x元之間的函數關系式為y=﹣20x+1800(60≤x≤80);(2)W=(x﹣60)y=(x﹣60)(﹣20x+1800)=﹣20x2+3000x﹣108000,所以銷售該品牌童裝獲得的利潤w元與銷售單價x元之間的函數關系式為:W=﹣20x2+3000x﹣108000;(3)根據題意得,﹣20x+1800≥240,解得x≤78,∴76≤x≤78,w=﹣20x2+3000x﹣108000,對稱軸為x=﹣=75,∵a=﹣20<0,∴拋物線開口向下,∴當76≤x≤78時,W隨x的增大而減小,∴x=76時,W有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).所以商場銷售該品牌童裝獲得的最大利潤是4480元.【點睛】二次函數的應用.19、(1)袋子中白球有2個;(2).【解析】試題分析:(1)設袋子中白球有x個,根據概率公式列方程解方程即可求得答案;(2)根據題意畫出樹狀圖,求得所有等可能的結果與兩次都摸到相同顏色的小球的情況,再利用概率公式即可求得答案.試題解析:(1)設袋子中白球有x個,根據題意得:=,解得:x=2,經檢驗,x=2是原分式方程的解,∴袋子中白球有2個;(2)畫樹狀圖得:∵共有9種等可能的結果,兩次都摸到相同顏色的小球的有5種情況,∴兩次都摸到相同顏色的小球的概率為:.考點:列表法與樹狀圖法;概率公式.20、(1)50,108°,補圖見解析;(2)9.6;(3).【解析】
(1)根據A景點的人數以及百分表進行計算即可得到該市周邊景點共接待游客數;先求得A景點所對應的圓心角的度數,再根據扇形圓心角的度數=部分占總體的百分比×360°進行計算即可;根據B景點接待游客數補全條形統計圖;(2)根據E景點接待游客數所占的百分比,即可估計2018年“五?一”節(jié)選擇去E景點旅游的人數;(3)根據甲、乙兩個旅行團在A、B、D三個景點中各選擇一個景點,畫出樹狀圖,根據概率公式進行計算,即可得到同時選擇去同一景點的概率.【詳解】解:(1)該市周邊景點共接待游客數為:15÷30%=50(萬人),A景點所對應的圓心角的度數是:30%×360°=108°,B景點接待游客數為:50×24%=12(萬人),補全條形統計圖如下:(2)∵E景點接待游客數所占的百分比為:×100%=12%,∴2018年“五?一”節(jié)選擇去E景點旅游的人數約為:80×12%=9.6(萬人);(3)畫樹狀圖可得:∵共有9種可能出現的結果,這些結果出現的可能性相等,其中同時選擇去同一個景點的結果有3種,∴同時選擇去同一個景點的概率=.【點睛】本題考查列表法與樹狀圖法;用樣本估計總體;扇形統計圖;條形統計圖.21、(1)5
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《酒店消防培訓》課件2
- 孕期肛門墜脹的健康宣教
- 鼻惡性肉芽腫的健康宣教
- 《計算機輔助制》課件
- 白塞氏病的健康宣教
- 睡眠呼吸暫停綜合征的健康宣教
- 孕期室性早搏的健康宣教
- 激素依賴性皮炎的臨床護理
- 妊娠合并淋巴瘤的健康宣教
- 急性喉氣管炎的健康宣教
- 拆遷復耕施工方案
- 錨索施工安全技術交底
- 《數學建模》期末考試試卷一與參考答案
- 五年級信息技術上冊期末測試卷答案
- 2019第五版新版PFMEA-注塑實例
- 新團員入團儀式PPT模板
- 八年級歷史上冊教案:第16課 毛澤東開辟井岡山道路
- 腸梗阻完整版課件
- 河南神火興隆礦業(yè)有限責任公司泉店煤礦礦產資源開采與生態(tài)修復方案
- 2023年考研考博-考博英語-西北農林科技大學考試歷年真題摘選含答案解析
- 公路工程施工安全生產檢查要點
評論
0/150
提交評論