高二數(shù)學(xué)期末模擬試卷01_第1頁
高二數(shù)學(xué)期末模擬試卷01_第2頁
高二數(shù)學(xué)期末模擬試卷01_第3頁
高二數(shù)學(xué)期末模擬試卷01_第4頁
高二數(shù)學(xué)期末模擬試卷01_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

高二期末模擬卷01單選題(本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.設(shè)集合,,則(

)A. B. C. D.【答案】A【分析】解對數(shù)不等式求出集合,再根據(jù)并集的定義計算可得.【詳解】因為,由,即,解得,所以,所以.故選:A2.已知函數(shù),則(

)A.1 B. C.2 D.4【答案】B【分析】由題意,根據(jù)求導(dǎo)公式和運算法則可得,結(jié)合導(dǎo)數(shù)的定義即可求解.【詳解】由題意知,,則.所以.故選:B3.已知首項的等差數(shù)列中,,若該數(shù)列的前項和,則等于(

)A.10 B.11 C.12 D.13【答案】D【分析】根據(jù)已知結(jié)合等差數(shù)列的通項公式求出公差,然后代入求和公式即可求解.【詳解】設(shè)等差數(shù)列的公差為,因為,,所以,解得或,若,則為常數(shù)數(shù)列,則,不合題意,舍去;則,由等差數(shù)列前項和公式得,解得.故選:D.4.曲線在點處的切線與兩坐標軸所圍成的三角形的面積為(

)A. B. C. D.【答案】C【分析】根據(jù)導(dǎo)數(shù)的幾何意義求得曲線的切線方程,結(jié)合三角形面積公式計算即可.【詳解】由,得,則,,所以曲線在點處的切線方程為.令,得,令,得,故該切線與兩坐標軸所圍成的三角形的面積為.故選:C5.函數(shù)在區(qū)間的大致圖像為(

)A. B.C. D.【答案】B【分析】利用函數(shù)的奇偶性可排除A、C,代入可得,可排除D.【詳解】,又函數(shù)定義域為,故該函數(shù)為偶函數(shù),可排除A、C,又,故可排除D.故選:B.6.在各項均為正數(shù)的等比數(shù)列中,已知,其前項之積為,且,則取得最大值時,則的值為(

)A. B. C. D.【答案】A【分析】由已知可得,進而可得,可得等比數(shù)列是遞減數(shù)列,且,可求取得最大值時的值.【詳解】由,得,,則,由于,得,所以等比數(shù)列是遞減數(shù)列,故,則取得最大值時.故選:A.7.已知函數(shù)的極值點為,則(

)A. B.2 C. D.1【答案】D【分析】對函數(shù)求導(dǎo),然后結(jié)合導(dǎo)數(shù)與單調(diào)性的關(guān)系、零點存在定理,求出函數(shù)的極大值點,然后利用指對互化求解即可.【詳解】由得,,設(shè),則,所以在單調(diào)遞減,又,,由零點存在定理知,存在,使得,所以當(dāng)時,,,函數(shù)單調(diào)遞增;當(dāng)時,,,函數(shù)單調(diào)遞減,,所以是函數(shù)的極大值點,則,即.所以.故選:D8.已知,若函數(shù)有兩個不同的零點,則a的取值范圍是(

)A. B. C. D.【答案】B【分析】當(dāng)時,,當(dāng)時,,利用導(dǎo)數(shù)求得時,有最小值,由,求a的取值范圍.【詳解】由題意,令,得,已知,當(dāng)時,,此時在單調(diào)遞減,當(dāng)時,,此時在單調(diào)遞增,故當(dāng)時,有最小值,而,由此可知當(dāng)時,,當(dāng)時,,若函數(shù)有兩個不同的零點,結(jié)合零點存在定理可知,的最小值,又,所以,,所以,所以,即a的取值范圍是.故選:B.【點睛】方法點睛:導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、極值(最值)最有效的工具,導(dǎo)函數(shù)中常用的兩種常用的轉(zhuǎn)化方法:一是利用導(dǎo)數(shù)研究含參函數(shù)的單調(diào)性,常化為不等式恒成立問題.注意分類討論與數(shù)形結(jié)合思想的應(yīng)用;二是函數(shù)的零點、不等式證明常轉(zhuǎn)化為函數(shù)的單調(diào)性、極(最)值問題處理.二、多選題(本題共3小題,每小題6分,共18分.在每小題給出的選項中,有多項符合題目要求,全部選對的得6分,部分選對的得部分分,有選錯的得0分.)9.已知,,,則下列結(jié)論正確的有(

)A.的最大值為 B.的最小值為C.的最小值為9 D.的最小值為【答案】ABD【分析】利用基本不等式、結(jié)合“1”的妙用計算判斷ACD;利用二次函數(shù)求出最小值判斷D.【詳解】對于A,,即,當(dāng)且僅當(dāng)時取等號,A正確;對于B,由,得,,當(dāng)且僅當(dāng)時取等號,B正確;對于C,,當(dāng)且僅當(dāng)時取等號,C錯誤;對于D,,則,當(dāng)且僅當(dāng),即時取等號,D正確.故選:ABD10.已知等差數(shù)列的前項和為,等比數(shù)列的前項積為,則(

)A.可能為等差數(shù)列 B.不可能為等比數(shù)列C.是等差數(shù)列 D.是等比數(shù)列【答案】AC【分析】對于AB,舉例判斷,對于C,根據(jù)等差數(shù)列的定義結(jié)合題意分析判斷,對于D,根據(jù)等比數(shù)列的定義結(jié)合題意分析判斷,【詳解】對于A,當(dāng)為常數(shù)列時,因為為等差數(shù)列,所以為等差數(shù)列,所以A正確.對于B,當(dāng)為常數(shù)列,且時,因為是等比數(shù)列,所以為等比數(shù)列,所以B錯誤.對于C,設(shè)的公差為,則,得,因為,所以數(shù)列是等差數(shù)列,所以C正確.對于D,設(shè)的公比為,則,當(dāng)時,不是常數(shù),所以不是等比數(shù)列,所以D錯誤.故選:AC11.設(shè)函數(shù),則(

)A.當(dāng)時,有三個零點B.當(dāng)時,是的極大值點C.存在a,b,使得為曲線的對稱軸D.存在a,使得點為曲線的對稱中心【答案】AD【分析】A選項,先分析出函數(shù)的極值點為,根據(jù)零點存在定理和極值的符號判斷出在上各有一個零點;B選項,根據(jù)極值和導(dǎo)函數(shù)符號的關(guān)系進行分析;C選項,假設(shè)存在這樣的,使得為的對稱軸,則為恒等式,據(jù)此計算判斷;D選項,若存在這樣的,使得為的對稱中心,則,據(jù)此進行計算判斷,亦可利用拐點結(jié)論直接求解.【詳解】A選項,,由于,故時,故在上單調(diào)遞增,時,,單調(diào)遞減,則在處取到極大值,在處取到極小值,由,,則,根據(jù)零點存在定理在上有一個零點,又,,則,則在上各有一個零點,于是時,有三個零點,A選項正確;B選項,,時,,單調(diào)遞減,時,單調(diào)遞增,此時在處取到極小值,B選項錯誤;C選項,假設(shè)存在這樣的,使得為的對稱軸,即存在這樣的使得,即,根據(jù)二項式定理,等式右邊展開式含有的項為,于是等式左右兩邊的系數(shù)都不相等,原等式不可能恒成立,于是不存在這樣的,使得為的對稱軸,C選項錯誤;D選項,方法一:利用對稱中心的表達式化簡,若存在這樣的,使得為的對稱中心,則,事實上,,于是即,解得,即存在使得是的對稱中心,D選項正確.方法二:直接利用拐點結(jié)論任何三次函數(shù)都有對稱中心,對稱中心的橫坐標是二階導(dǎo)數(shù)的零點,,,,由,于是該三次函數(shù)的對稱中心為,由題意也是對稱中心,故,即存在使得是的對稱中心,D選項正確.故選:AD【點睛】結(jié)論點睛:(1)的對稱軸為;(2)關(guān)于對稱;(3)任何三次函數(shù)都有對稱中心,對稱中心是三次函數(shù)的拐點,對稱中心的橫坐標是的解,即是三次函數(shù)的對稱中心填空題(本題共3小題,每小題5分,共15分)12.已知集合,且,則實數(shù)的取值范圍是.【答案】【分析】解不等式化簡集合A,再利用交集的定義及集合的包含關(guān)系求解即得.【詳解】依題意,,則,由,得,所以的取值范圍是.故答案為:13.?dāng)?shù)列滿足,若,,則數(shù)列的前20項的和為.【答案】210【分析】數(shù)列的奇數(shù)項、偶數(shù)項都是等差數(shù)列,結(jié)合等差數(shù)列求和公式、分組求和法即可得解.【詳解】數(shù)列滿足,若,,則,所以數(shù)列的奇數(shù)項、偶數(shù)項分別構(gòu)成以1,2為首項,公差均為2的等差數(shù)列所以數(shù)列的前20項的和為.故答案為:210.14.已知函數(shù)的圖象在點處的切線方程為.(1)則實數(shù)a的值為;(2)設(shè),若對任意的恒成立,則k的最大整數(shù)值為.【答案】14【分析】空1由切線特點“切點在切線上也在曲線上”和導(dǎo)數(shù)幾何意義即可求解;空2將問題轉(zhuǎn)化為對任意的恒成立,利用導(dǎo)數(shù)研究函數(shù)的最小值情況即可求解.【詳解】由題意,即①,又,故由題意,即②,所以由①②得.所以,故對任意的恒成立對任意的恒成立,所以,所以,所以恒成立,故在上單調(diào)遞增,又,,故存在,使得,即,即,則當(dāng)時,;時,,所以在上單調(diào)遞減,在單調(diào)遞增,所以,故,又,所以k的最大整數(shù)值為4.故答案為:1;4.【點睛】方法點睛:恒成立求參問題通常結(jié)合參數(shù)分離法將恒成立問題轉(zhuǎn)化成研究具體函數(shù)的最值問題來求解:函數(shù)在區(qū)間上滿足(1)恒成立;(2)恒成立.四、解答題(本大題共5小題,共77分,解答應(yīng)寫出文字說明、證明過程或演算步驟)15.已知函數(shù).(1)討論的單調(diào)性;(2)證明:當(dāng)時,.【答案】(1)在上單調(diào)遞減,在上單調(diào)遞增(2)證明見解析【分析】(1)求導(dǎo)后,結(jié)合導(dǎo)數(shù)正負與單調(diào)性的關(guān)系,分及討論即可得;(2)原問題可轉(zhuǎn)化為證明當(dāng)時,,構(gòu)造函數(shù)后,利用導(dǎo)數(shù)可得該函數(shù)的單調(diào)性,即可得其最小值,即可得證.【詳解】(1)由題意知,當(dāng)時,,所以在上單調(diào)遞減;

當(dāng)時,令,解得,令,解得,所以在上單調(diào)遞減,在上單調(diào)遞增(2)由(1)得,

要證,即證,即證,令,則,

令,解得,令,解得,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,則恒成立,所以當(dāng)時,.16.已知數(shù)列滿足:.(1)求數(shù)列的通項公式;(2)若,求正整數(shù)的最大值.【答案】(1)(2)15【分析】(1)利用通項與前n項和的關(guān)系先求,然后可得;(2)利用裂項相消法求和,然后解不等式即可.【詳解】(1)當(dāng)時,,當(dāng)時,,,兩式相減,得,,顯然也符合上式,數(shù)列的通項公式為.(2)由(1)知,,解得.正整數(shù)的最大值為15.17.若.(1)過,求的解集;(2)存在使得成等差數(shù)列,求的取值范圍.【答案】(1)(2)【分析】(1)求出底數(shù),再根據(jù)對數(shù)函數(shù)的單調(diào)性可求不等式的解;(2)存在使得成等差數(shù)列等價于在上有解,利用換元法結(jié)合二次函數(shù)的性質(zhì)可求的取值范圍.【詳解】(1)因為的圖象過,故,故即(負的舍去),而在上為增函數(shù),故,故即,故的解集為.(2)因為存在使得成等差數(shù)列,故有解,故,因為,故,故在上有解,由在上有解,令,而在上的值域為,故即.18.已知數(shù)列的前項和為,且,數(shù)列為等比數(shù)列,且.(1)求數(shù)列的通項公式;(2)若數(shù)列滿足,記數(shù)列的前項和為,數(shù)列的前項和為,試比較與的大小.【答案】(1)(2)【分析】(1)利用,求得,再由即可求得等比數(shù)列的首項與公比;(2)把(1)中求得的通項公式帶入(2)中,得到,利用裂項相消法求和得到;,根據(jù)等比數(shù)列求和公式即可得到,再進行比大小即可.【詳解】(1)∵數(shù)列的前項和為,且,∴當(dāng)時,,當(dāng)時,,故,又數(shù)列為等比數(shù)列,設(shè)公比為,則,所以,所以.(2),∴,故,而,故,由于當(dāng)時,,故,所以.19.在數(shù)學(xué)中,由個數(shù)排列成的m行n列的數(shù)表稱為矩陣,其中稱為矩陣A的第i行第j列的元素.矩陣乘法是指對于兩個矩陣A和B,如果4的列數(shù)等于B的行數(shù),則可以把A和B相乘,具體來說:若,,則,其中.已知,函數(shù).(1)討論的單調(diào)性;(2)若是的兩個極值點,證明:,.【答案】(1)答案見解析(2)證明見解析【分析】(1)由題意,,求導(dǎo)得,從而可以分是否為0進行討論,時,可以繼續(xù)分是否大于0進行討論,結(jié)合導(dǎo)數(shù)符號與函數(shù)單調(diào)性的關(guān)系即可得解;(2)構(gòu)造函數(shù),首先利用導(dǎo)數(shù)證明得到,進一步有,從而即可順利得解.【詳解】(1)由矩陣乘法定義知,,∵,∴當(dāng)時,,單調(diào)遞增,時,方程的判別式,當(dāng)時,,,單調(diào)遞增,當(dāng)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論