安徽省濉溪縣2024年高三5月(二模)數(shù)學(xué)試題_第1頁
安徽省濉溪縣2024年高三5月(二模)數(shù)學(xué)試題_第2頁
安徽省濉溪縣2024年高三5月(二模)數(shù)學(xué)試題_第3頁
安徽省濉溪縣2024年高三5月(二模)數(shù)學(xué)試題_第4頁
安徽省濉溪縣2024年高三5月(二模)數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

安徽省濉溪縣2024年高三5月(二模)數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)(),當(dāng)時,的值域?yàn)?,則的范圍為()A. B. C. D.2.已知雙曲線的兩條漸近線與拋物線的準(zhǔn)線分別交于點(diǎn)、,O為坐標(biāo)原點(diǎn).若雙曲線的離心率為2,三角形AOB的面積為,則p=().A.1 B. C.2 D.33.設(shè)、分別是定義在上的奇函數(shù)和偶函數(shù),且,則()A. B.0 C.1 D.34.已知點(diǎn)P不在直線l、m上,則“過點(diǎn)P可以作無數(shù)個平面,使得直線l、m都與這些平面平行”是“直線l、m互相平行”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件5.設(shè)f(x)是定義在R上的偶函數(shù),且在(0,+∞)單調(diào)遞減,則()A. B.C. D.6.已知等比數(shù)列的前項(xiàng)和為,若,且公比為2,則與的關(guān)系正確的是()A. B.C. D.7.已知某批零件的長度誤差(單位:毫米)服從正態(tài)分布,從中隨機(jī)取一件,其長度誤差落在區(qū)間(3,6)內(nèi)的概率為()(附:若隨機(jī)變量ξ服從正態(tài)分布,則,.)A.4.56% B.13.59% C.27.18% D.31.74%8.若實(shí)數(shù)滿足不等式組則的最小值等于()A. B. C. D.9.若復(fù)數(shù)滿足,則()A. B. C. D.10.已知等差數(shù)列中,,則()A.20 B.18 C.16 D.1411.已知滿足,則的取值范圍為()A. B. C. D.12.某幾何體的三視圖如圖所示,其中正視圖是邊長為4的正三角形,俯視圖是由邊長為4的正三角形和一個半圓構(gòu)成,則該幾何體的體積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若實(shí)數(shù)滿足約束條件,設(shè)的最大值與最小值分別為,則_____.14.已知△的三個內(nèi)角為,,,且,,成等差數(shù)列,則的最小值為__________,最大值為___________.15.已知實(shí)數(shù)滿約束條件,則的最大值為___________.16.若直線與直線交于點(diǎn),則長度的最大值為____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù)f(x)=|x﹣a|+|x|(a>0).(1)若不等式f(x)﹣|x|≥4x的解集為{x|x≤1},求實(shí)數(shù)a的值;(2)證明:f(x).18.(12分)已知函數(shù),設(shè)的最小值為m.(1)求m的值;(2)是否存在實(shí)數(shù)a,b,使得,?并說明理由.19.(12分)在中,角A,B,C的對邊分別為a,b,c,且.(1)求B;(2)若的面積為,周長為8,求b.20.(12分)設(shè)函數(shù).(1)求不等式的解集;(2)若的最小值為,且,求的最小值.21.(12分)已知函數(shù)(1)解不等式;(2)若均為正實(shí)數(shù),且滿足,為的最小值,求證:.22.(10分)已知函數(shù).(1)求不等式的解集;(2)若正數(shù)、滿足,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

首先由,可得的范圍,結(jié)合函數(shù)的值域和正弦函數(shù)的圖像,可求的關(guān)于實(shí)數(shù)的不等式,解不等式即可求得范圍.【詳解】因?yàn)?,所以,若值域?yàn)?,所以只需,?故選:B【點(diǎn)睛】本題主要考查三角函數(shù)的值域,熟悉正弦函數(shù)的單調(diào)性和特殊角的三角函數(shù)值是解題的關(guān)鍵,側(cè)重考查數(shù)學(xué)抽象和數(shù)學(xué)運(yùn)算的核心素養(yǎng).2、C【解析】試題分析:拋物線的準(zhǔn)線為,雙曲線的離心率為2,則,,漸近線方程為,求出交點(diǎn),,,則;選C考點(diǎn):1.雙曲線的漸近線和離心率;2.拋物線的準(zhǔn)線方程;3、C【解析】

先根據(jù)奇偶性,求出的解析式,令,即可求出?!驹斀狻恳?yàn)?、分別是定義在上的奇函數(shù)和偶函數(shù),,用替換,得,化簡得,即令,所以,故選C?!军c(diǎn)睛】本題主要考查函數(shù)性質(zhì)奇偶性的應(yīng)用。4、C【解析】

根據(jù)直線和平面平行的性質(zhì),結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】點(diǎn)不在直線、上,若直線、互相平行,則過點(diǎn)可以作無數(shù)個平面,使得直線、都與這些平面平行,即必要性成立,若過點(diǎn)可以作無數(shù)個平面,使得直線、都與這些平面平行,則直線、互相平行成立,反證法證明如下:若直線、互相不平行,則,異面或相交,則過點(diǎn)只能作一個平面同時和兩條直線平行,則與條件矛盾,即充分性成立則“過點(diǎn)可以作無數(shù)個平面,使得直線、都與這些平面平行”是“直線、互相平行”的充要條件,故選:.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合空間直線和平面平行的性質(zhì)是解決本題的關(guān)鍵.5、D【解析】

利用是偶函數(shù)化簡,結(jié)合在區(qū)間上的單調(diào)性,比較出三者的大小關(guān)系.【詳解】是偶函數(shù),,而,因?yàn)樵谏线f減,,即.故選:D【點(diǎn)睛】本小題主要考查利用函數(shù)的奇偶性和單調(diào)性比較大小,屬于基礎(chǔ)題.6、C【解析】

在等比數(shù)列中,由即可表示之間的關(guān)系.【詳解】由題可知,等比數(shù)列中,且公比為2,故故選:C【點(diǎn)睛】本題考查等比數(shù)列求和公式的應(yīng)用,屬于基礎(chǔ)題.7、B【解析】試題分析:由題意故選B.考點(diǎn):正態(tài)分布8、A【解析】

首先畫出可行域,利用目標(biāo)函數(shù)的幾何意義求的最小值.【詳解】解:作出實(shí)數(shù),滿足不等式組表示的平面區(qū)域(如圖示:陰影部分)由得,由得,平移,易知過點(diǎn)時直線在上截距最小,所以.故選:A.【點(diǎn)睛】本題考查了簡單線性規(guī)劃問題,求目標(biāo)函數(shù)的最值先畫出可行域,利用幾何意義求值,屬于中檔題.9、C【解析】

化簡得到,,再計(jì)算復(fù)數(shù)模得到答案.【詳解】,故,故,.故選:.【點(diǎn)睛】本題考查了復(fù)數(shù)的化簡,共軛復(fù)數(shù),復(fù)數(shù)模,意在考查學(xué)生的計(jì)算能力.10、A【解析】

設(shè)等差數(shù)列的公差為,再利用基本量法與題中給的條件列式求解首項(xiàng)與公差,進(jìn)而求得即可.【詳解】設(shè)等差數(shù)列的公差為.由得,解得.所以.故選:A【點(diǎn)睛】本題主要考查了等差數(shù)列的基本量求解,屬于基礎(chǔ)題.11、C【解析】

設(shè),則的幾何意義為點(diǎn)到點(diǎn)的斜率,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】解:設(shè),則的幾何意義為點(diǎn)到點(diǎn)的斜率,作出不等式組對應(yīng)的平面區(qū)域如圖:由圖可知當(dāng)過點(diǎn)的直線平行于軸時,此時成立;取所有負(fù)值都成立;當(dāng)過點(diǎn)時,取正值中的最小值,,此時;故的取值范圍為;故選:C.【點(diǎn)睛】本題考查簡單線性規(guī)劃的非線性目標(biāo)函數(shù)函數(shù)問題,解題時作出可行域,利用目標(biāo)函數(shù)的幾何意義求解是解題關(guān)鍵.對于直線斜率要注意斜率不存在的直線是否存在.12、A【解析】由題意得到該幾何體是一個組合體,前半部分是一個高為底面是邊長為4的等邊三角形的三棱錐,后半部分是一個底面半徑為2的半個圓錐,體積為故答案為A.點(diǎn)睛:思考三視圖還原空間幾何體首先應(yīng)深刻理解三視圖之間的關(guān)系,遵循“長對正,高平齊,寬相等”的基本原則,其內(nèi)涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側(cè)視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進(jìn)行調(diào)整.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

畫出可行域,平移基準(zhǔn)直線到可行域邊界位置,由此求得最大值以及最小值,進(jìn)而求得的比值.【詳解】畫出可行域如下圖所示,由圖可知,當(dāng)直線過點(diǎn)時,取得最大值7;過點(diǎn)時,取得最小值2,所以.【點(diǎn)睛】本小題主要考查利用線性規(guī)劃求線性目標(biāo)函數(shù)的最值.這種類型題目的主要思路是:首先根據(jù)題目所給的約束條件,畫出可行域;其次是求得線性目標(biāo)函數(shù)的基準(zhǔn)函數(shù);接著畫出基準(zhǔn)函數(shù)對應(yīng)的基準(zhǔn)直線;然后通過平移基準(zhǔn)直線到可行域邊界的位置;最后求出所求的最值.屬于基礎(chǔ)題.14、【解析】

根據(jù)正弦定理可得,利用余弦定理以及均值不等式,可得角的范圍,然后構(gòu)造函數(shù),利用導(dǎo)數(shù),研究函數(shù)性質(zhì),可得結(jié)果.【詳解】由,,成等差數(shù)列所以所以又化簡可得當(dāng)且僅當(dāng)時,取等號又,所以令,則當(dāng),即時,當(dāng),即時,則在遞增,在遞減所以由,所以所以的最小值為最大值為故答案為:,【點(diǎn)睛】本題考查等差數(shù)列、正弦定理、余弦定理,還考查了不等式、導(dǎo)數(shù)的綜合應(yīng)用,難點(diǎn)在于根據(jù)余弦定理以及不等式求出,考驗(yàn)分析能力以及邏輯思維能力,屬難題.15、8【解析】

畫出可行域和目標(biāo)函數(shù),根據(jù)平移計(jì)算得到答案.【詳解】根據(jù)約束條件,畫出可行域,圖中陰影部分為可行域.又目標(biāo)函數(shù)表示直線在軸上的截距,由圖可知當(dāng)經(jīng)過點(diǎn)時截距最大,故的最大值為8.故答案為:.【點(diǎn)睛】本題考查了線性規(guī)劃問題,畫出圖像是解題的關(guān)鍵.16、【解析】

根據(jù)題意可知,直線與直線分別過定點(diǎn),且這兩條直線互相垂直,由此可知,其交點(diǎn)在以為直徑的圓上,結(jié)合圖形求出線段的最大值即可.【詳解】由題可知,直線可化為,所以其過定點(diǎn),直線可化為,所以其過定點(diǎn),且滿足,所以直線與直線互相垂直,其交點(diǎn)在以為直徑的圓上,作圖如下:結(jié)合圖形可知,線段的最大值為,因?yàn)闉榫€段的中點(diǎn),所以由中點(diǎn)坐標(biāo)公式可得,所以線段的最大值為.故答案為:【點(diǎn)睛】本題考查過交點(diǎn)的直線系方程、動點(diǎn)的軌跡問題及點(diǎn)與圓的位置關(guān)系;考查數(shù)形結(jié)合思想和運(yùn)算求解能力;根據(jù)圓的定義得到交點(diǎn)在以為直徑的圓上是求解本題的關(guān)鍵;屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)a=1;(2)見解析【解析】

(1)由題意可得|x﹣a|≥4x,分類討論去掉絕對值,分別求得x的范圍即可求出a的值.(2)由條件利用絕對值三角不等式,基本不等式證得f(x)≥2..【詳解】(1)由f(x)﹣|x|≥4x,可得|x﹣a|≥4x,(a>0),當(dāng)x≥a時,x﹣a≥4x,解得x,這與x≥a>0矛盾,故不成立,當(dāng)x<a時,a﹣x≥4x,解得x,又不等式的解集是{x|x≤1},故1,解得a=1.(2)證明:f(x)=|x﹣a|+|x||x﹣a﹣(x)|=|a|,∵a>0,∴|a|=a22,當(dāng)且僅當(dāng)a時取等號,故f(x).【點(diǎn)睛】本題主要考查絕對值三角不等式,基本不等式,絕對值不等式的解法,體現(xiàn)了轉(zhuǎn)化、分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.18、(1)(2)不存在;詳見解析【解析】

(1)將函數(shù)去絕對值化為分段函數(shù)的形式,從而可求得函數(shù)的最小值,進(jìn)而可得m.(2)由,利用基本不等式即可求出.【詳解】(1);(2),若,同號,,不成立;或,異號,,不成立;故不存在實(shí)數(shù),,使得,.【點(diǎn)睛】本題考查了分段函數(shù)的最值、基本不等式的應(yīng)用,屬于基礎(chǔ)題.19、(1);(2)【解析】

(1)通過正弦定理和內(nèi)角和定理化簡,再通過二倍角公式即可求出;(2)通過三角形面積公式和三角形的周長為8,求出b的表達(dá)式后即可求出b的值.【詳解】(1)由三角形內(nèi)角和定理及誘導(dǎo)公式,得,結(jié)合正弦定理,得,由及二倍角公式,得,即,故;(2)由題設(shè),得,從而,由余弦定理,得,即,又,所以,解得.【點(diǎn)睛】本題綜合考查了正余弦定理,倍角公式,三角形面積公式,屬于基礎(chǔ)題.20、(1)或(2)最小值為.【解析】

(1)討論,,三種情況,分別計(jì)算得到答案.(2)計(jì)算得到,再利用均值不等式計(jì)算得到答案.【詳解】(1)當(dāng)時,由,解得;當(dāng)時,由,解得;當(dāng)時,由,解得.所以所求不等式的解集為或.(2)根據(jù)函數(shù)圖像知:當(dāng)時,,所以.因?yàn)?,由,可知,所以,?dāng)且僅當(dāng),,時,等號成立.所以的最小值為.【點(diǎn)睛】本題考查了解絕對值不等式,函數(shù)最值,均值不等式,意在考查學(xué)生對于不等式,函數(shù)知識的綜合應(yīng)用.21、(1)或(2)證明見解析【解析】

(1)將寫成分段函數(shù)的形式,由此求得不等式的解集.(2)由(1)求得最小值,由此利用基本不等式,證得不等式成立.【詳解】(1)當(dāng)時,恒成立,解得;當(dāng)時,由,解得;當(dāng)時,由解得所以的解集為或(2)由(1)可求得最小值為,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論