云南省鹽津縣達(dá)標(biāo)名校2021-2022學(xué)年中考數(shù)學(xué)考試模擬沖刺卷含解析_第1頁
云南省鹽津縣達(dá)標(biāo)名校2021-2022學(xué)年中考數(shù)學(xué)考試模擬沖刺卷含解析_第2頁
云南省鹽津縣達(dá)標(biāo)名校2021-2022學(xué)年中考數(shù)學(xué)考試模擬沖刺卷含解析_第3頁
云南省鹽津縣達(dá)標(biāo)名校2021-2022學(xué)年中考數(shù)學(xué)考試模擬沖刺卷含解析_第4頁
云南省鹽津縣達(dá)標(biāo)名校2021-2022學(xué)年中考數(shù)學(xué)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

云南省鹽津縣達(dá)標(biāo)名校2021-2022學(xué)年中考數(shù)學(xué)考試模擬沖刺卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.用鋁片做聽裝飲料瓶,現(xiàn)有100張鋁片,每張鋁片可制瓶身16個或制瓶底45個,一個瓶身和兩個瓶底可配成一套,設(shè)用張鋁片制作瓶身,則可列方程()A. B.C. D.2.當(dāng)x=1時,代數(shù)式x3+x+m的值是7,則當(dāng)x=﹣1時,這個代數(shù)式的值是()A.7 B.3 C.1 D.﹣73.﹣的絕對值是()A.﹣ B. C.﹣2 D.24.一個不透明的布袋里裝有7個只有顏色不同的球,其中3個紅球,4個白球,從布袋中隨機(jī)摸出一個球,摸出的球是紅球的概率是()A. B. C. D.5.如圖,共有12個大不相同的小正方形,其中陰影部分的5個小正方形是一個正方體的表面展開圖的一部分.現(xiàn)從其余的小正方形中任取一個涂上陰影,則能構(gòu)成這個正方體的表面展開圖的概率是()A. B. C. D.6.如圖,PA、PB切⊙O于A、B兩點,AC是⊙O的直徑,∠P=40°,則∠ACB度數(shù)是()A.50° B.60° C.70° D.80°7.如圖,由四個正方體組成的幾何體的左視圖是()A. B. C. D.8.若(x﹣1)0=1成立,則x的取值范圍是()A.x=﹣1 B.x=1 C.x≠0 D.x≠19.2cos30°的值等于()A.1 B. C. D.210.下面四個幾何體:其中,俯視圖是四邊形的幾何體個數(shù)是()A.1 B.2 C.3 D.411.已知關(guān)于x的一元二次方程有兩個相等的實根,則k的值為()A. B. C.2或3 D.或12.蘋果的單價為a元/千克,香蕉的單價為b元/千克,買2千克蘋果和3千克香蕉共需()A.(a+b)元 B.(3a+2b)元 C.(2a+3b)元 D.5(a+b)元二、填空題:(本大題共6個小題,每小題4分,共24分.)13.某校九年級(1)班40名同學(xué)中,14歲的有1人,15歲的有21人,16歲的有16人,17歲的有2人,則這個班同學(xué)年齡的中位數(shù)是___歲.14.“復(fù)興號”是我國具有完全自主知識產(chǎn)權(quán)、達(dá)到世界先進(jìn)水平的動車組列車.“復(fù)興號”的速度比原來列車的速度每小時快50千米,提速后從北京到上海運(yùn)行時間縮短了30分鐘.已知從北京到上海全程約1320千米,求“復(fù)興號”的速度.設(shè)“復(fù)興號”的速度為x千米/時,依題意,可列方程為__.15.如圖,已知點A(2,2)在雙曲線上,將線段OA沿x軸正方向平移,若平移后的線段O'A'與雙曲線的交點D恰為O'A'的中點,則平移距離OO'長為____.16.分解因式:x2-9=_▲.17.今年,某縣境內(nèi)跨湖高速進(jìn)入施工高峰期,交警隊為提醒出行車輛,在一些主要路口設(shè)立了交通路況警示牌(如圖).已知立桿AD高度是4m,從側(cè)面C點測得警示牌頂端點A和底端B點的仰角(∠ACD和∠BCD)分別是60°,45°.那么路況警示牌AB的高度為_____.18.如圖,已知⊙P的半徑為2,圓心P在拋物線y=x2﹣1上運(yùn)動,當(dāng)⊙P與x軸相切時,圓心P的坐標(biāo)為_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,學(xué)校的實驗樓對面是一幢教學(xué)樓,小敏在實驗樓的窗口C測得教學(xué)樓頂部D的仰角為18°,教學(xué)樓底部B的俯角為20°,量得實驗樓與教學(xué)樓之間的距離AB=30m.(1)求∠BCD的度數(shù).(2)求教學(xué)樓的高BD.(結(jié)果精確到0.1m,參考數(shù)據(jù):tan20°≈0.36,tan18°≈0.32)20.(6分)如圖,已知拋物線y=x2﹣4與x軸交于點A,B(點A位于點B的左側(cè)),C為頂點,直線y=x+m經(jīng)過點A,與y軸交于點D.求線段AD的長;平移該拋物線得到一條新拋物線,設(shè)新拋物線的頂點為C′.若新拋物線經(jīng)過點D,并且新拋物線的頂點和原拋物線的頂點的連線CC′平行于直線AD,求新拋物線對應(yīng)的函數(shù)表達(dá)式.21.(6分)已知一個口袋中裝有7個只有顏色不同的球,其中3個白球,4個黑球.(1)求從中隨機(jī)抽取出一個黑球的概率是多少?(2)若往口袋中再放入x個白球和y個黑球,從口袋中隨機(jī)取出一個白球的概率是14,求y與x22.(8分)如圖,平行四邊形ABCD的對角線AC,BD相交于點O,EF過點O且與AB、CD分別交于點E、F.求證:OE=OF.23.(8分)如圖山坡上有一根旗桿AB,旗桿底部B點到山腳C點的距離BC為米,斜坡BC的坡度i=1:.小明在山腳的平地F處測量旗桿的高,點C到測角儀EF的水平距離CF=1米,從E處測得旗桿頂部A的仰角為45°,旗桿底部B的仰角為20°.(1)求坡角∠BCD;(2)求旗桿AB的高度.(參考數(shù)值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24.(10分)小晗家客廳裝有一種三位單極開關(guān),分別控制著A(樓梯)、B(客廳)、C(走廊)三盞電燈,在正常情況下,小晗按下任意一個開關(guān)均可打開對應(yīng)的一盞電燈,既可三盞、兩盞齊開,也可分別單盞開.因剛搬進(jìn)新房不久,不熟悉情況.若小晗任意按下一個開關(guān),正好樓梯燈亮的概率是多少?若任意按下一個開關(guān)后,再按下另兩個開關(guān)中的一個,則正好客廳燈和走廊燈同時亮的概率是多少?請用樹狀圖或列表法加以說明.25.(10分)如圖,我們把一個半圓和拋物線的一部分圍成的封閉圖形稱為“果圓”,已知分別為“果圓”與坐標(biāo)軸的交點,直線與“果圓”中的拋物線交于兩點(1)求“果圓”中拋物線的解析式,并直接寫出“果圓”被軸截得的線段的長;(2)如圖,為直線下方“果圓”上一點,連接,設(shè)與交于,的面積記為,的面積即為,求的最小值(3)“果圓”上是否存在點,使,如果存在,直接寫出點坐標(biāo),如果不存在,請說明理由26.(12分)如圖所示,在?ABCD中,E是CD延長線上的一點,BE與AD交于點F,DE=CD.(1)求證:△ABF∽△CEB;(2)若△DEF的面積為2,求?ABCD的面積.27.(12分)已知:如圖,在平行四邊形中,的平分線交于點,過點作的垂線交于點,交延長線于點,連接,.求證:;若,,,求的長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

設(shè)用張鋁片制作瓶身,則用張鋁片制作瓶底,可作瓶身16x個,瓶底個,再根據(jù)一個瓶身和兩個瓶底可配成一套,即可列出方程.【詳解】設(shè)用張鋁片制作瓶身,則用張鋁片制作瓶底,依題意可列方程故選C.【點睛】此題主要考查一元一次方程的應(yīng)用,解題的關(guān)鍵是根據(jù)題意找到等量關(guān)系.2、B【解析】

因為當(dāng)x=1時,代數(shù)式的值是7,所以1+1+m=7,所以m=5,當(dāng)x=-1時,=-1-1+5=3,故選B.3、B【解析】

根據(jù)求絕對值的法則,直接計算即可解答.【詳解】,故選:B.【點睛】本題主要考查求絕對值的法則,掌握負(fù)數(shù)的絕對值等于它的相反數(shù),是解題的關(guān)鍵.4、B【解析】袋中一共7個球,摸到的球有7種可能,而且機(jī)會均等,其中有3個紅球,因此摸到紅球的概率為,故選B.5、D【解析】

由正方體表面展開圖的形狀可知,此正方體還缺一個上蓋,故應(yīng)在圖中四塊相連的空白正方形中選一塊,再根據(jù)概率公式解答即可.【詳解】因為共有12個大小相同的小正方形,其中陰影部分的5個小正方形是一個正方體的表面展開圖的一部分,所以剩下7個小正方形.在其余的7個小正方形中任取一個涂上陰影,能構(gòu)成這個正方體的表面展開圖的小正方形有4個,因此先從其余的小正方形中任取一個涂上陰影,能構(gòu)成這個正方體的表面展開圖的概率是.故選D.【點睛】本題考查了概率公式,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比,掌握概率公式是本題的關(guān)鍵.6、C【解析】

連接BC,根據(jù)題意PA,PB是圓的切線以及可得的度數(shù),然后根據(jù),可得的度數(shù),因為是圓的直徑,所以,根據(jù)三角形內(nèi)角和即可求出的度數(shù)?!驹斀狻窟B接BC.∵PA,PB是圓的切線∴在四邊形中,∵∴∵所以∵是直徑∴∴故答案選C.【點睛】本題主要考察切線的性質(zhì),四邊形和三角形的內(nèi)角和以及圓周角定理。7、B【解析】從左邊看可以看到兩個小正方形摞在一起,故選B.8、D【解析】試題解析:由題意可知:x-1≠0,

x≠1

故選D.9、C【解析】分析:根據(jù)30°角的三角函數(shù)值代入計算即可.詳解:2cos30°=2×=.故選C.點睛:此題主要考查了特殊角的三角函數(shù)值的應(yīng)用,熟記30°、45°、60°角的三角函數(shù)值是解題關(guān)鍵.10、B【解析】試題分析:根據(jù)俯視圖是分別從物體上面看,所得到的俯視圖是四邊形的幾何體有正方體和三棱柱,故選B.考點:簡單幾何體的三視圖11、A【解析】

根據(jù)方程有兩個相等的實數(shù)根結(jié)合根的判別式即可得出關(guān)于k的方程,解之即可得出結(jié)論.【詳解】∵方程有兩個相等的實根,∴△=k2-4×2×3=k2-24=0,解得:k=.故選A.【點睛】本題考查了根的判別式,熟練掌握“當(dāng)△=0時,方程有兩個相等的兩個實數(shù)根”是解題的關(guān)鍵.12、C【解析】

用單價乘數(shù)量得出買2千克蘋果和3千克香蕉的總價,再進(jìn)一步相加即可.【詳解】買單價為a元的蘋果2千克用去2a元,買單價為b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故選C.【點睛】本題主要考查列代數(shù)式,總價=單價乘數(shù)量.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1.【解析】

根據(jù)中位數(shù)的定義找出第20和21個數(shù)的平均數(shù),即可得出答案.【詳解】解:∵該班有40名同學(xué),∴這個班同學(xué)年齡的中位數(shù)是第20和21個數(shù)的平均數(shù).∵14歲的有1人,1歲的有21人,∴這個班同學(xué)年齡的中位數(shù)是1歲.【點睛】此題考查了中位數(shù),中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個數(shù)(最中間兩個數(shù)的平均數(shù)),熟練掌握中位數(shù)的定義是本題的關(guān)鍵.14、【解析】

設(shè)“復(fù)興號”的速度為x千米/時,則原來列車的速度為(x-50)千米/時,根據(jù)提速后從北京到上海運(yùn)行時間縮短了30分鐘列出方程即可.【詳解】設(shè)“復(fù)興號”的速度為x千米/時,則原來列車的速度為(x-50)千米/時,根據(jù)題意得.故答案為.【點睛】本題主要考查由實際問題抽象出分式方程,解題的關(guān)鍵是理解題意,找到題目蘊(yùn)含的相等關(guān)系.15、1.【解析】

直接利用平移的性質(zhì)以及反比例函數(shù)圖象上點的坐標(biāo)性質(zhì)得出D點坐標(biāo)進(jìn)而得出答案.【詳解】∵點A(2,2)在雙曲線上,∴k=4,∵平移后的線段O'A'與雙曲線的交點D恰為O'A'的中點,∴D點縱坐標(biāo)為:1,∴DE=1,O′E=1,∴D點橫坐標(biāo)為:x==4,∴OO′=1,故答案為1.【點睛】本題考查了反比例函數(shù)圖象上的性質(zhì),正確得出D點坐標(biāo)是解題關(guān)鍵.16、(x+3)(x-3)【解析】

x2-9=(x+3)(x-3),故答案為(x+3)(x-3).17、m【解析】

由特殊角的正切值即可得出線段CD的長度,在Rt△BDC中,由∠BCD=45°,得出CD=BD,求出BD長度,再利用線段間的關(guān)系即可得出結(jié)論.【詳解】在Rt△ADC中,∠ACD=60°,AD=4∴tan60°==∴CD=∵在Rt△BCD中,∠BAD=45°,CD=∴BD=CD=.∴AB=AD-BD=4-=路況警示牌AB的高度為m.故答案為:m.【點睛】解直角三角形的應(yīng)用-仰角俯角問題.18、(,1)或(﹣,1)【解析】

根據(jù)直線和圓相切,則圓心到直線的距離等于圓的半徑,得點P的縱坐標(biāo)是1或-1.將P的縱坐標(biāo)代入函數(shù)解析式,求P點坐標(biāo)即可【詳解】根據(jù)直線和圓相切,則圓心到直線的距離等于圓的半徑,得點P的縱坐標(biāo)是1或-1.當(dāng)y=1時,x1-1=1,解得x=±當(dāng)y=-1時,x1-1=-1,方程無解故P點的坐標(biāo)為()或(-)【點睛】此題注意應(yīng)考慮兩種情況.熟悉直線和圓的位置關(guān)系應(yīng)滿足的數(shù)量關(guān)系是解題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)38°;(2)20.4m.【解析】

(1)過點C作CE與BD垂直,根據(jù)題意確定出所求角度數(shù)即可;(2)在直角三角形CBE中,利用銳角三角函數(shù)定義求出BE的長,在直角三角形CDE中,利用銳角三角函數(shù)定義求出DE的長,由BE+DE求出BD的長,即為教學(xué)樓的高.【詳解】(1)過點C作CE⊥BD,則有∠DCE=18°,∠BCE=20°,∴∠BCD=∠DCE+∠BCE=18°+20°=38°;(2)由題意得:CE=AB=30m,在Rt△CBE中,BE=CE?tan20°≈10.80m,在Rt△CDE中,DE=CD?tan18°≈9.60m,∴教學(xué)樓的高BD=BE+DE=10.80+9.60≈20.4m,則教學(xué)樓的高約為20.4m.【點睛】本題考查了解直角三角形的應(yīng)用﹣仰角俯角問題,正確添加輔助線構(gòu)建直角三角形、熟練掌握和靈活運(yùn)用相關(guān)知識是解題的關(guān)鍵.20、(1)1;(1)y=x1﹣4x+1或y=x1+6x+1.【解析】

(1)解方程求出點A的坐標(biāo),根據(jù)勾股定理計算即可;(1)設(shè)新拋物線對應(yīng)的函數(shù)表達(dá)式為:y=x1+bx+1,根據(jù)二次函數(shù)的性質(zhì)求出點C′的坐標(biāo),根據(jù)題意求出直線CC′的解析式,代入計算即可.【詳解】解:(1)由x1﹣4=0得,x1=﹣1,x1=1,∵點A位于點B的左側(cè),∴A(﹣1,0),∵直線y=x+m經(jīng)過點A,∴﹣1+m=0,解得,m=1,∴點D的坐標(biāo)為(0,1),∴AD==1;(1)設(shè)新拋物線對應(yīng)的函數(shù)表達(dá)式為:y=x1+bx+1,y=x1+bx+1=(x+)1+1﹣,則點C′的坐標(biāo)為(﹣,1﹣),∵CC′平行于直線AD,且經(jīng)過C(0,﹣4),∴直線CC′的解析式為:y=x﹣4,∴1﹣=﹣﹣4,解得,b1=﹣4,b1=6,∴新拋物線對應(yīng)的函數(shù)表達(dá)式為:y=x1﹣4x+1或y=x1+6x+1.【點睛】本題考查的是拋物線與x軸的交點、待定系數(shù)法求函數(shù)解析式,掌握二次函數(shù)的性質(zhì)、拋物線與x軸的交點的求法是解題的關(guān)鍵.21、(1)47.(2)y=3x+5【解析】試題分析:(1)根據(jù)取出黑球的概率=黑球的數(shù)量÷球的總數(shù)量得出答案;(2)根據(jù)概率的計算方法得出方程,從求出函數(shù)關(guān)系式.試題解析:(1)取出一個黑球的概率P=(2)∵取出一個白球的概率P=∴∴12+4x=7+x+y∴y與x的函數(shù)關(guān)系式為:y=3x+5.考點:概率22、見解析【解析】

由四邊形ABCD是平行四邊形,根據(jù)平行四邊形對角線互相平分,即可得OA=OC,易證得△AEO≌△CFO,由全等三角形的對應(yīng)邊相等,可得OE=OF.【詳解】證明:∵四邊形ABCD是平行四邊形,∴OA=OC,AB∥DC,∴∠EAO=∠FCO,在△AEO和△CFO中,∴△AEO≌△CFO(ASA),∴OE=OF.【點睛】本題考查了平行四邊形的性質(zhì)和全等三角形的判定,屬于簡單題,熟悉平行四邊形的性質(zhì)和全等三角形的判定方法是解題關(guān)鍵.23、旗桿AB的高度為6.4米.【解析】分析:(1)根據(jù)坡度i與坡角α之間的關(guān)系為:i=tanα進(jìn)行計算;(2)根據(jù)余弦的概念求出CD,根據(jù)正切的概念求出AG、BG,計算即可.本題解析:(1)∵斜坡BC的坡度i=1:,∴tan∠BCD=,∴∠BCD=30°;(2)在Rt△BCD中,CD=BC×cos∠BCD=6×=9,則DF=DC+CF=10(米),∵四邊形GDFE為矩形,∴GE=DF=10(米),∵∠AEG=45°,∴AG=DE=10(米),在Rt△BEG中,BG=GE×tan∠BEG=10×0.36=3.6(米),則AB=AG?BG=10?3.6=6.4(米).答:旗桿AB的高度為6.4米。24、(1);(2).【解析】試題分析:(1)、3個等只有一個控制樓梯,則概率就是1÷3;(2)、根據(jù)題意畫出樹狀圖,然后根據(jù)概率的計算法則得出概率.試題解析:(1)、小晗任意按下一個開關(guān),正好樓梯燈亮的概率是:(2)、畫樹狀圖得:結(jié)果:(A,B)、(A,C)、(B,A)、(B,C)、(C,A)、(C,B)∵共有6種等可能的結(jié)果,正好客廳燈和走廊燈同時亮的有2種情況,∴正好客廳燈和走廊燈同時亮的概率是=.考點:概率的計算.25、(1);6;(2)有最小值;(3),.【解析】

(1)先求出點B,C坐標(biāo),利用待定系數(shù)法求出拋物線解析式,進(jìn)而求出點A坐標(biāo),即可求出半圓的直徑,再構(gòu)造直角三角形求出點D的坐標(biāo)即可求出BD;

(2)先判斷出要求的最小值,只要CG最大即可,再求出直線EG解析式和拋物線解析式聯(lián)立成的方程只有一個交點,求出直線EG解析式,即可求出CG,結(jié)論得證.

(3)求出線段AC,BC進(jìn)而判斷出滿足條件的一個點P和點B重合,再利用拋物線的對稱性求出另一個點P.【詳解】解:(1)對于直線y=x-3,令x=0,

∴y=-3,

∴B(0,-3),

令y=0,

∴x-3=0,

∴x=4,

∴C(4,0),

∵拋物線y=x2+bx+c過B,C兩點,∴∴∴拋物線的解析式為y=;令y=0,

∴=0,∴x=4或x=-1,

∴A(-1,0),

∴AC=5,

如圖2,記半圓的圓心為O',連接O'D,

∴O'A=O'D=O'C=AC=,

∴OO'=OC-O'C=4-=,

在Rt△O'OD中,OD==2,∴D(0,2),

∴BD=2-(-3)=5;(2)如圖3,

∵A(-1,0),C(4,0),

∴AC=5,

過點E作EG∥BC交x軸于G,

∵△ABF的AF邊上的高和△BEF的EF邊的高相等,設(shè)高為h,

∴S△ABF=AF?h,S△BEF=EF?h,∴==∵的最小值,∴最小,∵CF∥GE,∴∴最小,即:CG最大,∴EG和果圓的拋物線部分只有一個交點時,CG最大,

∵直線BC的解析式為y=x-3,

設(shè)直線EG的解析式為y=x+m①,

∵拋物線的解析式為y=x2-x-3②,

聯(lián)立①②化簡得,3x2-12x-12-4m=0,

∴△=144+4×3×(12+4m)=0,

∴m=-6,

∴直線EG的解析式為y=x-6,

令y=0,

∴x-6=0,

∴x=8,

∴CG=4,∴=;(3),.理由:如圖1,∵AC是半圓的直徑,

∴半圓上除點A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論