浙江省臺州市天臺、椒江、玉環(huán)三區(qū)重點中學2022年中考數(shù)學對點突破模擬試卷含解析_第1頁
浙江省臺州市天臺、椒江、玉環(huán)三區(qū)重點中學2022年中考數(shù)學對點突破模擬試卷含解析_第2頁
浙江省臺州市天臺、椒江、玉環(huán)三區(qū)重點中學2022年中考數(shù)學對點突破模擬試卷含解析_第3頁
浙江省臺州市天臺、椒江、玉環(huán)三區(qū)重點中學2022年中考數(shù)學對點突破模擬試卷含解析_第4頁
浙江省臺州市天臺、椒江、玉環(huán)三區(qū)重點中學2022年中考數(shù)學對點突破模擬試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省臺州市天臺、椒江、玉環(huán)三區(qū)重點中學2022年中考數(shù)學對點突破模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.益陽市高新區(qū)某廠今年新招聘一批員工,他們中不同文化程度的人數(shù)見下表:文化程度高中大專本科碩士博士人數(shù)9172095關于這組文化程度的人數(shù)數(shù)據(jù),以下說法正確的是:()A.眾數(shù)是20 B.中位數(shù)是17 C.平均數(shù)是12 D.方差是262.工人師傅用一張半徑為24cm,圓心角為150°的扇形鐵皮做成一個圓錐的側面,則這個圓錐的高為()cm.A. B. C. D.3.如圖是由三個相同的小正方體組成的幾何體,則該幾何體的左視圖是()A. B. C. D.4.如圖,半徑為的中,弦,所對的圓心角分別是,,若,,則弦的長等于()A. B. C. D.5.某果園2011年水果產(chǎn)量為100噸,2013年水果產(chǎn)量為144噸,求該果園水果產(chǎn)量的年平均增長率.設該果園水果產(chǎn)量的年平均增長率為x,則根據(jù)題意可列方程為()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=1446.如圖,PB切⊙O于點B,PO交⊙O于點E,延長PO交⊙O于點A,連結AB,⊙O的半徑OD⊥AB于點C,BP=6,∠P=30°,則CD的長度是()A. B. C. D.27.已知在四邊形ABCD中,AD//BC,對角線AC、BD交于點O,且AC=BD,下列四個命題中真命題是()A.若AB=CD,則四邊形ABCD一定是等腰梯形;B.若∠DBC=∠ACB,則四邊形ABCD一定是等腰梯形;C.若,則四邊形ABCD一定是矩形;D.若AC⊥BD且AO=OD,則四邊形ABCD一定是正方形.8.如果(,均為非零向量),那么下列結論錯誤的是()A.// B.-2=0 C.= D.9.如圖,PA切⊙O于點A,PO交⊙O于點B,點C是⊙O優(yōu)弧弧AB上一點,連接AC、BC,如果∠P=∠C,⊙O的半徑為1,則劣弧弧AB的長為()A.π B.π C.π D.π10.如圖⊙O的直徑垂直于弦,垂足是,,,的長為()A. B.4 C. D.8二、填空題(共7小題,每小題3分,滿分21分)11.已知是銳角,那么cos=_________.12.如圖,在扇形AOB中∠AOB=90°,正方形CDEF的頂點C是弧AB的中點,點D在OB上,點E在OB的延長線上,當扇形AOB的半徑為2時,陰影部分的面積為__________.13.我們知道:四邊形具有不穩(wěn)定性.如圖,在平面直角坐標系xOy中,矩形ABCD的邊AB在x軸上,,,邊AD長為5.現(xiàn)固定邊AB,“推”矩形使點D落在y軸的正半軸上(落點記為),相應地,點C的對應點的坐標為_______.14.已知b是a,c的比例中項,若a=4,c=16,則b=________.15.若a+b=5,ab=3,則a2+b2=_____.16.若關于x的方程kx2+2x﹣1=0有實數(shù)根,則k的取值范圍是_____.17.關于x的一元二次方程x2﹣2kx+k2﹣k=0的兩個實數(shù)根分別是x1、x2,且x12+x22=4,則x12﹣x1x2+x22的值是_____.三、解答題(共7小題,滿分69分)18.(10分)在下列的網(wǎng)格圖中.每個小正方形的邊長均為1個單位,在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)試在圖中作出△ABC以A為旋轉中心,沿順時針方向旋轉90°后的圖形△AB1C1;(2)若點B的坐標為(-3,5),試在圖中畫出直角坐標系,并標出A、C兩點的坐標;(3)根據(jù)(2)中的坐標系作出與△ABC關于原點對稱的圖形△A2B2C2,并標出B2、C2兩點的坐標.19.(5分)如圖,AB是⊙O的直徑,點E是AD上的一點,∠DBC=∠BED.(1)請判斷直線BC與⊙O的位置關系,并說明理由;(2)已知AD=5,CD=4,求BC的長.20.(8分)如圖,已知拋物線的頂點為A(1,4),拋物線與y軸交于點B(0,3),與x軸交于C、D兩點.點P是x軸上的一個動點.求此拋物線的解析式;求C、D兩點坐標及△BCD的面積;若點P在x軸上方的拋物線上,滿足S△PCD=S△BCD,求點P的坐標.21.(10分)某景區(qū)商店銷售一種紀念品,每件的進貨價為40元.經(jīng)市場調研,當該紀念品每件的銷售價為50元時,每天可銷售200件;當每件的銷售價每增加1元,每天的銷售數(shù)量將減少10件.當每件的銷售價為52元時,該紀念品每天的銷售數(shù)量為件;當每件的銷售價x為多少時,銷售該紀念品每天獲得的利潤y最大?并求出最大利潤.22.(10分)撫順某中學為了解八年級學生的體能狀況,從八年級學生中隨機抽取部分學生進行體能測試,測試結果分為A,B,C,D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:(1)本次抽樣調查共抽取了多少名學生?(2)求測試結果為C等級的學生數(shù),并補全條形圖;(3)若該中學八年級共有700名學生,請你估計該中學八年級學生中體能測試結果為D等級的學生有多少名?(4)若從體能為A等級的2名男生2名女生中隨機的抽取2名學生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.23.(12分)一個不透明的口袋里裝有分別標有漢字“美”、“麗”、“光”、“明”的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻再摸球.(1)若從中任取一個球,求摸出球上的漢字剛好是“美”的概率;(2)甲從中任取一球,不放回,再從中任取一球,請用樹狀圖或列表法,求甲取出的兩個球上的漢字恰能組成“美麗”或“光明”的概率.24.(14分)佳佳向探究一元三次方程x3+2x2﹣x﹣2=0的解的情況,根據(jù)以往的學習經(jīng)驗,他想到了方程與函數(shù)的關系,一次函數(shù)y=kx+b(k≠0)的圖象與x軸交點的橫坐標即為一元一次方程kx+b(k≠0)的解,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交點的橫坐標即為一元二次方程ax2+bx+c=0(a≠0)的解,如:二次函數(shù)y=x2﹣2x﹣3的圖象與x軸的交點為(﹣1,0)和(3,0),交點的橫坐標﹣1和3即為x2﹣2x﹣3=0的解.根據(jù)以上方程與函數(shù)的關系,如果我們直到函數(shù)y=x3+2x2﹣x﹣2的圖象與x軸交點的橫坐標,即可知方程x3+2x2﹣x﹣2=0的解.佳佳為了解函數(shù)y=x3+2x2﹣x﹣2的圖象,通過描點法畫出函數(shù)的圖象.x…﹣3﹣﹣2﹣﹣1﹣012…y…﹣8﹣0m﹣﹣2﹣012…(1)直接寫出m的值,并畫出函數(shù)圖象;(2)根據(jù)表格和圖象可知,方程的解有個,分別為;(3)借助函數(shù)的圖象,直接寫出不等式x3+2x2>x+2的解集.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

根據(jù)眾數(shù)、中位數(shù)、平均數(shù)以及方差的概念求解.【詳解】A、這組數(shù)據(jù)中9出現(xiàn)的次數(shù)最多,眾數(shù)為9,故本選項錯誤;B、因為共有5組,所以第3組的人數(shù)為中位數(shù),即9是中位數(shù),故本選項錯誤;C、平均數(shù)==12,故本選項正確;D、方差=[(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]=,故本選項錯誤.故選C.【點睛】本題考查了中位數(shù)、平均數(shù)、眾數(shù)的知識,解答本題的關鍵是掌握各知識點的概念.2、B【解析】分析:直接利用圓錐的性質求出圓錐的半徑,進而利用勾股定理得出圓錐的高.詳解:由題意可得圓錐的母線長為:24cm,設圓錐底面圓的半徑為:r,則2πr=,解得:r=10,故這個圓錐的高為:(cm).故選B.點睛:此題主要考查了圓錐的計算,正確得出圓錐的半徑是解題關鍵.3、C【解析】分析:細心觀察圖中幾何體中正方體擺放的位置,根據(jù)左視圖是從左面看到的圖形判定則可.詳解:從左邊看豎直疊放2個正方形.故選:C.點睛:此題考查了幾何體的三種視圖和學生的空間想象能力,左視圖是從物體左面看所得到的圖形,解答時學生易將三種視圖混淆而錯誤的選其它選項.4、A【解析】作AH⊥BC于H,作直徑CF,連結BF,先利用等角的補角相等得到∠DAE=∠BAF,然后再根據(jù)同圓中,相等的圓心角所對的弦相等得到DE=BF=6,由AH⊥BC,根據(jù)垂徑定理得CH=BH,易得AH為△CBF的中位線,然后根據(jù)三角形中位線性質得到AH=BF=1,從而求解.解:作AH⊥BC于H,作直徑CF,連結BF,如圖,∵∠BAC+∠EAD=120°,而∠BAC+∠BAF=120°,∴∠DAE=∠BAF,∴弧DE=弧BF,∴DE=BF=6,∵AH⊥BC,∴CH=BH,∵CA=AF,∴AH為△CBF的中位線,∴AH=BF=1.∴,∴BC=2BH=2.故選A.“點睛”本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.也考查了垂徑定理和三角形中位線性質.5、D【解析】試題分析:2013年的產(chǎn)量=2011年的產(chǎn)量×(1+年平均增長率)2,把相關數(shù)值代入即可.解:2012年的產(chǎn)量為100(1+x),2013年的產(chǎn)量為100(1+x)(1+x)=100(1+x)2,即所列的方程為100(1+x)2=144,故選D.點評:考查列一元二次方程;得到2013年產(chǎn)量的等量關系是解決本題的關鍵.6、C【解析】

連接OB,根據(jù)切線的性質與三角函數(shù)得到∠POB=60°,OB=OD=2,再根據(jù)等腰三角形的性質與三角函數(shù)得到OC的長,即可得到CD的長.【詳解】解:如圖,連接OB,∵PB切⊙O于點B,∴∠OBP=90°,∵BP=6,∠P=30°,∴∠POB=60°,OD=OB=BPtan30°=6×=2,∵OA=OB,∴∠OAB=∠OBA=30°,∵OD⊥AB,∴∠OCB=90°,∴∠OBC=30°,則OC=OB=,∴CD=.故選:C.【點睛】本題主要考查切線的性質與銳角的三角函數(shù),解此題的關鍵在于利用切線的性質得到相關線段與角度的值,再根據(jù)圓和等腰三角形的性質求解即可.7、C【解析】A、因為滿足本選項條件的四邊形ABCD有可能是矩形,因此A中命題不一定成立;B、因為滿足本選項條件的四邊形ABCD有可能是矩形,因此B中命題不一定成立;C、因為由結合AO+CO=AC=BD=BO+OD可證得AO=CO,BO=DO,由此即可證得此時四邊形ABCD是矩形,因此C中命題一定成立;D、因為滿足本選項條件的四邊形ABCD有可能是等腰梯形,由此D中命題不一定成立.故選C.8、B【解析】試題解析:向量最后的差應該還是向量.故錯誤.故選B.9、A【解析】

利用切線的性質得∠OAP=90°,再利用圓周角定理得到∠C=∠O,加上∠P=∠C可計算寫出∠O=60°,然后根據(jù)弧長公式計算劣弧的長.【詳解】解:∵PA切⊙O于點A,∴OA⊥PA,∴∠OAP=90°,∵∠C=∠O,∠P=∠C,∴∠O=2∠P,而∠O+∠P=90°,∴∠O=60°,∴劣弧AB的長=.故選:A.【點睛】本題考查了切線的性質:圓的切線垂直于經(jīng)過切點的半徑.也考查了圓周角定理和弧長公式.10、C【解析】

∵直徑AB垂直于弦CD,∴CE=DE=CD,∵∠A=22.5°,∴∠BOC=45°,∴OE=CE,設OE=CE=x,∵OC=4,∴x2+x2=16,解得:x=2,即:CE=2,∴CD=4,故選C.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

根據(jù)已知條件設出直角三角形一直角邊與斜邊的長,再根據(jù)勾股定理求出另一直角邊的長,由三角函數(shù)的定義直接解答即可.【詳解】由sinα==知,如果設a=x,則c=2x,結合a2+b2=c2得b=x.∴cos==.故答案為.【點睛】本題考查的知識點是同角三角函數(shù)的關系,解題的關鍵是熟練的掌握同角三角函數(shù)的關系.12、π﹣1【解析】

根據(jù)勾股定理可求OC的長,根據(jù)題意可得出陰影部分的面積=扇形BOC的面積-三角形ODC的面積,依此列式計算即可求解.【詳解】連接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的頂點C是弧AB的中點,∴∠COD=45°,∴OC=CD=1,∴CD=OD=1,∴陰影部分的面積=扇形BOC的面積﹣三角形ODC的面積=﹣×11=π﹣1.故答案為π﹣1.【點睛】本題考查正方形的性質和扇形面積的計算,解題關鍵是得到扇形半徑的長度.13、【解析】分析:根據(jù)勾股定理,可得,根據(jù)平行四邊形的性質,可得答案.詳解:由勾股定理得:=,即(0,4).矩形ABCD的邊AB在x軸上,∴四邊形是平行四邊形,A=B,=AB=4-(-3)=7,與的縱坐標相等,∴(7,4),故答案為(7,4).點睛:本題考查了多邊形,利用平行四邊形的性質得出A=B,=AB=4-(-3)=7是解題的關鍵.14、±8【解析】

根據(jù)比例中項的定義即可求解.【詳解】∵b是a,c的比例中項,若a=4,c=16,∴b2=ac=4×16=64,∴b=±8,故答案為±8【點睛】此題考查了比例中項的定義,如果作為比例線段的內項是兩條相同的線段,即a∶b=b∶c或,那么線段b叫做線段a、c的比例中項.15、1【解析】試題分析:首先把等式a+b=5的等號兩邊分別平方,即得a2+2ab+b2=25,然后根據(jù)題意即可得解.解:∵a+b=5,∴a2+2ab+b2=25,∵ab=3,∴a2+b2=1.故答案為1.考點:完全平方公式.16、k≥-1【解析】

首先討論當時,方程是一元一次方程,有實數(shù)根,當時,利用根的判別式△=b2-4ac=4+4k≥0,兩者結合得出答案即可.【詳解】當時,方程是一元一次方程:,方程有實數(shù)根;當時,方程是一元二次方程,解得:且.綜上所述,關于的方程有實數(shù)根,則的取值范圍是.故答案為【點睛】考查一元二次方程根的判別式,注意分類討論思想在解題中的應用,不要忽略這種情況.17、1【解析】【分析】根據(jù)根與系數(shù)的關系結合x1+x2=x1?x2可得出關于k的一元二次方程,解之即可得出k的值,再根據(jù)方程有實數(shù)根結合根的判別式即可得出關于k的一元二次不等式,解之即可得出k的取值范圍,從而可確定k的值.【詳解】∵x2﹣2kx+k2﹣k=0的兩個實數(shù)根分別是x1、x2,∴x1+x2=2k,x1?x2=k2﹣k,∵x12+x22=1,∴(x1+x2)2-2x1x2=1,(2k)2﹣2(k2﹣k)=1,2k2+2k﹣1=0,k2+k﹣2=0,k=﹣2或1,∵△=(﹣2k)2﹣1×1×(k2﹣k)≥0,k≥0,∴k=1,∴x1?x2=k2﹣k=0,∴x12﹣x1x2+x22=1﹣0=1,故答案為:1.【點睛】本題考查了根的判別式以及根與系數(shù)的關系,熟練掌握“當一元二次方程有實數(shù)根時,根的判別式△≥0”是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)作圖見解析;(2)如圖所示,點A的坐標為(0,1),點C的坐標為(-3,1);(3)如圖所示,點B2的坐標為(3,-5),點C2的坐標為(3,-1).【解析】

(1)分別作出點B個點C旋轉后的點,然后順次連接可以得到;(2)根據(jù)點B的坐標畫出平面直角坐標系;(3)分別作出點A、點B、點C關于原點對稱的點,然后順次連接可以得到.【詳解】(1)△A如圖所示;(2)如圖所示,A(0,1),C(﹣3,1);(3)△如圖所示,(3,﹣5),(3,﹣1).19、(1)BC與⊙O相切;理由見解析;(2)BC=6【解析】試題分析:(1)BC與⊙O相切;由已知可得∠BAD=∠BED又由∠DBC=∠BED可得∠BAD=∠DBC,由AB為直徑可得∠ADB=90°,從而可得∠CBO=90°,繼而可得BC與⊙O相切(2)由AB為直徑可得∠ADB=90°,從而可得∠BDC=90°,由BC與⊙O相切,可得∠CBO=90°,從而可得∠BDC=∠CBO,可得ΔABC~ΔBDC,所以得BCCD=ACBC,得試題解析:(1)BC與⊙O相切;∵BD=BD,∴∠BAD=∠BED,∵∠DBC=∠BED,∴∠BAD=∠DBC,∵AB為直徑,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠DBC+∠ABD=90°,∴∠CBO=90°,∴點B在⊙O上,∴BC與(2)∵AB為直徑,∴∠ADB=90°,∴∠BDC=90°,∵BC與⊙O相切,∴∠CBO=90°,∴∠BDC=∠CBO,∴ΔABC~ΔBDC,∴BCCD=ACBC,∴BC考點:1.切線的判定與性質;2.相似三角形的判定與性質;3.勾股定理.20、(1)y=﹣(x﹣1)2+4;(2)C(﹣1,0),D(3,0);6;(3)P(1+,),或P(1﹣,)【解析】

(1)設拋物線頂點式解析式y(tǒng)=a(x-1)2+4,然后把點B的坐標代入求出a的值,即可得解;

(2)令y=0,解方程得出點C,D坐標,再用三角形面積公式即可得出結論;

(3)先根據(jù)面積關系求出點P的坐標,求出點P的縱坐標,代入拋物線解析式即可求出點P的坐標.【詳解】解:(1)、∵拋物線的頂點為A(1,4),∴設拋物線的解析式y(tǒng)=a(x﹣1)2+4,把點B(0,3)代入得,a+4=3,解得a=﹣1,∴拋物線的解析式為y=﹣(x﹣1)2+4;(2)由(1)知,拋物線的解析式為y=﹣(x﹣1)2+4;令y=0,則0=﹣(x﹣1)2+4,∴x=﹣1或x=3,∴C(﹣1,0),D(3,0);∴CD=4,∴S△BCD=CD×|yB|=×4×3=6;(3)由(2)知,S△BCD=CD×|yB|=×4×3=6;CD=4,∵S△PCD=S△BCD,∴S△PCD=CD×|yP|=×4×|yP|=3,∴|yP|=,∵點P在x軸上方的拋物線上,∴yP>0,∴yP=,∵拋物線的解析式為y=﹣(x﹣1)2+4;∴=﹣(x﹣1)2+4,∴x=1±,∴P(1+,),或P(1﹣,).【點睛】本題考查的是二次函數(shù)的綜合應用,熟練掌握二次函數(shù)的性質是解題的關鍵.21、(1)180;(2)每件銷售價為55元時,獲得最大利潤;最大利潤為2250元.【解析】分析:(1)根據(jù)“當每件的銷售價每增加1元,每天的銷售數(shù)量將減少10件”,即可解答;(2)根據(jù)等量關系“利潤=(售價﹣進價)×銷量”列出函數(shù)關系式,根據(jù)二次函數(shù)的性質,即可解答.詳解:(1)由題意得:200﹣10×(52﹣50)=200﹣20=180(件),故答案為180;(2)由題意得:y=(x﹣40)[200﹣10(x﹣50)]=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+2250∴每件銷售價為55元時,獲得最大利潤;最大利潤為2250元.點睛:此題主要考查了二次函數(shù)的應用,根據(jù)已知得出二次函數(shù)的最值是中考中考查重點,同學們應重點掌握.22、(1)50;(2)16;(3)56(4)見解析【解析】

(1)用A等級的頻數(shù)除以它所占的百分比即可得到樣本容量;

(2)用總人數(shù)分別減去A、B、D等級的人數(shù)得到C等級的人數(shù),然后補全條形圖;(3)用700乘以D等級的百分比可估計該中學八年級學生中體能測試結果為D等級的學生數(shù);

(4)畫樹狀圖展示12種等可能的結果數(shù),再找出抽取的兩人恰好都是男生的結果數(shù),然后根據(jù)概率公式求解.【詳解】(1)10÷20%=50(名)答:本次抽樣調查共抽取了50名學生.(2)50-10-20-4=16(名)答:測試結果為C等級的學生有16名.圖形統(tǒng)計圖補充完整如下圖所示:(3)700×=56(名)答:估計該中學八年級學生中體能測試結果為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論