湖北省孝感高中2024-2025學(xué)年全國高三模擬考(二)全國卷數(shù)學(xué)試題試卷含解析_第1頁
湖北省孝感高中2024-2025學(xué)年全國高三模擬考(二)全國卷數(shù)學(xué)試題試卷含解析_第2頁
湖北省孝感高中2024-2025學(xué)年全國高三模擬考(二)全國卷數(shù)學(xué)試題試卷含解析_第3頁
湖北省孝感高中2024-2025學(xué)年全國高三模擬考(二)全國卷數(shù)學(xué)試題試卷含解析_第4頁
湖北省孝感高中2024-2025學(xué)年全國高三模擬考(二)全國卷數(shù)學(xué)試題試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

湖北省孝感高中2024-2025學(xué)年全國高三模擬考(二)全國卷數(shù)學(xué)試題試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知拋物線的焦點(diǎn)為,過焦點(diǎn)的直線與拋物線分別交于、兩點(diǎn),與軸的正半軸交于點(diǎn),與準(zhǔn)線交于點(diǎn),且,則()A. B.2 C. D.32.若,則“”是“的展開式中項(xiàng)的系數(shù)為90”的()A.必要不充分條件 B.充分不必要條件 C.充要條件 D.既不充分也不必要條件3.已知等比數(shù)列滿足,,則()A. B. C. D.4.在平面直角坐標(biāo)系中,經(jīng)過點(diǎn),漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為()A. B. C. D.5.若、滿足約束條件,則的最大值為()A. B. C. D.6.音樂,是用聲音來展現(xiàn)美,給人以聽覺上的享受,熔鑄人們的美學(xué)趣味.著名數(shù)學(xué)家傅立葉研究了樂聲的本質(zhì),他證明了所有的樂聲都能用數(shù)學(xué)表達(dá)式來描述,它們是一些形如的簡單正弦函數(shù)的和,其中頻率最低的一項(xiàng)是基本音,其余的為泛音.由樂聲的數(shù)學(xué)表達(dá)式可知,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波.下列函數(shù)中不能與函數(shù)構(gòu)成樂音的是()A. B. C. D.7.設(shè)為等差數(shù)列的前項(xiàng)和,若,,則的最小值為()A. B. C. D.8.當(dāng)時(shí),函數(shù)的圖象大致是()A. B.C. D.9.已知的內(nèi)角的對(duì)邊分別是且,若為最大邊,則的取值范圍是()A. B. C. D.10.設(shè)函數(shù)(,)是上的奇函數(shù),若的圖象關(guān)于直線對(duì)稱,且在區(qū)間上是單調(diào)函數(shù),則()A. B. C. D.11.已知,其中是虛數(shù)單位,則對(duì)應(yīng)的點(diǎn)的坐標(biāo)為()A. B. C. D.12.已知雙曲線,點(diǎn)是直線上任意一點(diǎn),若圓與雙曲線的右支沒有公共點(diǎn),則雙曲線的離心率取值范圍是().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知中,點(diǎn)是邊的中點(diǎn),的面積為,則線段的取值范圍是__________.14.已知實(shí)數(shù),滿足約束條件,則的最大值是__________.15.曲線在處的切線方程是_________.16.已知雙曲線的一條漸近線方程為,則________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在四棱錐中,底面是邊長為2的菱形,是的中點(diǎn).(1)證明:平面;(2)設(shè)是線段上的動(dòng)點(diǎn),當(dāng)點(diǎn)到平面距離最大時(shí),求三棱錐的體積.18.(12分)在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達(dá)對(duì)祖國的熱愛之情,在數(shù)學(xué)中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.圖中的曲線就是笛卡爾心型曲線,其極坐標(biāo)方程為(),M為該曲線上的任意一點(diǎn).(1)當(dāng)時(shí),求M點(diǎn)的極坐標(biāo);(2)將射線OM繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)與該曲線相交于點(diǎn)N,求的最大值.19.(12分)在中,角A,B,C的對(duì)邊分別為a,b,c,且.(1)求B;(2)若的面積為,周長為8,求b.20.(12分)已知函數(shù).(1)求不等式的解集;(2)若正數(shù)、滿足,求證:.21.(12分)為了實(shí)現(xiàn)中華民族偉大復(fù)興之夢(mèng),把我國建設(shè)成為富強(qiáng)民主文明和諧美麗的社會(huì)主義現(xiàn)代化強(qiáng)國,黨和國家為勞動(dòng)者開拓了寬廣的創(chuàng)造性勞動(dòng)的舞臺(tái).借此“東風(fēng)”,某大型現(xiàn)代化農(nóng)場(chǎng)在種植某種大棚有機(jī)無公害的蔬菜時(shí),為創(chuàng)造更大價(jià)值,提高畝產(chǎn)量,積極開展技術(shù)創(chuàng)新活動(dòng).該農(nóng)場(chǎng)采用了延長光照時(shí)間和降低夜間溫度兩種不同方案.為比較兩種方案下產(chǎn)量的區(qū)別,該農(nóng)場(chǎng)選取了40間大棚(每間一畝),分成兩組,每組20間進(jìn)行試點(diǎn).第一組采用延長光照時(shí)間的方案,第二組采用降低夜間溫度的方案.同時(shí)種植該蔬菜一季,得到各間大棚產(chǎn)量數(shù)據(jù)信息如下圖:(1)如果你是該農(nóng)場(chǎng)的負(fù)責(zé)人,在只考慮畝產(chǎn)量的情況下,請(qǐng)根據(jù)圖中的數(shù)據(jù)信息,對(duì)于下一季大棚蔬菜的種植,說出你的決策方案并說明理由;(2)已知種植該蔬菜每年固定的成本為6千元/畝.若采用延長光照時(shí)間的方案,光照設(shè)備每年的成本為0.22千元/畝;若采用夜間降溫的方案,降溫設(shè)備的每年成本為0.2千元/畝.已知該農(nóng)場(chǎng)共有大棚100間(每間1畝),農(nóng)場(chǎng)種植的該蔬菜每年產(chǎn)出兩次,且該蔬菜市場(chǎng)的收購均價(jià)為1千元/千斤.根據(jù)題中所給數(shù)據(jù),用樣本估計(jì)總體,請(qǐng)計(jì)算在兩種不同的方案下,種植該蔬菜一年的平均利潤;(3)農(nóng)場(chǎng)根據(jù)以往該蔬菜的種植經(jīng)驗(yàn),認(rèn)為一間大棚畝產(chǎn)量超過5.25千斤為增產(chǎn)明顯.在進(jìn)行夜間降溫試點(diǎn)的20間大棚中隨機(jī)抽取3間,記增產(chǎn)明顯的大棚間數(shù)為,求的分布列及期望.22.(10分)在直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,射線的極坐標(biāo)方程為,射線的極坐標(biāo)方程為.(Ⅰ)寫出曲線的極坐標(biāo)方程,并指出是何種曲線;(Ⅱ)若射線與曲線交于兩點(diǎn),射線與曲線交于兩點(diǎn),求面積的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

過點(diǎn)作準(zhǔn)線的垂線,垂足為,與軸交于點(diǎn),由和拋物線的定義可求得,利用拋物線的性質(zhì)可構(gòu)造方程求得,進(jìn)而求得結(jié)果.【詳解】過點(diǎn)作準(zhǔn)線的垂線,垂足為,與軸交于點(diǎn),由拋物線解析式知:,準(zhǔn)線方程為.,,,,由拋物線定義知:,,,.由拋物線性質(zhì)得:,解得:,.故選:.本題考查拋物線定義與幾何性質(zhì)的應(yīng)用,關(guān)鍵是熟練掌握拋物線的定義和焦半徑所滿足的等式.2.B【解析】

求得的二項(xiàng)展開式的通項(xiàng)為,令時(shí),可得項(xiàng)的系數(shù)為90,即,求得,即可得出結(jié)果.【詳解】若則二項(xiàng)展開式的通項(xiàng)為,令,即,則項(xiàng)的系數(shù)為,充分性成立;當(dāng)?shù)恼归_式中項(xiàng)的系數(shù)為90,則有,從而,必要性不成立.故選:B.本題考查二項(xiàng)式定理、充分條件、必要條件及充要條件的判斷知識(shí),考查考生的分析問題的能力和計(jì)算能力,難度較易.3.B【解析】由a1+a3+a5=21得a3+a5+a7=,選B.4.B【解析】

根據(jù)所求雙曲線的漸近線方程為,可設(shè)所求雙曲線的標(biāo)準(zhǔn)方程為k.再把點(diǎn)代入,求得k的值,可得要求的雙曲線的方程.【詳解】∵雙曲線的漸近線方程為設(shè)所求雙曲線的標(biāo)準(zhǔn)方程為k.又在雙曲線上,則k=16-2=14,即雙曲線的方程為∴雙曲線的標(biāo)準(zhǔn)方程為故選:B本題主要考查用待定系數(shù)法求雙曲線的方程,雙曲線的定義和標(biāo)準(zhǔn)方程,以及雙曲線的簡單性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.5.C【解析】

作出不等式組所表示的可行域,平移直線,找出直線在軸上的截距最大時(shí)對(duì)應(yīng)的最優(yōu)解,代入目標(biāo)函數(shù)計(jì)算即可.【詳解】作出滿足約束條件的可行域如圖陰影部分(包括邊界)所示.由,得,平移直線,當(dāng)直線經(jīng)過點(diǎn)時(shí),該直線在軸上的截距最大,此時(shí)取最大值,即.故選:C.本題考查簡單的線性規(guī)劃問題,考查線性目標(biāo)函數(shù)的最值,一般利用平移直線的方法找到最優(yōu)解,考查數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.6.C【解析】

由基本音的諧波的定義可得,利用可得,即可判斷選項(xiàng).【詳解】由題,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波,由,可知若,則必有,故選:C本題考查三角函數(shù)的周期與頻率,考查理解分析能力.7.C【解析】

根據(jù)已知條件求得等差數(shù)列的通項(xiàng)公式,判斷出最小時(shí)的值,由此求得的最小值.【詳解】依題意,解得,所以.由解得,所以前項(xiàng)和中,前項(xiàng)的和最小,且.故選:C本小題主要考查等差數(shù)列通項(xiàng)公式和前項(xiàng)和公式的基本量計(jì)算,考查等差數(shù)列前項(xiàng)和最值的求法,屬于基礎(chǔ)題.8.B【解析】由,解得,即或,函數(shù)有兩個(gè)零點(diǎn),,不正確,設(shè),則,由,解得或,由,解得:,即是函數(shù)的一個(gè)極大值點(diǎn),不成立,排除,故選B.【方法點(diǎn)晴】本題通過對(duì)多個(gè)圖象的選擇考察函數(shù)的解析式、定義域、值域、單調(diào)性,導(dǎo)數(shù)的應(yīng)用以及數(shù)學(xué)化歸思想,屬于難題.這類題型也是近年高考常見的命題方向,該題型的特點(diǎn)是綜合性較強(qiáng)較強(qiáng)、考查知識(shí)點(diǎn)較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點(diǎn)以及時(shí)函數(shù)圖象的變化趨勢(shì),利用排除法,將不合題意選項(xiàng)一一排除.9.C【解析】

由,化簡得到的值,根據(jù)余弦定理和基本不等式,即可求解.【詳解】由,可得,可得,通分得,整理得,所以,因?yàn)闉槿切蔚淖畲蠼牵?,又由余弦定理,?dāng)且僅當(dāng)時(shí),等號(hào)成立,所以,即,又由,所以的取值范圍是.故選:C.本題主要考查了代數(shù)式的化簡,余弦定理,以及基本不等式的綜合應(yīng)用,試題難度較大,屬于中檔試題,著重考查了推理與運(yùn)算能力.10.D【解析】

根據(jù)函數(shù)為上的奇函數(shù)可得,由函數(shù)的對(duì)稱軸及單調(diào)性即可確定的值,進(jìn)而確定函數(shù)的解析式,即可求得的值.【詳解】函數(shù)(,)是上的奇函數(shù),則,所以.又的圖象關(guān)于直線對(duì)稱可得,,即,,由函數(shù)的單調(diào)區(qū)間知,,即,綜上,則,.故選:D本題考查了三角函數(shù)的圖象與性質(zhì)的綜合應(yīng)用,由對(duì)稱軸、奇偶性及單調(diào)性確定參數(shù),屬于中檔題.11.C【解析】

利用復(fù)數(shù)相等的條件求得,,則答案可求.【詳解】由,得,.對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,,.故選:.本題考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,考查復(fù)數(shù)相等的條件,是基礎(chǔ)題.12.B【解析】

先求出雙曲線的漸近線方程,可得則直線與直線的距離,根據(jù)圓與雙曲線的右支沒有公共點(diǎn),可得,解得即可.【詳解】由題意,雙曲線的一條漸近線方程為,即,∵是直線上任意一點(diǎn),則直線與直線的距離,∵圓與雙曲線的右支沒有公共點(diǎn),則,∴,即,又故的取值范圍為,故選:B.本題主要考查了直線和雙曲線的位置關(guān)系,以及兩平行線間的距離公式,其中解答中根據(jù)圓與雙曲線的右支沒有公共點(diǎn)得出是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

設(shè),利用正弦定理,根據(jù),得到①,再利用余弦定理得②,①②平方相加得:,轉(zhuǎn)化為有解問題求解.【詳解】設(shè),所以,即①由余弦定理得,即②,①②平方相加得:,即,令,設(shè),在上有解,所以,解得,即,故答案為:本題主要考查正弦定理和余弦定理在平面幾何中的應(yīng)用,還考查了運(yùn)算求解的能力,屬于難題.14.【解析】

令,所求問題的最大值為,只需求出即可,作出可行域,利用幾何意義即可解決.【詳解】作出可行域,如圖令,則,顯然當(dāng)直線經(jīng)過時(shí),最大,且,故的最大值為.故答案為:.本題考查線性規(guī)劃中非線性目標(biāo)函數(shù)的最值問題,要做好此類題,前提是正確畫出可行域,本題是一道基礎(chǔ)題.15.【解析】

利用導(dǎo)數(shù)的運(yùn)算法則求出導(dǎo)函數(shù),再利用導(dǎo)數(shù)的幾何意義即可求解.【詳解】求導(dǎo)得,所以,所以切線方程為故答案為:本題考查了基本初等函數(shù)的導(dǎo)數(shù)、導(dǎo)數(shù)的運(yùn)算法則以及導(dǎo)數(shù)的幾何意義,屬于基礎(chǔ)題.16.【解析】

根據(jù)雙曲線的標(biāo)準(zhǔn)方程寫出雙曲線的漸近線方程,結(jié)合題意可求得正實(shí)數(shù)的值.【詳解】雙曲線的漸近線方程為,由于該雙曲線的一條漸近線方程為,,解得.故答案為:.本題考查利用雙曲線的漸近線方程求參數(shù),考查計(jì)算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)【解析】

(1)連接與交于,連接,證明即可得證線面平行;(2)首先證明平面(只要取中點(diǎn),可證平面,從而得,同理得),因此點(diǎn)到直線的距離即為點(diǎn)到平面的距離,由平面幾何知識(shí)易得最大值,然后可計(jì)算體積.【詳解】(1)證明:連接與交于,連接,因?yàn)槭橇庑?,所以為的中點(diǎn),又因?yàn)闉榈闹悬c(diǎn),所以,因?yàn)槠矫嫫矫妫云矫妫?)解:取中點(diǎn),連接,因?yàn)樗倪呅问橇庑危?,且,所以,又,所以平面,又平面,所以.同理可證:,又,所以平面,所以平面平面,又平面平面,所以點(diǎn)到直線的距離即為點(diǎn)到平面的距離,過作直線的垂線段,在所有垂線段中長度最大為,因?yàn)闉榈闹悬c(diǎn),故點(diǎn)到平面的最大距離為1,此時(shí),為的中點(diǎn),即,所以,所以.本題考查證明線面平行,考查求棱錐的體積,掌握面面垂直與線面垂直的判定與性質(zhì)是解題關(guān)鍵.18.(1)點(diǎn)M的極坐標(biāo)為或(2)【解析】

(1)令,由此求得的值,進(jìn)而求得點(diǎn)的極坐標(biāo).(2)設(shè)出兩點(diǎn)的極坐標(biāo),利用勾股定理求得的表達(dá)式,利用三角函數(shù)最值的求法,求得的最大值.【詳解】(1)設(shè)點(diǎn)M在極坐標(biāo)系中的坐標(biāo),由,得,∵∴或,所以點(diǎn)M的極坐標(biāo)為或(2)由題意可設(shè),.由,得,.故時(shí),的最大值為.本小題主要考查極坐標(biāo)的求法,考查極坐標(biāo)下兩點(diǎn)間距離的計(jì)算以及距離最值的求法,屬于中檔題.19.(1);(2)【解析】

(1)通過正弦定理和內(nèi)角和定理化簡,再通過二倍角公式即可求出;(2)通過三角形面積公式和三角形的周長為8,求出b的表達(dá)式后即可求出b的值.【詳解】(1)由三角形內(nèi)角和定理及誘導(dǎo)公式,得,結(jié)合正弦定理,得,由及二倍角公式,得,即,故;(2)由題設(shè),得,從而,由余弦定理,得,即,又,所以,解得.本題綜合考查了正余弦定理,倍角公式,三角形面積公式,屬于基礎(chǔ)題.20.(1);(2)見解析【解析】

(1)等價(jià)于(Ⅰ)或(Ⅱ)或(Ⅲ),分別解出,再求并集即可;(2)利用基本不等式及可得,代入可得最值.【詳解】(1)等價(jià)于(Ⅰ)或(Ⅱ)或(Ⅲ)由(Ⅰ)得:由(Ⅱ)得:由(Ⅲ)得:.原不等式的解集為;(2),,,,,當(dāng)且僅當(dāng),即時(shí)取等號(hào),,當(dāng)且僅當(dāng)即時(shí)取等號(hào),.本題考查分類討論解絕對(duì)值不等式,考查三角不等式的應(yīng)用及基本不等式的應(yīng)用,是一道中檔題.21.(1)見解析;(2)(i)該農(nóng)場(chǎng)若采用延長光照時(shí)間的方法,預(yù)計(jì)每年的利潤為426千元;(ii)若采用降低夜間溫度的方法,預(yù)計(jì)每年的利潤為424千元;(3)分布列見解析,.【解析】

(1)估計(jì)第一組數(shù)據(jù)平均數(shù)和第二組數(shù)據(jù)平均數(shù)來選擇.(2)對(duì)于兩種

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論