版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
聊城市重點(diǎn)中學(xué)2025屆高三年級(jí)模擬考試(一)數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.二項(xiàng)式的展開式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,則展開式中的常數(shù)項(xiàng)是()A.180 B.90 C.45 D.3602.已知雙曲線的焦距是虛軸長(zhǎng)的2倍,則雙曲線的漸近線方程為()A. B. C. D.3.已知m,n是兩條不同的直線,,是兩個(gè)不同的平面,給出四個(gè)命題:①若,,,則;②若,,則;③若,,,則;④若,,,則其中正確的是()A.①② B.③④ C.①④ D.②④4.已知是等差數(shù)列的前項(xiàng)和,若,,則()A.5 B.10 C.15 D.205.()A. B. C. D.6.已知全集,集合,則=()A. B.C. D.7.我國(guó)古代數(shù)學(xué)巨著《九章算術(shù)》中,有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”這個(gè)問題用今天的白話敘述為:有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這位女子每天分別織布多少?根據(jù)上述問題的已知條件,若該女子共織布尺,則這位女子織布的天數(shù)是()A.2 B.3 C.4 D.18.是平面上的一定點(diǎn),是平面上不共線的三點(diǎn),動(dòng)點(diǎn)滿足,,則動(dòng)點(diǎn)的軌跡一定經(jīng)過的()A.重心 B.垂心 C.外心 D.內(nèi)心9.已知函數(shù),則不等式的解集為()A. B. C. D.10.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},則M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)11.已知隨機(jī)變量X的分布列如下表:X01Pabc其中a,b,.若X的方差對(duì)所有都成立,則()A. B. C. D.12.在中,,,,點(diǎn)滿足,則等于()A.10 B.9 C.8 D.7二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的各項(xiàng)均為正數(shù),記為數(shù)列的前項(xiàng)和,若,,則______.14.執(zhí)行以下語(yǔ)句后,打印紙上打印出的結(jié)果應(yīng)是:_____.15.已知在等差數(shù)列中,,,前n項(xiàng)和為,則________.16.的展開式中的常數(shù)項(xiàng)為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某市調(diào)硏機(jī)構(gòu)對(duì)該市工薪階層對(duì)“樓市限購(gòu)令”態(tài)度進(jìn)行調(diào)查,抽調(diào)了50名市民,他們?cè)率杖腩l數(shù)分布表和對(duì)“樓市限購(gòu)令”贊成人數(shù)如下表:月收入(單位:百元)頻數(shù)51055頻率0.10.20.10.1贊成人數(shù)4812521(1)若所抽調(diào)的50名市民中,收入在的有15名,求,,的值,并完成頻率分布直方圖.(2)若從收入(單位:百元)在的被調(diào)查者中隨機(jī)選取2人進(jìn)行追蹤調(diào)查,選中的2人中恰有人贊成“樓市限購(gòu)令”,求的分布列與數(shù)學(xué)期望.(3)從月收入頻率分布表的6組市民中分別隨機(jī)抽取3名市民,恰有一組的3名市民都不贊成“樓市限購(gòu)令”,根據(jù)表格數(shù)據(jù),判斷這3名市民來(lái)自哪組的可能性最大?請(qǐng)直接寫出你的判斷結(jié)果.18.(12分)在平面直角坐標(biāo)系中,橢圓:的右焦點(diǎn)為(,為常數(shù)),離心率等于0.8,過焦點(diǎn)、傾斜角為的直線交橢圓于、兩點(diǎn).⑴求橢圓的標(biāo)準(zhǔn)方程;⑵若時(shí),,求實(shí)數(shù);⑶試問的值是否與的大小無(wú)關(guān),并證明你的結(jié)論.19.(12分)如圖,已知橢圓的右焦點(diǎn)為,,為橢圓上的兩個(gè)動(dòng)點(diǎn),周長(zhǎng)的最大值為8.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)直線經(jīng)過,交橢圓于點(diǎn),,直線與直線的傾斜角互補(bǔ),且交橢圓于點(diǎn),,,求證:直線與直線的交點(diǎn)在定直線上.20.(12分)已知圓O經(jīng)過橢圓C:的兩個(gè)焦點(diǎn)以及兩個(gè)頂點(diǎn),且點(diǎn)在橢圓C上.求橢圓C的方程;若直線l與圓O相切,與橢圓C交于M、N兩點(diǎn),且,求直線l的傾斜角.21.(12分)如圖,在四棱柱中,底面為菱形,.(1)證明:平面平面;(2)若,是等邊三角形,求二面角的余弦值.22.(10分)已知點(diǎn)到拋物線C:y1=1px準(zhǔn)線的距離為1.(Ⅰ)求C的方程及焦點(diǎn)F的坐標(biāo);(Ⅱ)設(shè)點(diǎn)P關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為點(diǎn)Q,過點(diǎn)Q作不經(jīng)過點(diǎn)O的直線與C交于兩點(diǎn)A,B,直線PA,PB,分別交x軸于M,N兩點(diǎn),求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】試題分析:因?yàn)榈恼归_式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,所以,,令,則,.考點(diǎn):1.二項(xiàng)式定理;2.組合數(shù)的計(jì)算.2.A【解析】
根據(jù)雙曲線的焦距是虛軸長(zhǎng)的2倍,可得出,結(jié)合,得出,即可求出雙曲線的漸近線方程.【詳解】解:由雙曲線可知,焦點(diǎn)在軸上,則雙曲線的漸近線方程為:,由于焦距是虛軸長(zhǎng)的2倍,可得:,∴,即:,,所以雙曲線的漸近線方程為:.故選:A.本題考查雙曲線的簡(jiǎn)單幾何性質(zhì),以及雙曲線的漸近線方程.3.D【解析】
根據(jù)面面垂直的判定定理可判斷①;根據(jù)空間面面平行的判定定理可判斷②;根據(jù)線面平行的判定定理可判斷③;根據(jù)面面垂直的判定定理可判斷④.【詳解】對(duì)于①,若,,,,兩平面相交,但不一定垂直,故①錯(cuò)誤;對(duì)于②,若,,則,故②正確;對(duì)于③,若,,,當(dāng),則與不平行,故③錯(cuò)誤;對(duì)于④,若,,,則,故④正確;故選:D本題考查了線面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,屬于基礎(chǔ)題.4.C【解析】
利用等差通項(xiàng),設(shè)出和,然后,直接求解即可【詳解】令,則,,∴,,∴.本題考查等差數(shù)列的求和問題,屬于基礎(chǔ)題5.B【解析】
利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.【詳解】.故選B.本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.6.D【解析】
先計(jì)算集合,再計(jì)算,最后計(jì)算.【詳解】解:,,.故選:.本題主要考查了集合的交,補(bǔ)混合運(yùn)算,注意分清集合間的關(guān)系,屬于基礎(chǔ)題.7.B【解析】
將問題轉(zhuǎn)化為等比數(shù)列問題,最終變?yōu)榍蠼獾缺葦?shù)列基本量的問題.【詳解】根據(jù)實(shí)際問題可以轉(zhuǎn)化為等比數(shù)列問題,在等比數(shù)列中,公比,前項(xiàng)和為,,,求的值.因?yàn)?,解得,,解得.故選B.本題考查等比數(shù)列的實(shí)際應(yīng)用,難度較易.熟悉等比數(shù)列中基本量的計(jì)算,對(duì)于解決實(shí)際問題很有幫助.8.B【解析】
解出,計(jì)算并化簡(jiǎn)可得出結(jié)論.【詳解】λ(),∴,∴,即點(diǎn)P在BC邊的高上,即點(diǎn)P的軌跡經(jīng)過△ABC的垂心.故選B.本題考查了平面向量的數(shù)量積運(yùn)算在幾何中的應(yīng)用,根據(jù)條件中的角計(jì)算是關(guān)鍵.9.D【解析】
先判斷函數(shù)的奇偶性和單調(diào)性,得到,且,解不等式得解.【詳解】由題得函數(shù)的定義域?yàn)?因?yàn)?,所以為上的偶函?shù),因?yàn)楹瘮?shù)都是在上單調(diào)遞減.所以函數(shù)在上單調(diào)遞減.因?yàn)?,所以,且,解?故選:D本題主要考查函數(shù)的奇偶性和單調(diào)性的判斷,考查函數(shù)的奇偶性和單調(diào)性的應(yīng)用,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.10.C【解析】
先化簡(jiǎn)N={x|x(x+3)≤0}={x|-3≤x≤0},再根據(jù)M={x|﹣1<x<2},求兩集合的交集.【詳解】因?yàn)镹={x|x(x+3)≤0}={x|-3≤x≤0},又因?yàn)镸={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故選:C本題主要考查集合的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.11.D【解析】
根據(jù)X的分布列列式求出期望,方差,再利用將方差變形為,從而可以利用二次函數(shù)的性質(zhì)求出其最大值為,進(jìn)而得出結(jié)論.【詳解】由X的分布列可得X的期望為,又,所以X的方差,因?yàn)?所以當(dāng)且僅當(dāng)時(shí),取最大值,又對(duì)所有成立,所以,解得,故選:D.本題綜合考查了隨機(jī)變量的期望?方差的求法,結(jié)合了概率?二次函數(shù)等相關(guān)知識(shí),需要學(xué)生具備一定的計(jì)算能力,屬于中檔題.12.D【解析】
利用已知條件,表示出向量,然后求解向量的數(shù)量積.【詳解】在中,,,,點(diǎn)滿足,可得則==本題考查了向量的數(shù)量積運(yùn)算,關(guān)鍵是利用基向量表示所求向量.二、填空題:本題共4小題,每小題5分,共20分。13.63【解析】
對(duì)進(jìn)行化簡(jiǎn),可得,再根據(jù)等比數(shù)列前項(xiàng)和公式進(jìn)行求解即可【詳解】由數(shù)列為首項(xiàng)為,公比的等比數(shù)列,所以63本題考查等比數(shù)列基本量的求法,當(dāng)處理復(fù)雜因式時(shí),常用基本方法為:因式分解,約分。但解題本質(zhì)還是圍繞等差和等比的基本性質(zhì)14.1【解析】
根據(jù)程序框圖直接計(jì)算得到答案.【詳解】程序在運(yùn)行過程中各變量的取值如下所示:是否繼續(xù)循環(huán)ix循環(huán)前14第一圈是44+2第二圈是74+2+8第三圈是104+2+8+14退出循環(huán),所以打印紙上打印出的結(jié)果應(yīng)是:1故答案為:1.本題考查了程序框圖,意在考查學(xué)生的計(jì)算能力和理解能力.15.39【解析】
設(shè)等差數(shù)列公差為d,首項(xiàng)為,再利用基本量法列式求解公差與首項(xiàng),進(jìn)而求得即可.【詳解】設(shè)等差數(shù)列公差為d,首項(xiàng)為,根據(jù)題意可得,解得,所以.故答案為:39本題考查等差數(shù)列的基本量計(jì)算以及前n項(xiàng)和的公式,屬于基礎(chǔ)題.16.【解析】
寫出展開式的通項(xiàng)公式,考慮當(dāng)?shù)闹笖?shù)為零時(shí),對(duì)應(yīng)的值即為常數(shù)項(xiàng).【詳解】的展開式通項(xiàng)公式為:,令,所以,所以常數(shù)項(xiàng)為.
故答案為:.本題考查二項(xiàng)展開式中指定項(xiàng)系數(shù)的求解,難度較易.解答問題的關(guān)鍵是,能通過展開式通項(xiàng)公式分析常數(shù)項(xiàng)對(duì)應(yīng)的取值.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1),頻率分布直方圖見解析;(2)分布列見解析,;(3)來(lái)自的可能性最大.【解析】
(1)由頻率和為可知,根據(jù)求得,從而計(jì)算得到頻數(shù),補(bǔ)全頻率分布表后可畫出頻率分布直方圖;(2)首先確定的所有可能取值,由超幾何分布概率公式可計(jì)算求得每個(gè)取值對(duì)應(yīng)的概率,由此得到分布列;根據(jù)數(shù)學(xué)期望的計(jì)算公式可求得期望;(3)根據(jù)中不贊成比例最大可知來(lái)自的可能性最大.【詳解】(1)由頻率分布表得:,即.收入在的有名,,,,則頻率分布直方圖如下:(2)收入在中贊成人數(shù)為,不贊成人數(shù)為,可能取值為,則;;,的分布列為:.(3)來(lái)自的可能性更大.本題考查概率與統(tǒng)計(jì)部分知識(shí)的綜合應(yīng)用,涉及到頻數(shù)、頻率的計(jì)算、頻率分布直方圖的繪制、服從于超幾何分布的隨機(jī)變量的分布列與數(shù)學(xué)期望的求解、統(tǒng)計(jì)估計(jì)等知識(shí);考查學(xué)生的運(yùn)算和求解能力.18.(1)(2)(3)為定值【解析】試題分析:(1)利用待定系數(shù)法可得,橢圓方程為;(2)我們要知道=的條件應(yīng)用,在于直線交橢圓兩交點(diǎn)M,N的橫坐標(biāo)為,這樣代入橢圓方程,容易得到,從而解得;(3)需討論斜率是否存在.一方面斜率不存在即=時(shí),由(2)得;另一方面,當(dāng)斜率存在即時(shí),可設(shè)直線的斜率為,得直線MN:,聯(lián)立直線與橢圓方程,利用韋達(dá)定理和焦半徑公式,就能得到,所以為定值,與直線的傾斜角的大小無(wú)關(guān)試題解析:(1),得:,橢圓方程為(2)當(dāng)時(shí),,得:,于是當(dāng)=時(shí),,于是,得到(3)①當(dāng)=時(shí),由(2)知②當(dāng)時(shí),設(shè)直線的斜率為,,則直線MN:聯(lián)立橢圓方程有,,,=+==得綜上,為定值,與直線的傾斜角的大小無(wú)關(guān)考點(diǎn):(1)待定系數(shù)求橢圓方程;(2)橢圓簡(jiǎn)單的幾何性質(zhì);(3)直線與圓錐曲線19.(Ⅰ);(Ⅱ)詳見解析.【解析】
(Ⅰ)由橢圓的定義可得,周長(zhǎng)取最大值時(shí),線段過點(diǎn),可求出,從而求出橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)設(shè)直線,直線,,,,.把直線與直線的方程分別代入橢圓的方程,利用韋達(dá)定理和弦長(zhǎng)公式求出和,根據(jù)求出的值.最后直線與直線的方程聯(lián)立,求兩直線的交點(diǎn)即得結(jié)論.【詳解】(Ⅰ)設(shè)的周長(zhǎng)為,則,當(dāng)且僅當(dāng)線段過點(diǎn)時(shí)“”成立.,,又,,橢圓的標(biāo)準(zhǔn)方程為.(Ⅱ)若直線的斜率不存在,則直線的斜率也不存在,這與直線與直線相交于點(diǎn)矛盾,所以直線的斜率存在.設(shè),,,,,.將直線的方程代入橢圓方程得:.,,.同理,.由得,此時(shí).直線,聯(lián)立直線與直線的方程得,即點(diǎn)在定直線.本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查學(xué)生的邏輯推理能力和運(yùn)算能力,屬于難題.20.(1);(2)或【解析】
(1)先由題意得出,可得出與的等量關(guān)系,然后將點(diǎn)的坐標(biāo)代入橢圓的方程,可求出與的值,從而得出橢圓的方程;(2)對(duì)直線的斜率是否存在進(jìn)行分類討論,當(dāng)直線的斜率不存在時(shí),可求出,然后進(jìn)行檢驗(yàn);當(dāng)直線的斜率存在時(shí),可設(shè)直線的方程為,設(shè)點(diǎn),先由直線與圓相切得出與之間的關(guān)系,再將直線的方程與橢圓的方程聯(lián)立,由韋達(dá)定理,利用弦長(zhǎng)公式并結(jié)合條件得出的值,從而求出直線的傾斜角.【詳解】(1)由題可知圓只能經(jīng)過橢圓的上下頂點(diǎn),所以橢圓焦距等于短軸長(zhǎng),可得,又點(diǎn)在橢圓上,所以,解得,即橢圓的方程為.(2)圓的方程為,當(dāng)直線不存在斜率時(shí),解得,不符合題意;當(dāng)直線存在斜率時(shí),設(shè)其方程為,因?yàn)橹本€與圓相切,所以,即.將直線與橢圓的方程聯(lián)立,得:,判別式,即,設(shè),則,所以,解得,所以直線的傾斜角為或.求橢圓標(biāo)準(zhǔn)方程的方法一般為待定系數(shù)法,根據(jù)條件確定關(guān)于的方程組,解出,從而寫出橢圓的標(biāo)準(zhǔn)方程.解決直線與橢圓的位置關(guān)系的相關(guān)問題,其常規(guī)思路是先把直線方程與橢圓方程聯(lián)立,消元、化簡(jiǎn),然后應(yīng)用根與系數(shù)的關(guān)系建立方程,解決相關(guān)問題.涉及弦中點(diǎn)的問題常常用“點(diǎn)差法”解決,往往會(huì)更簡(jiǎn)單.21.(1)證明見解析(2)【解析】
(1)根據(jù)面面垂直的判定定理可知,只需證明平面即可.由為菱形可得,連接和與的交點(diǎn),由等腰三角形性質(zhì)可得,即能證得平面;(2)由題意知,平面,可建立空間直角坐標(biāo)系,以為坐標(biāo)原點(diǎn),所在直線為軸,所在直線為軸,所在直線為軸,再分別求出平面的法向量,平面的法向量,即可根據(jù)向量法求出二面角的余弦值.【詳解】(1)如圖,設(shè)與相交于點(diǎn),連接,又為菱形,故,為的中點(diǎn).又,故.又平面,平面,且,故平面,又平面
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年消音降噪設(shè)備項(xiàng)目規(guī)劃申請(qǐng)報(bào)告模板
- 2024-2025學(xué)年新疆維吾爾烏魯木齊市沙依巴克區(qū)數(shù)學(xué)三上期末達(dá)標(biāo)檢測(cè)試題含解析
- 2024-2025學(xué)年西藏山南地區(qū)隆子縣數(shù)學(xué)三上期末經(jīng)典模擬試題含解析
- 2024-2025學(xué)年無(wú)錫市數(shù)學(xué)三年級(jí)第一學(xué)期期末質(zhì)量檢測(cè)試題含解析
- 小學(xué)生學(xué)習(xí)計(jì)劃四篇
- 世界糧食日主題活動(dòng)總結(jié)怎么寫7篇
- 2025年品質(zhì)生活電器項(xiàng)目提案報(bào)告模式
- 元旦節(jié)活動(dòng)方案(15篇)
- 2024年股權(quán)投資協(xié)議:攜手投資共創(chuàng)輝煌未來(lái)
- 遠(yuǎn)程教育學(xué)習(xí)心得體會(huì)三篇主題教育
- 中國(guó)華能招聘筆試題庫(kù)2024
- 七年級(jí)上冊(cè)《朝花夕拾》梳理及真題訓(xùn)練(含答案)
- 《人工智能基礎(chǔ)》課件-AI的前世今生:她從哪里來(lái)
- 中國(guó)礦業(yè)大學(xué)《自然辯證法》2022-2023學(xué)年期末試卷
- TCWAN 0105-2024 攪拌摩擦焊接機(jī)器人系統(tǒng)技術(shù)條件
- 江蘇省期無(wú)錫市天一實(shí)驗(yàn)學(xué)校2023-2024學(xué)年英語(yǔ)七年級(jí)第二學(xué)期期末達(dá)標(biāo)檢測(cè)試題含答案
- 西方經(jīng)濟(jì)學(xué)考試題庫(kù)(含參考答案)
- 引水式水電站工程施工組織設(shè)計(jì)
- 醫(yī)院工作流程圖較全
- NB/T 11431-2023土地整治煤矸石回填技術(shù)規(guī)范
- 創(chuàng)業(yè)基礎(chǔ)(浙江財(cái)經(jīng)大學(xué))智慧樹知到期末考試答案章節(jié)答案2024年浙江財(cái)經(jīng)大學(xué)
評(píng)論
0/150
提交評(píng)論