版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
河北省雞澤縣重點名校2024屆中考數(shù)學(xué)全真模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.為了盡早適應(yīng)中考體育項目,小麗同學(xué)加強(qiáng)跳繩訓(xùn)練,并把某周的練習(xí)情況做了如下記錄:周一個,周二個,周三個,周四個,周五個則小麗這周跳繩個數(shù)的中位數(shù)和眾數(shù)分別是A.180個,160個 B.170個,160個C.170個,180個 D.160個,200個2.去年12月24日全國大約有1230000人參加研究生招生考試,1230000這個數(shù)用科學(xué)記數(shù)法表示為()A.1.23×106 B.1.23×107 C.0.123×107 D.12.3×1053.下列條件中不能判定三角形全等的是()A.兩角和其中一角的對邊對應(yīng)相等 B.三條邊對應(yīng)相等C.兩邊和它們的夾角對應(yīng)相等 D.三個角對應(yīng)相等4.如圖,若干個全等的正五邊形排成環(huán)狀,圖中所示的是前3個正五邊形,要完成這一圓環(huán)還需正五邊形的個數(shù)為()A.10 B.9 C.8 D.75.如圖是二次函數(shù)y=ax2+bx+c的圖象,其對稱軸為x=1,下列結(jié)論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-32,y1),(103,y2)是拋物線上兩點,則y1<yA.①② B.②③ C.②④ D.①③④6.關(guān)于的方程有實數(shù)根,則滿足()A. B.且 C.且 D.7.下列各圖中,既可經(jīng)過平移,又可經(jīng)過旋轉(zhuǎn),由圖形①得到圖形②的是()A. B. C. D.8.如圖,中,E是BC的中點,設(shè),那么向量用向量表示為()A. B. C. D.9.解分式方程時,去分母后變形為A. B.C. D.10.對于一組統(tǒng)計數(shù)據(jù)1,1,6,5,1.下列說法錯誤的是()A.眾數(shù)是1 B.平均數(shù)是4 C.方差是1.6 D.中位數(shù)是611.如圖,在⊙O中,O為圓心,點A,B,C在圓上,若OA=AB,則∠ACB=()A.15° B.30° C.45° D.60°12.如圖,在菱形ABCD中,M,N分別在AB,CD上,且AM=CN,MN與AC交于點O,連接BO.若∠DAC=26°,則∠OBC的度數(shù)為()A.54° B.64° C.74° D.26°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.某風(fēng)扇在網(wǎng)上累計銷量約1570000臺,請將1570000用科學(xué)記數(shù)法表示為_____.14.如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+c(a≠0)的圖象過正方形ABOC的三個頂點A,B,C,則ac的值是________.15.如圖,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜邊AB上的中線,將△BCD沿直線CD翻折至△ECD的位置,連接AE.若DE∥AC,計算AE的長度等于_____.16.已知點P(1,2)關(guān)于x軸的對稱點為P′,且P′在直線y=kx+3上,把直線y=kx+3的圖象向上平移2個單位,所得的直線解析式為.17.若代數(shù)式x2﹣6x+b可化為(x+a)2﹣5,則a+b的值為____.18.若代數(shù)式有意義,則實數(shù)x的取值范圍是____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,AB=AC,∠BAC=120°,EF為AB的垂直平分線,交BC于點F,交AB于點E.求證:FC=2BF.20.(6分)如圖,在Rt△ABC中,∠C=90°,O、D分別為AB、AC上的點,經(jīng)過A、D兩點的⊙O分別交于AB、AC于點E、F,且BC與⊙O相切于點D.(1)求證:DF=(2)當(dāng)AC=2,CD=1時,求⊙O的面積.21.(6分)解方程組22.(8分)如圖,在△ABC中,AD、AE分別為△ABC的中線和角平分線.過點C作CH⊥AE于點H,并延長交AB于點F,連接DH,求證:DH=BF.23.(8分)“低碳生活,綠色出行”是我們倡導(dǎo)的一種生活方式,有關(guān)部門抽樣調(diào)查了某單位員工上下班的交通方式,繪制了如下統(tǒng)計圖:(1)填空:樣本中的總?cè)藬?shù)為;開私家車的人數(shù)m=;扇形統(tǒng)計圖中“騎自行車”所在扇形的圓心角為度;(2)補(bǔ)全條形統(tǒng)計圖;(3)該單位共有2000人,積極踐行這種生活方式,越來越多的人上下班由開私家車改為騎自行車.若步行,坐公交車上下班的人數(shù)保持不變,問原來開私家車的人中至少有多少人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù)?24.(10分)如圖,已知點C是以AB為直徑的⊙O上一點,CH⊥AB于點H,過點B作⊙O的切線交直線AC于點D,點E為CH的中點,連接AE并延長交BD于點F,直線CF交AB的延長線于G.(1)求證:AE?FD=AF?EC;(2)求證:FC=FB;(3)若FB=FE=2,求⊙O的半徑r的長.25.(10分)如圖,在平面直角坐標(biāo)系中,拋物線y=-x2+bx+c與x軸交于點A(-1,0),點B(3,0),與y軸交于點C,線段BC與拋物線的對稱軸交于點E、P為線段BC上的一點(不與點B、C重合),過點P作PF∥y軸交拋物線于點F,連結(jié)DF.設(shè)點P的橫坐標(biāo)為m.(1)求此拋物線所對應(yīng)的函數(shù)表達(dá)式.(2)求PF的長度,用含m的代數(shù)式表示.(3)當(dāng)四邊形PEDF為平行四邊形時,求m的值.26.(12分)如圖,已知:AD和BC相交于點O,∠A=∠C,AO=2,BO=4,OC=3,求OD的長.27.(12分)已知:如圖,在正方形ABCD中,點E在邊CD上,AQ⊥BE于點Q,DP⊥AQ于點P.求證:AP=BQ;在不添加任何輔助線的情況下,請直接寫出圖中四對線段,使每對中較長線段與較短線段長度的差等于PQ的長.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
根據(jù)中位數(shù)和眾數(shù)的定義分別進(jìn)行解答即可.【詳解】解:把這些數(shù)從小到大排列為160,160,170,180,200,最中間的數(shù)是170,則中位數(shù)是170;160出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則眾數(shù)是160;故選B.【點睛】此題考查了中位數(shù)和眾數(shù),掌握中位數(shù)和眾數(shù)的定義是解題的關(guān)鍵;中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù).2、A【解析】分析:科學(xué)記數(shù)法的表示形式為的形式,其中為整數(shù).確定的值時,要看把原數(shù)變成時,小數(shù)點移動了多少位,的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,是正數(shù);當(dāng)原數(shù)的絕對值<1時,是負(fù)數(shù).詳解:1230000這個數(shù)用科學(xué)記數(shù)法可以表示為故選A.點睛:考查科學(xué)記數(shù)法,掌握絕對值大于1的數(shù)的表示方法是解題的關(guān)鍵.3、D【解析】
解:A、符合AAS,能判定三角形全等;B、符合SSS,能判定三角形全等;;C、符合SAS,能判定三角形全等;D、滿足AAA,沒有相對應(yīng)的判定方法,不能由此判定三角形全等;故選D.4、D【解析】分析:先根據(jù)多邊形的內(nèi)角和公式(n﹣2)?180°求出正五邊形的每一個內(nèi)角的度數(shù),再延長五邊形的兩邊相交于一點,并根據(jù)四邊形的內(nèi)角和求出這個角的度數(shù),然后根據(jù)周角等于360°求出完成這一圓環(huán)需要的正五邊形的個數(shù),然后減去3即可得解.詳解:∵五邊形的內(nèi)角和為(5﹣2)?180°=540°,∴正五邊形的每一個內(nèi)角為540°÷5=18°,如圖,延長正五邊形的兩邊相交于點O,則∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已經(jīng)有3個五邊形,∴1﹣3=7,即完成這一圓環(huán)還需7個五邊形.故選D.點睛:本題考查了多邊形的內(nèi)角和公式,延長正五邊形的兩邊相交于一點,并求出這個角的度數(shù)是解題的關(guān)鍵,注意需要減去已有的3個正五邊形.5、C【解析】試題分析:根據(jù)題意可得:a<0,b>0,c>0,則abc<0,則①錯誤;根據(jù)對稱軸為x=1可得:-b2a=1,則-b=2a,即2a+b=0,則②正確;根據(jù)函數(shù)的軸對稱可得:當(dāng)x=2時,y>0,即4a+2b+c>0,則③錯誤;對于開口向下的函數(shù),離對稱軸越近則函數(shù)值越大,則點睛:本題主要考查的就是二次函數(shù)的性質(zhì),屬于中等題.如果開口向上,則a>0,如果開口向下,則a<0;如果對稱軸在y軸左邊,則b的符號與a相同,如果對稱軸在y軸右邊,則b的符號與a相反;如果題目中出現(xiàn)2a+b和2a-b的時候,我們要看對稱軸與1或者-1的大小關(guān)系再進(jìn)行判定;如果出現(xiàn)a+b+c,則看x=1時y的值;如果出現(xiàn)a-b+c,則看x=-1時y的值;如果出現(xiàn)4a+2b+c,則看x=2時y的值,以此類推;對于開口向上的函數(shù),離對稱軸越遠(yuǎn)則函數(shù)值越大,對于開口向下的函數(shù),離對稱軸越近則函數(shù)值越大.6、A【解析】
分類討論:當(dāng)a=5時,原方程變形一元一次方程,有一個實數(shù)解;當(dāng)a≠5時,根據(jù)判別式的意義得到a≥1且a≠5時,方程有兩個實數(shù)根,然后綜合兩種情況即可得到滿足條件的a的范圍.【詳解】當(dāng)a=5時,原方程變形為-4x-1=0,解得x=-;當(dāng)a≠5時,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5時,方程有兩個實數(shù)根,所以a的取值范圍為a≥1.故選A.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當(dāng)△>0,方程有兩個不相等的實數(shù)根;當(dāng)△=0,方程有兩個相等的實數(shù)根;當(dāng)△<0,方程沒有實數(shù)根.也考查了一元二次方程的定義.7、D【解析】A,B,C只能通過旋轉(zhuǎn)得到,D既可經(jīng)過平移,又可經(jīng)過旋轉(zhuǎn)得到,故選D.8、A【解析】
根據(jù),只要求出即可解決問題.【詳解】解:四邊形ABCD是平行四邊形,,,,,,,故選:A.【點睛】本題考查平面向量,解題的關(guān)鍵是熟練掌握三角形法則,屬于中考??碱}型.9、D【解析】試題分析:方程,兩邊都乘以x-1去分母后得:2-(x+2)=3(x-1),故選D.考點:解分式方程的步驟.10、D【解析】
根據(jù)中位數(shù)、眾數(shù)、方差等的概念計算即可得解.【詳解】A、這組數(shù)據(jù)中1都出現(xiàn)了1次,出現(xiàn)的次數(shù)最多,所以這組數(shù)據(jù)的眾數(shù)為1,此選項正確;B、由平均數(shù)公式求得這組數(shù)據(jù)的平均數(shù)為4,故此選項正確;C、S2=[(1﹣4)2+(1﹣4)2+(6﹣4)2+(5﹣4)2+(1﹣4)2]=1.6,故此選項正確;D、將這組數(shù)據(jù)按從大到校的順序排列,第1個數(shù)是1,故中位數(shù)為1,故此選項錯誤;故選D.考點:1.眾數(shù);2.平均數(shù);1.方差;4.中位數(shù).11、B【解析】
根據(jù)題意得到△AOB是等邊三角形,求出∠AOB的度數(shù),根據(jù)圓周角定理計算即可.【詳解】解:∵OA=AB,OA=OB,∴△AOB是等邊三角形,∴∠AOB=60°,∴∠ACB=30°,故選B.【點睛】本題考查的是圓周角定理和等邊三角形的判定,掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解題的關(guān)鍵.12、B【解析】
根據(jù)菱形的性質(zhì)以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,繼而可求得∠OBC的度數(shù).【詳解】∵四邊形ABCD為菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=26°,∴∠BCA=∠DAC=26°,∴∠OBC=90°﹣26°=64°.故選B.【點睛】本題考查了菱形的性質(zhì)和全等三角形的判定和性質(zhì),注意掌握菱形對邊平行以及對角線相互垂直的性質(zhì).二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1.57×1【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】將1570000用科學(xué)記數(shù)法表示為1.57×1.故答案為1.57×1.【點睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.14、-1.【解析】
設(shè)正方形的對角線OA長為1m,根據(jù)正方形的性質(zhì)則可得出B、C坐標(biāo),代入二次函數(shù)y=ax1+c中,即可求出a和c,從而求積.【詳解】設(shè)正方形的對角線OA長為1m,則B(﹣m,m),C(m,m),A(0,1m);把A,C的坐標(biāo)代入解析式可得:c=1m①,am1+c=m②,①代入②得:am1+1m=m,解得:a=-,則ac=-1m=-1.考點:二次函數(shù)綜合題.15、2【解析】
根據(jù)題意、解直角三角形、菱形的性質(zhì)、翻折變化可以求得AE的長.【詳解】由題意可得,DE=DB=CD=AB,∴∠DEC=∠DCE=∠DCB,∵DE∥AC,∠DCE=∠DCB,∠ACB=90°,∴∠DEC=∠ACE,∴∠DCE=∠ACE=∠DCB=30°,∴∠ACD=60°,∠CAD=60°,∴△ACD是等邊三角形,∴AC=CD,∴AC=DE,∵AC∥DE,AC=CD,∴四邊形ACDE是菱形,∵在Rt△ABC中,∠ACB=90°,BC=6,∠B=30°,∴AC=2,∴AE=2.故答案為2.【點睛】本題考查翻折變化、平行線的性質(zhì)、直角三角形斜邊上的中線,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.16、y=﹣1x+1.【解析】
由對稱得到P′(1,﹣2),再代入解析式得到k的值,再根據(jù)平移得到新解析式.【詳解】∵點P(1,2)關(guān)于x軸的對稱點為P′,∴P′(1,﹣2),∵P′在直線y=kx+3上,∴﹣2=k+3,解得:k=﹣1,則y=﹣1x+3,∴把直線y=kx+3的圖象向上平移2個單位,所得的直線解析式為:y=﹣1x+1.故答案為y=﹣1x+1.考點:一次函數(shù)圖象與幾何變換.17、1【解析】
根據(jù)題意找到等量關(guān)系x2﹣6x+b=(x+a)2﹣5,根據(jù)系數(shù)相等求出a,b,即可解題.【詳解】解:由題可知x2﹣6x+b=(x+a)2﹣5,整理得:x2﹣6x+b=x2+2ax+a2-5,即-6=2a,b=a2-5,解得:a=-3,b=4,∴a+b=1.【點睛】本題考查了配方法的實際應(yīng)用,屬于簡單題,找到等量關(guān)系求出a,b是解題關(guān)鍵.18、x≠﹣5.【解析】
根據(jù)分母不為零分式有意義,可得答案.【詳解】由題意,得x+5≠0,解得x≠﹣5,故答案是:x≠﹣5.【點睛】本題考查了分式有意義的條件,利用分母不為零分式有意義得出不等式是解題關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、見解析【解析】
連接AF,結(jié)合條件可得到∠B=∠C=30°,∠AFC=60°,再利用含30°直角三角形的性質(zhì)可得到AF=BF=CF,可證得結(jié)論.【詳解】證明:連接AF,∵EF為AB的垂直平分線,∴AF=BF,又AB=AC,∠BAC=120°,∴∠B=∠C=∠BAF=30°,∴∠FAC=90°,∴AF=FC,∴FC=2BF.【點睛】本題主要考查垂直平分線的性質(zhì)及等腰三角形的性質(zhì),掌握線段垂直平分線上的點到線段兩端點的距離相等是解題的關(guān)鍵.20、(1)證明見解析;(2)2516【解析】
(1)連接OD,由BC為圓O的切線,得到OD垂直于BC,再由AC垂直于BC,得到OD與AC平行,利用兩直線平行得到一對內(nèi)錯角相等,再由OA=OD,利用等邊對等角得到一對角相等,等量代換得到AD為角平分線,利用相等的圓周角所對的弧相等即可得證;
(2)連接ED,在直角三角形ACD中,由AC與CD的長,利用勾股定理求出AD的長,由(1)得出的兩個圓周角相等,及一對直角相等得到三角形ACD與三角形ADE相似,由相似得比例求出AE的長,進(jìn)而求出圓的半徑,即可求出圓的面積.【詳解】證明:連接OD,∵BC為圓O的切線,∴OD⊥CB,∵AC⊥CB,∴OD∥AC,∴∠CAD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠OAD,則DF=(2)解:連接ED,在Rt△ACD中,AC=2,CD=1,根據(jù)勾股定理得:AD=5,∵∠CAD=∠OAD,∠ACD=∠ADE=90°,∴△ACD∽△ADE,∴ADAE=AC∴AE=52,即圓的半徑為5則圓的面積為25π16【點睛】此題考查了切線的性質(zhì),圓周角定理,相似三角形的判定與性質(zhì),以及勾股定理,熟練掌握相關(guān)性質(zhì)是解本題的關(guān)鍵.21、【解析】
將②×3,再聯(lián)立①②消未知數(shù)即可計算.【詳解】解:②得:③①+③得:把代入③得∴方程組的解為【點睛】本題考查二元一次方程組解法,關(guān)鍵是掌握消元法.22、見解析.【解析】
先證明△AFC為等腰三角形,根據(jù)等腰三角形三線合一證明H為FC的中點,又D為BC的中點,根據(jù)中位線的性質(zhì)即可證明.【詳解】∵AE為△ABC的角平分線,CH⊥AE,∴△ACF是等腰三角形,∴AF=AC,HF=CH,∵AD為△ABC的中線,∴DH是△BCF的中位線,∴DH=BF.【點睛】本題考查三角形中位線定理,等腰三角形的判定與性質(zhì).解決本題的關(guān)鍵是證明H點為FC的中點,然后利用中位線的性質(zhì)解決問題.本題中要證明DH=BF,一般三角形中出現(xiàn)這種2倍或關(guān)系時,常用中位線的性質(zhì)解決.23、(1)80,20,72;(2)16,補(bǔ)圖見解析;(3)原來開私家車的人中至少有50人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù).【解析】試題分析:(1)用乘公交車的人數(shù)除以所占的百分比,計算即可求出總?cè)藬?shù),再用總?cè)藬?shù)乘以開私家車的所占的百分比求出m,用360°乘以騎自行車的所占的百分比計算即可得解:樣本中的總?cè)藬?shù)為:36÷45%=80人;開私家車的人數(shù)m=80×25%=20;扇形統(tǒng)計圖中“騎自行車”的圓心角為360°×(1-10%-25%-45%)=360°×20%=72°.(2)求出騎自行車的人數(shù),然后補(bǔ)全統(tǒng)計圖即可.(3)設(shè)原來開私家車的人中有x人改為騎自行車,表示出改后騎自行車的人數(shù)和開私家車的人數(shù),列式不等式,求解即可.試題解析:解:(1)80,20,72.(2)騎自行車的人數(shù)為:80×20%=16人,補(bǔ)全統(tǒng)計圖如圖所示;(3)設(shè)原來開私家車的人中有x人改為騎自行車,由題意得,1580答:原來開私家車的人中至少有50人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù).考點:1.條形統(tǒng)計圖;2.扇形統(tǒng)計圖;3.頻數(shù)、頻率和總量的關(guān)系;4.一元一次不等式的應(yīng)用.24、(1)詳見解析;(2)詳見解析;(3)2.【解析】(1)由BD是⊙O的切線得出∠DBA=90°,推出CH∥BD,證△AEC∽△AFD,得出比例式即可.(2)證△AEC∽△AFD,△AHE∽△ABF,推出BF=DF,根據(jù)直角三角形斜邊上中線性質(zhì)得出CF=DF=BF即可.(3)求出EF=FC,求出∠G=∠FAG,推出AF=FG,求出AB=BG,連接OC,BC,求出∠FCB=∠CAB推出CG是⊙O切線,由切割線定理(或△AGC∽△CGB)得出(2+FG)2=BG×AG=2BG2,在Rt△BFG中,由勾股定理得出BG2=FG2﹣BF2,推出FG2﹣4FG﹣12=0,求出FG即可,從而由勾股定理求得AB=BG的長,從而得到⊙O的半徑r.25、(1)y=-x2+2x+1;(2)-m2+1m.(1)2.【解析】
(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得C點坐標(biāo),根據(jù)平行于y軸的直線上兩點之間的距離是較大的縱坐標(biāo)減較的縱坐標(biāo),可得答案;(1)根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得F點坐標(biāo),根據(jù)平行于y軸的直線上兩點之間的距離是較大的縱坐標(biāo)減較的縱坐標(biāo),可得DE的長,根據(jù)平行四邊形的對邊相等,可得關(guān)于m的方程,根據(jù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年私車私用合同:個人與企業(yè)間貨物運(yùn)輸
- 汕頭職業(yè)技術(shù)學(xué)院《茶樹病蟲防治學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024至2030年芪歸補(bǔ)血顆粒劑項目投資價值分析報告
- 樓盤不銹鋼加工合同范例
- 采購砂石水泥合同范例
- 機(jī)電安裝工程施工方案
- 2024至2030年圓鏡機(jī)項目投資價值分析報告
- 2024至2030年充氣游泳池項目投資價值分析報告
- 2024至2030年東方傳統(tǒng)雕塑項目投資價值分析報告
- 陜西鐵路工程職業(yè)技術(shù)學(xué)院《護(hù)用藥物學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 結(jié)核菌素(PPD)試驗詳解課件
- 小學(xué)英語26個字母初步認(rèn)識練習(xí)題
- 五個認(rèn)同愛國主義教育課件
- 領(lǐng)導(dǎo)干部政治素質(zhì)考察測評表(示范填寫表)
- 水庫大壩碾壓瀝青混凝土防滲面板施工工藝
- 幼兒園中班數(shù)學(xué):《水果列車》 課件
- 風(fēng)濕免疫科醫(yī)療質(zhì)量控制指標(biāo)(2022版)
- 籃球比賽記錄表(上下半場)
- 《臟腑辨證護(hù)理》ppt課件.pptx
- 團(tuán)隊管理培訓(xùn)課件12114
- 整理版鉸接式護(hù)坡施工指南
評論
0/150
提交評論