山東省泰安市重點(diǎn)中學(xué)2025年全國中考預(yù)測試題含解析_第1頁
山東省泰安市重點(diǎn)中學(xué)2025年全國中考預(yù)測試題含解析_第2頁
山東省泰安市重點(diǎn)中學(xué)2025年全國中考預(yù)測試題含解析_第3頁
山東省泰安市重點(diǎn)中學(xué)2025年全國中考預(yù)測試題含解析_第4頁
山東省泰安市重點(diǎn)中學(xué)2025年全國中考預(yù)測試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

山東省泰安市重點(diǎn)中學(xué)2025年全國中考預(yù)測試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.下列運(yùn)算正確的是()A.a(chǎn)2?a3=a6B.a(chǎn)3+a2=a5C.(a2)4=a8D.a(chǎn)3﹣a2=a2.化簡:-,結(jié)果正確的是()A.1 B. C. D.3.如圖,點(diǎn)A、B、C在圓O上,若∠OBC=40°,則∠A的度數(shù)為()A.40° B.45° C.50° D.55°4.如圖所示幾何體的主視圖是()A. B. C. D.5.據(jù)報(bào)道,目前我國“天河二號(hào)”超級(jí)計(jì)算機(jī)的運(yùn)算速度位居全球第一,其運(yùn)算速度達(dá)到了每秒338600000億次,數(shù)字338600000用科學(xué)記數(shù)法可簡潔表示為()A.3.386×108 B.0.3386×109 C.33.86×107 D.3.386×1096.已知,C是線段AB的黃金分割點(diǎn),AC<BC,若AB=2,則BC=()A.3﹣ B.(+1) C.﹣1 D.(﹣1)7.拋物線y=x2+2x+3的對稱軸是()A.直線x=1 B.直線x=-1C.直線x=-2 D.直線x=28.左下圖是一些完全相同的小正方體搭成的幾何體的三視圖.這個(gè)幾何體只能是()A. B. C. D.9.如圖,正方形ABCD中,AB=6,G是BC的中點(diǎn).將△ABG沿AG對折至△AFG,延長GF交DC于點(diǎn)E,則DE的長是()A.1 B.1.5 C.2 D.2.510.下列計(jì)算正確的是()A. B.0.00002=2×105C. D.11.若,則3(x-2)2A.﹣6B.6C.18D.3012.某學(xué)校組織藝術(shù)攝影展,上交的作品要求如下:七寸照片(長7英寸,寬5英寸);將照片貼在一張矩形襯紙的正中央,照片四周外露襯紙的寬度相同;矩形襯紙的面積為照片面積的3倍.設(shè)照片四周外露襯紙的寬度為x英寸(如圖),下面所列方程正確的是()A.(7+x)(5+x)×3=7×5 B.(7+x)(5+x)=3×7×5C.(7+2x)(5+2x)×3=7×5 D.(7+2x)(5+2x)=3×7×5二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,網(wǎng)格中的四個(gè)格點(diǎn)組成菱形ABCD,則tan∠DBC的值為___________.14.已知一個(gè)正數(shù)的平方根是3x-2和5x-6,則這個(gè)數(shù)是_____.15.如圖,把矩形紙片OABC放入平面直角坐標(biāo)系中,使OA、OC分別落在x軸、y軸上,連接OB,將紙片OABC沿OB折疊,使點(diǎn)A落在點(diǎn)A′的位置,若OB=,tan∠BOC=,則點(diǎn)A′的坐標(biāo)為_____.16.如圖,在△ABC中,P,Q分別為AB,AC的中點(diǎn).若S△APQ=1,則S四邊形PBCQ=__.17.計(jì)算:___________.18.的相反數(shù)是______.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖1,在矩形ABCD中,AD=4,AB=2,將矩形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α(0<α<90°)得到矩形AEFG.延長CB與EF交于點(diǎn)H.(1)求證:BH=EH;(2)如圖2,當(dāng)點(diǎn)G落在線段BC上時(shí),求點(diǎn)B經(jīng)過的路徑長.20.(6分)如圖,在平面直角坐標(biāo)系xOy中,將拋物線y=x2平移,使平移后的拋物線經(jīng)過點(diǎn)A(–3,0)、B(1,0).(1)求平移后的拋物線的表達(dá)式.(2)設(shè)平移后的拋物線交y軸于點(diǎn)C,在平移后的拋物線的對稱軸上有一動(dòng)點(diǎn)P,當(dāng)BP與CP之和最小時(shí),P點(diǎn)坐標(biāo)是多少?(3)若y=x2與平移后的拋物線對稱軸交于D點(diǎn),那么,在平移后的拋物線的對稱軸上,是否存在一點(diǎn)M,使得以M、O、D為頂點(diǎn)的三角形△BOD相似?若存在,求點(diǎn)M坐標(biāo);若不存在,說明理由.21.(6分)已知:如圖,在半徑為2的扇形中,°,點(diǎn)C在半徑OB上,AC的垂直平分線交OA于點(diǎn)D,交弧AB于點(diǎn)E,聯(lián)結(jié).(1)若C是半徑OB中點(diǎn),求的正弦值;(2)若E是弧AB的中點(diǎn),求證:;(3)聯(lián)結(jié)CE,當(dāng)△DCE是以CD為腰的等腰三角形時(shí),求CD的長.22.(8分)中華文明,源遠(yuǎn)流長;中華漢字,寓意深廣.為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學(xué)舉行“漢字聽寫”比賽,賽后整理參賽學(xué)生的成績,將學(xué)生的成績分為A,B,C,D四個(gè)等級(jí),并將結(jié)果繪制成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,但均不完整.請你根據(jù)統(tǒng)計(jì)圖解答下列問題:參加比賽的學(xué)生共有____名;在扇形統(tǒng)計(jì)圖中,m的值為____,表示“D等級(jí)”的扇形的圓心角為____度;組委會(huì)決定從本次比賽獲得A等級(jí)的學(xué)生中,選出2名去參加全市中學(xué)生“漢字聽寫”大賽.已知A等級(jí)學(xué)生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學(xué)生恰好是一名男生和一名女生的概率.23.(8分)在數(shù)學(xué)上,我們把符合一定條件的動(dòng)點(diǎn)所形成的圖形叫做滿足該條件的點(diǎn)的軌跡.例如:動(dòng)點(diǎn)P的坐標(biāo)滿足(m,m﹣1),所有符合該條件的點(diǎn)組成的圖象在平面直角坐標(biāo)系xOy中就是一次函數(shù)y=x﹣1的圖象.即點(diǎn)P的軌跡就是直線y=x﹣1.(1)若m、n滿足等式mn﹣m=6,則(m,n﹣1)在平面直角坐標(biāo)系xOy中的軌跡是;(2)若點(diǎn)P(x,y)到點(diǎn)A(0,1)的距離與到直線y=﹣1的距離相等,求點(diǎn)P的軌跡;(3)若拋物線y=上有兩動(dòng)點(diǎn)M、N滿足MN=a(a為常數(shù),且a≥4),設(shè)線段MN的中點(diǎn)為Q,求點(diǎn)Q到x軸的最短距離.24.(10分)如圖,AB是半圓O的直徑,點(diǎn)P是半圓上不與點(diǎn)A,B重合的動(dòng)點(diǎn),PC∥AB,點(diǎn)M是OP中點(diǎn).(1)求證:四邊形OBCP是平行四邊形;(2)填空:①當(dāng)∠BOP=時(shí),四邊形AOCP是菱形;②連接BP,當(dāng)∠ABP=時(shí),PC是⊙O的切線.25.(10分)如圖,AB為⊙O的直徑,C是⊙O上一點(diǎn),過點(diǎn)C的直線交AB的延長線于點(diǎn)D,AE⊥DC,垂足為E,F(xiàn)是AE與⊙O的交點(diǎn),AC平分∠BAE.求證:DE是⊙O的切線;若AE=6,∠D=30°,求圖中陰影部分的面積.26.(12分)如圖,在四邊形ABCD中,∠A=∠BCD=90°,,CE⊥AD于點(diǎn)E.(1)求證:AE=CE;(2)若tanD=3,求AB的長.27.(12分)(1)計(jì)算:﹣2sin45°+(2﹣π)0﹣()﹣1;(2)先化簡,再求值?(a2﹣b2),其中a=,b=﹣2.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】

根據(jù)同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加;合并同類項(xiàng)的法則:把同類項(xiàng)的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變;冪的乘方法則:底數(shù)不變,指數(shù)相乘進(jìn)行計(jì)算即可.【詳解】A、a2?a3=a5,故原題計(jì)算錯(cuò)誤;B、a3和a2不是同類項(xiàng),不能合并,故原題計(jì)算錯(cuò)誤;C、(a2)4=a8,故原題計(jì)算正確;D、a3和a2不是同類項(xiàng),不能合并,故原題計(jì)算錯(cuò)誤;故選:C.此題主要考查了冪的乘方、同底數(shù)冪的乘法,以及合并同類項(xiàng),關(guān)鍵是掌握計(jì)算法則.2、B【解析】

先將分母進(jìn)行通分,化為(x+y)(x-y)的形式,分子乘上相應(yīng)的分式,進(jìn)行化簡.【詳解】本題考查的是分式的混合運(yùn)算,解題的關(guān)鍵就是熟練掌握運(yùn)算規(guī)則.3、C【解析】

根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理求得∠BOC=100°,再利用圓周角定理得到∠A=12【詳解】∵OB=OC,

∴∠OBC=∠OCB.

又∠OBC=40°,

∴∠OBC=∠OCB=40°,

∴∠BOC=180°-2×40°=100°,

∴∠A=12考查了圓周角定理.在同圓或等圓中,一條弧所對的圓周角是它所對的圓心角的一半.4、C【解析】

從正面看幾何體,確定出主視圖即可.【詳解】解:幾何體的主視圖為故選C.本題考查了簡單組合體的三視圖,主視圖即為從正面看幾何體得到的視圖.5、A【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對值<1時(shí),n是負(fù)數(shù).【詳解】解:數(shù)字338600000用科學(xué)記數(shù)法可簡潔表示為3.386×108故選:A本題考查科學(xué)記數(shù)法—表示較大的數(shù).6、C【解析】

根據(jù)黃金分割點(diǎn)的定義,知BC為較長線段;則BC=AB,代入數(shù)據(jù)即可得出BC的值.【詳解】解:由于C為線段AB=2的黃金分割點(diǎn),且AC<BC,BC為較長線段;

則BC=2×=-1.

故答案為:-1.本題考查了黃金分割,應(yīng)該識(shí)記黃金分割的公式:較短的線段=原線段的倍,較長的線段=原線段的倍.7、B【解析】

根據(jù)拋物線的對稱軸公式:計(jì)算即可.【詳解】解:拋物線y=x2+2x+3的對稱軸是直線故選B.此題考查的是求拋物線的對稱軸,掌握拋物線的對稱軸公式是解決此題的關(guān)鍵.8、A【解析】試題分析:根據(jù)幾何體的主視圖可判斷C不合題意;根據(jù)左視圖可得B、D不合題意,因此選項(xiàng)A正確,故選A.考點(diǎn):幾何體的三視圖9、C【解析】

連接AE,根據(jù)翻折變換的性質(zhì)和正方形的性質(zhì)可證Rt△AFE≌Rt△ADE,在直角△ECG中,根據(jù)勾股定理求出DE的長.【詳解】連接AE,∵AB=AD=AF,∠D=∠AFE=90°,由折疊的性質(zhì)得:Rt△ABG≌Rt△AFG,在△AFE和△ADE中,∵AE=AE,AD=AF,∠D=∠AFE,∴Rt△AFE≌Rt△ADE,∴EF=DE,設(shè)DE=FE=x,則CG=3,EC=6?x.在直角△ECG中,根據(jù)勾股定理,得:(6?x)2+9=(x+3)2,解得x=2.則DE=2.熟練掌握翻折變換、正方形的性質(zhì)、全等三角形的判定與性質(zhì)是本題的解題關(guān)鍵.10、D【解析】

在完成此類化簡題時(shí),應(yīng)先將分子、分母中能夠分解因式的部分進(jìn)行分解因式.有些需要先提取公因式,而有些則需要運(yùn)用公式法進(jìn)行分解因式.通過分解因式,把分子分母中能夠分解因式的部分,分解成乘積的形式,然后找到其中的公因式約去.【詳解】解:A、原式=;故本選項(xiàng)錯(cuò)誤;B、原式=2×10-5;故本選項(xiàng)錯(cuò)誤;C、原式=;故本選項(xiàng)錯(cuò)誤;D、原式=;故本選項(xiàng)正確;故選:D.分式的乘除混合運(yùn)算一般是統(tǒng)一為乘法運(yùn)算,如果有乘方,還應(yīng)根據(jù)分式乘方法則先乘方,即把分子、分母分別乘方,然后再進(jìn)行乘除運(yùn)算.同樣要注意的地方有:一是要確定好結(jié)果的符號(hào);二是運(yùn)算順序不能顛倒.11、B【解析】試題分析:∵,即x2+4x=4,∴原式=3(x=-3x2-12x+18考點(diǎn):整式的混合運(yùn)算—化簡求值;整體思想;條件求值.12、D【解析】試題分析:由題意得;如圖知;矩形的長="7+2x"寬=5+2x∴矩形襯底的面積=3倍的照片的面積,可得方程為(7+2X)(5+2X)=3×7×5考點(diǎn):列方程點(diǎn)評:找到題中的等量關(guān)系,根據(jù)兩個(gè)矩形的面積3倍的關(guān)系得到方程,注意的是矩形的間距都為等量的,從而得到大矩形的長于寬,用未知數(shù)x的代數(shù)式表示,而列出方程,屬于基礎(chǔ)題.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、3【解析】試題分析:如圖,連接AC與BD相交于點(diǎn)O,∵四邊形ABCD是菱形,∴AC⊥BD,BO=BD,CO=AC,由勾股定理得,AC==,BD==,所以,BO==,CO==,所以,tan∠DBC===3.故答案為3.考點(diǎn):3.菱形的性質(zhì);3.解直角三角形;3.網(wǎng)格型.14、【解析】

試題解析:根據(jù)題意,得:解得:故答案為:一個(gè)正數(shù)有2個(gè)平方根,它們互為相反數(shù).15、【解析】

如圖,作輔助線;根據(jù)題意首先求出AB、BC的長度;借助面積公式求出A′D、OD的長度,即可解決問題.【詳解】解:∵四邊形OABC是矩形,∴OA=BC,AB=OC,tan∠BOC==,∴AB=2OA,∵,OB=,∴OA=2,AB=2.∵OA′由OA翻折得到,∴OA′=OA=2.如圖,過點(diǎn)A′作A′D⊥x軸與點(diǎn)D;設(shè)A′D=a,OD=b;∵四邊形ABCO為矩形,∴∠OAB=∠OCB=90°;四邊形ABA′D為梯形;設(shè)AB=OC=a,BC=AO=b;∵OB=,tan∠BOC=,∴,解得:;由題意得:A′O=AO=2;△ABO≌△A′BO;由勾股定理得:x2+y2=2①,由面積公式得:xy+2××2×2=(x+2)×(y+2)②;聯(lián)立①②并解得:x=,y=.故答案為(?,)該題以平面直角坐標(biāo)系為載體,以翻折變換為方法構(gòu)造而成;綜合考查了矩形的性質(zhì)、三角函數(shù)的定義、勾股定理等幾何知識(shí)點(diǎn);對分析問題解決問題的能力提出了較高的要求.16、1【解析】

根據(jù)三角形的中位線定理得到PQ=BC,得到相似比為,再根據(jù)相似三角形面積之比等于相似比的平方,可得到結(jié)果.【詳解】解:∵P,Q分別為AB,AC的中點(diǎn),∴PQ∥BC,PQ=BC,∴△APQ∽△ABC,∴=()2=,∵S△APQ=1,∴S△ABC=4,∴S四邊形PBCQ=S△ABC﹣S△APQ=1,故答案為1.本題考查相似三角形的判定和性質(zhì),三角形中位線定理等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考常考題型.17、x+1【解析】

先通分,進(jìn)行分式的加減法,再將分子進(jìn)行因式分解,然后約分即可求出結(jié)果.【詳解】解:=.故答案是:x+1.本題主要考查分式的混合運(yùn)算,通分、因式分解和約分是解答的關(guān)鍵.18、﹣.【解析】

根據(jù)只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù)解答.【詳解】的相反數(shù)是.故答案為.本題考查的知識(shí)點(diǎn)是相反數(shù),解題關(guān)鍵是熟記相反數(shù)的概念.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)B點(diǎn)經(jīng)過的路徑長為π.【解析】

(1)、連接AH,根據(jù)旋轉(zhuǎn)圖形的性質(zhì)得出AB=AE,∠ABH=∠AEH=90°,根據(jù)AH為公共邊得出Rt△ABH和Rt△AEH全等,從而得出答案;(2)、根據(jù)題意得出∠EAB的度數(shù),然后根據(jù)弧長的計(jì)算公式得出答案.【詳解】(1)、證明:如圖1中,連接AH,由旋轉(zhuǎn)可得AB=AE,∠ABH=∠AEH=90°,又∵AH=AH,∴Rt△ABH≌Rt△AEH,∴BH=EH.(2)、解:由旋轉(zhuǎn)可得AG=AD=4,AE=AB,∠EAG=∠BAC=90°,在Rt△ABG中,AG=4,AB=2,∴cos∠BAG=,∴∠BAG=30°,∴∠EAB=60°,∴弧BE的長為=π,即B點(diǎn)經(jīng)過的路徑長為π.本題主要考查的是旋轉(zhuǎn)圖形的性質(zhì)以及扇形的弧長計(jì)算公式,屬于中等難度的題型.明白旋轉(zhuǎn)圖形的性質(zhì)是解決這個(gè)問題的關(guān)鍵.20、(1)y=x2+2x﹣3;(2)點(diǎn)P坐標(biāo)為(﹣1,﹣2);(3)點(diǎn)M坐標(biāo)為(﹣1,3)或(﹣1,2).【解析】

(1)設(shè)平移后拋物線的表達(dá)式為y=a(x+3)(x-1).由題意可知平后拋物線的二次項(xiàng)系數(shù)與原拋物線的二次項(xiàng)系數(shù)相同,從而可求得a的值,于是可求得平移后拋物線的表達(dá)式;(2)先根據(jù)平移后拋物線解析式求得其對稱軸,從而得出點(diǎn)C關(guān)于對稱軸的對稱點(diǎn)C′坐標(biāo),連接BC′,與對稱軸交點(diǎn)即為所求點(diǎn)P,再求得直線BC′解析式,聯(lián)立方程組求解可得;(3)先求得點(diǎn)D的坐標(biāo),由點(diǎn)O、B、E、D的坐標(biāo)可求得OB、OE、DE、BD的長,從而可得到△EDO為等腰三角直角三角形,從而可得到∠MDO=∠BOD=135°,故此當(dāng)或時(shí),以M、O、D為頂點(diǎn)的三角形與△BOD相似.由比例式可求得MD的長,于是可求得點(diǎn)M的坐標(biāo).【詳解】(1)設(shè)平移后拋物線的表達(dá)式為y=a(x+3)(x﹣1),∵由平移的性質(zhì)可知原拋物線與平移后拋物線的開口大小與方向都相同,∴平移后拋物線的二次項(xiàng)系數(shù)與原拋物線的二次項(xiàng)系數(shù)相同,∴平移后拋物線的二次項(xiàng)系數(shù)為1,即a=1,∴平移后拋物線的表達(dá)式為y=(x+3)(x﹣1),整理得:y=x2+2x﹣3;(2)∵y=x2+2x﹣3=(x+1)2﹣4,∴拋物線對稱軸為直線x=﹣1,與y軸的交點(diǎn)C(0,﹣3),則點(diǎn)C關(guān)于直線x=﹣1的對稱點(diǎn)C′(﹣2,﹣3),如圖1,連接B,C′,與直線x=﹣1的交點(diǎn)即為所求點(diǎn)P,由B(1,0),C′(﹣2,﹣3)可得直線BC′解析式為y=x﹣1,則,解得,所以點(diǎn)P坐標(biāo)為(﹣1,﹣2);(3)如圖2,由得,即D(﹣1,1),則DE=OD=1,∴△DOE為等腰直角三角形,∴∠DOE=∠ODE=45°,∠BOD=135°,OD=,∵BO=1,∴BD=,∵∠BOD=135°,∴點(diǎn)M只能在點(diǎn)D上方,∵∠BOD=∠ODM=135°,∴當(dāng)或時(shí),以M、O、D為頂點(diǎn)的三角形△BOD相似,①若,則,解得DM=2,此時(shí)點(diǎn)M坐標(biāo)為(﹣1,3);②若,則,解得DM=1,此時(shí)點(diǎn)M坐標(biāo)為(﹣1,2);綜上,點(diǎn)M坐標(biāo)為(﹣1,3)或(﹣1,2).本題主要考查的是二次函數(shù)的綜合應(yīng)用,解答本題主要應(yīng)用了平移的性質(zhì)、翻折的性質(zhì)、二次函數(shù)的圖象和性質(zhì)、待定系數(shù)法求二次函數(shù)的解析式、等腰直角三角形的性質(zhì)、相似三角形的判定,證得∠ODM=∠BOD=135°是解題的關(guān)鍵.21、(2);(2)詳見解析;(2)當(dāng)是以CD為腰的等腰三角形時(shí),CD的長為2或.【解析】

(2)先求出OCOB=2,設(shè)OD=x,得出CD=AD=OA﹣OD=2﹣x,根據(jù)勾股定理得:(2﹣x)2﹣x2=2求出x,即可得出結(jié)論;(2)先判斷出,進(jìn)而得出∠CBE=∠BCE,再判斷出△OBE∽△EBC,即可得出結(jié)論;(3)分兩種情況:①當(dāng)CD=CE時(shí),判斷出四邊形ADCE是菱形,得出∠OCE=90°.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,建立方程求解即可;②當(dāng)CD=DE時(shí),判斷出∠DAE=∠DEA,再判斷出∠OAE=OEA,進(jìn)而得出∠DEA=∠OEA,即:點(diǎn)D和點(diǎn)O重合,即可得出結(jié)論.【詳解】(2)∵C是半徑OB中點(diǎn),∴OCOB=2.∵DE是AC的垂直平分線,∴AD=CD.設(shè)OD=x,∴CD=AD=OA﹣OD=2﹣x.在Rt△OCD中,根據(jù)勾股定理得:(2﹣x)2﹣x2=2,∴x,∴CD,∴sin∠OCD;(2)如圖2,連接AE,CE.∵DE是AC垂直平分線,∴AE=CE.∵E是弧AB的中點(diǎn),∴,∴AE=BE,∴BE=CE,∴∠CBE=∠BCE.連接OE,∴OE=OB,∴∠OBE=∠OEB,∴∠CBE=∠BCE=∠OEB.∵∠B=∠B,∴△OBE∽△EBC,∴,∴BE2=BO?BC;(3)△DCE是以CD為腰的等腰三角形,分兩種情況討論:①當(dāng)CD=CE時(shí).∵DE是AC的垂直平分線,∴AD=CD,AE=CE,∴AD=CD=CE=AE,∴四邊形ADCE是菱形,∴CE∥AD,∴∠OCE=90°,設(shè)菱形的邊長為a,∴OD=OA﹣AD=2﹣a.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,∴4﹣a2=a2﹣(2﹣a)2,∴a=﹣22(舍)或a=;∴CD=;②當(dāng)CD=DE時(shí).∵DE是AC垂直平分線,∴AD=CD,∴AD=DE,∴∠DAE=∠DEA.連接OE,∴OA=OE,∴∠OAE=∠OEA,∴∠DEA=∠OEA,∴點(diǎn)D和點(diǎn)O重合,此時(shí),點(diǎn)C和點(diǎn)B重合,∴CD=2.綜上所述:當(dāng)△DCE是以CD為腰的等腰三角形時(shí),CD的長為2或.本題是圓的綜合題,主要考查了勾股定理,線段垂直平分線的性質(zhì),菱形的判定和性質(zhì),銳角三角函數(shù),作出輔助線是解答本題的關(guān)鍵.22、(1)20;(2)40,1;(3).【解析】試題分析:(1)根據(jù)等級(jí)為A的人數(shù)除以所占的百分比求出總?cè)藬?shù);(2)根據(jù)D級(jí)的人數(shù)求得D等級(jí)扇形圓心角的度數(shù)和m的值;(3)列表得出所有等可能的情況數(shù),找出一男一女的情況數(shù),即可求出所求的概率.試題解析:解:(1)根據(jù)題意得:3÷15%=20(人),故答案為20;(2)C級(jí)所占的百分比為×100%=40%,表示“D等級(jí)”的扇形的圓心角為×360°=1°;故答案為40、1.(3)列表如下:所有等可能的結(jié)果有6種,其中恰好是一名男生和一名女生的情況有4種,則P恰好是一名男生和一名女生==.23、(1);(2)y=x2;(3)點(diǎn)Q到x軸的最短距離為1.【解析】

(1)先判斷出m(n﹣1)=6,進(jìn)而得出結(jié)論;(2)先求出點(diǎn)P到點(diǎn)A的距離和點(diǎn)P到直線y=﹣1的距離建立方程即可得出結(jié)論;(3)設(shè)出點(diǎn)M,N的坐標(biāo),進(jìn)而得出點(diǎn)Q的坐標(biāo),利用MN=a,得出,即可得出結(jié)論.【詳解】(1)設(shè)m=x,n﹣1=y,∵mn﹣m=6,∴m(n﹣1)=6,∴xy=6,∴∴(m,n﹣1)在平面直角坐標(biāo)系xOy中的軌跡是故答案為:;(2)∴點(diǎn)P(x,y)到點(diǎn)A(0,1),∴點(diǎn)P(x,y)到點(diǎn)A(0,1)的距離的平方為x2+(y﹣1)2,∵點(diǎn)P(x,y)到直線y=﹣1的距離的平方為(y+1)2,∵點(diǎn)P(x,y)到點(diǎn)A(0,1)的距離與到直線y=﹣1的距離相等,∴x2+(y﹣1)2=(y+1)2,∴(3)設(shè)直線MN的解析式為y=kx+b,M(x1,y1),N(x2,y2),∴線段MN的中點(diǎn)為Q的縱坐標(biāo)為∴∴x2﹣4kx﹣4b=0,∴x1+x2=4k,x1x2=﹣4b,∴∴∴∴點(diǎn)Q到x軸的最短距離為1.此題是二次函數(shù)綜合題,主要考查了點(diǎn)的軌跡的定義,兩點(diǎn)間的距離公式,中點(diǎn)坐標(biāo)公式公式,根與系數(shù)的關(guān)系,確定出是解本題的關(guān)鍵.24、(1)見解析;(2)①120°;②45°【解析】

(1)由AAS證明△CPM≌△AOM,得出PC=OA,得出PC=OB,即可得出結(jié)論;

(2)①證出OA=OP=PA,得出△AOP是等邊三角形,∠A=∠AOP=60°,得出∠BOP=120°即可;

②由切線的性質(zhì)和平行線的性質(zhì)得出∠BOP=90°,由等腰三角形的性質(zhì)得出∠ABP=∠OPB=45°即可.【詳解】(1)∵PC∥AB,∴∠PCM=∠OAM,∠CPM=∠AOM.∵點(diǎn)M是OP的中點(diǎn),∴OM=PM,在△CPM和△AOM中,,∴△CPM≌△AOM(AAS),∴PC=OA.∵AB是半圓O的直徑,∴OA=OB,∴PC=OB.又PC∥AB,∴四邊形OBCP是平行四邊形.(2)①∵四邊形AOCP是菱形,∴OA=PA,∵OA=OP,∴OA=OP=PA,∴△AOP是等邊三角形,∴∠A=∠AOP=60°,∴∠BOP=120°;故答案為120°;②∵PC是⊙O的切線,∴OP⊥PC,∠OPC=90°,∵PC∥AB,∴∠BOP=90°,∵OP=OB,∴△OBP是等腰直角三角形,∴∠ABP=∠OPB=45°,故答案為45°.本題是圓的綜合題目,考查了全等三角形的判定與性質(zhì)、平行四邊形的判定、切線的性質(zhì)、菱形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)等知識(shí);本題綜合性強(qiáng),熟練掌握切線的性質(zhì)和平行四邊形的判定是解題的關(guān)鍵.25、(1)證明見解析;(2)陰影部分的面積為.【解析】

(1)連接OC,先證明∠OAC=∠OCA,進(jìn)而得到OC∥AE,于是得到OC⊥CD,進(jìn)而證明DE是⊙O的切線;(2)分別求出△OCD的面積和扇形OBC的面積,利用S陰影=S△COD﹣S扇形OBC即可得到答案.【詳解】解:(1)連接OC,∵OA=OC,∴∠O

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論