四川省涼山市喜德縣達(dá)標(biāo)名校2025屆初三起點(diǎn)調(diào)研考試數(shù)學(xué)試題試卷含解析_第1頁
四川省涼山市喜德縣達(dá)標(biāo)名校2025屆初三起點(diǎn)調(diào)研考試數(shù)學(xué)試題試卷含解析_第2頁
四川省涼山市喜德縣達(dá)標(biāo)名校2025屆初三起點(diǎn)調(diào)研考試數(shù)學(xué)試題試卷含解析_第3頁
四川省涼山市喜德縣達(dá)標(biāo)名校2025屆初三起點(diǎn)調(diào)研考試數(shù)學(xué)試題試卷含解析_第4頁
四川省涼山市喜德縣達(dá)標(biāo)名校2025屆初三起點(diǎn)調(diào)研考試數(shù)學(xué)試題試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

四川省涼山市喜德縣達(dá)標(biāo)名校2025屆初三起點(diǎn)調(diào)研考試數(shù)學(xué)試題試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖是一個(gè)正方體的表面展開圖,如果對面上所標(biāo)的兩個(gè)數(shù)互為相反數(shù),那么圖中的值是().A. B. C. D.2.估計(jì)的值在()A.4和5之間 B.5和6之間C.6和7之間 D.7和8之間3.據(jù)統(tǒng)計(jì),2018年全國春節(jié)運(yùn)輸人數(shù)約為3000000000人,將3000000000用科學(xué)記數(shù)法表示為()A.0.3×1010B.3×109C.30×108D.300×1074.2017年,小欖鎮(zhèn)GDP總量約31600000000元,數(shù)據(jù)31600000000科學(xué)記數(shù)法表示為()A.0.316×1010 B.0.316×1011 C.3.16×1010 D.3.16×10115.如圖,△ABC中,D為BC的中點(diǎn),以D為圓心,BD長為半徑畫一弧交AC于E點(diǎn),若∠A=60°,∠B=100°,BC=4,則扇形BDE的面積為何?()A. B. C. D.6.如右圖,⊿ABC內(nèi)接于⊙O,若∠OAB=28°則∠C的大小為()A.62° B.56° C.60° D.28°7.如圖,點(diǎn)A為∠α邊上任意一點(diǎn),作AC⊥BC于點(diǎn)C,CD⊥AB于點(diǎn)D,下列用線段比表示sinα的值,錯(cuò)誤的是()A. B. C. D.8.如圖,若銳角△ABC內(nèi)接于⊙O,點(diǎn)D在⊙O外(與點(diǎn)C在AB同側(cè)),則∠C與∠D的大小關(guān)系為()A.∠C>∠D B.∠C<∠D C.∠C=∠D D.無法確定9.在剛剛結(jié)束的中考英語聽力、口語測試中,某班口語成績情況如圖所示,則下列說法正確的是()A.中位數(shù)是9 B.眾數(shù)為16 C.平均分為7.78 D.方差為210.濕地旅游愛好者小明了解到鄂東南市水資源總量為42.4億立方米,其中42.4億用科學(xué)記數(shù)法可表示為()A.42.4×109 B.4.24×108 C.4.24×109 D.0.424×108二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在中,于點(diǎn),于點(diǎn),為邊的中點(diǎn),連接,則下列結(jié)論:①,②,③為等邊三角形,④當(dāng)時(shí),.請將正確結(jié)論的序號(hào)填在橫線上__.12.有一組數(shù)據(jù):3,a,4,6,7,它們的平均數(shù)是5,則a=_____,這組數(shù)據(jù)的方差是_____.13.計(jì)算:2cos60°-+(5-π)°=____________.14.若是關(guān)于的完全平方式,則__________.15.如圖,矩形ABCD的對角線BD經(jīng)過的坐標(biāo)原點(diǎn),矩形的邊分別平行于坐標(biāo)軸,點(diǎn)C在反比例函數(shù)y=的圖象上,若點(diǎn)A的坐標(biāo)為(﹣2,﹣3),則k的值為_____.16.如圖,在△ABC中,CA=CB,∠ACB=90°,AB=4,點(diǎn)D為AB的中點(diǎn),以點(diǎn)D為圓心作圓,半圓恰好經(jīng)過三角形的直角頂點(diǎn)C,以點(diǎn)D為頂點(diǎn),作90°的∠EDF,與半圓交于點(diǎn)E,F(xiàn),則圖中陰影部分的面積是____.17.如圖,將的邊繞著點(diǎn)順時(shí)針旋轉(zhuǎn)得到,邊AC繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到,聯(lián)結(jié).當(dāng)時(shí),我們稱是的“雙旋三角形”.如果等邊的邊長為a,那么它的“雙旋三角形”的面積是__________(用含a的代數(shù)式表示).三、解答題(共7小題,滿分69分)18.(10分)如圖,已知拋物線y=x2﹣4與x軸交于點(diǎn)A,B(點(diǎn)A位于點(diǎn)B的左側(cè)),C為頂點(diǎn),直線y=x+m經(jīng)過點(diǎn)A,與y軸交于點(diǎn)D.求線段AD的長;平移該拋物線得到一條新拋物線,設(shè)新拋物線的頂點(diǎn)為C′.若新拋物線經(jīng)過點(diǎn)D,并且新拋物線的頂點(diǎn)和原拋物線的頂點(diǎn)的連線CC′平行于直線AD,求新拋物線對應(yīng)的函數(shù)表達(dá)式.19.(5分)一次函數(shù)的圖象經(jīng)過點(diǎn)和點(diǎn),求一次函數(shù)的解析式.20.(8分)已知拋物線y=ax2﹣bx.若此拋物線與直線y=x只有一個(gè)公共點(diǎn),且向右平移1個(gè)單位長度后,剛好過點(diǎn)(3,1).①求此拋物線的解析式;②以y軸上的點(diǎn)P(1,n)為中心,作該拋物線關(guān)于點(diǎn)P對稱的拋物線y',若這兩條拋物線有公共點(diǎn),求n的取值范圍;若a>1,將此拋物線向上平移c個(gè)單位(c>1),當(dāng)x=c時(shí),y=1;當(dāng)1<x<c時(shí),y>1.試比較ac與1的大小,并說明理由.21.(10分)如圖1,拋物線y=ax2+bx+4過A(2,0)、B(4,0)兩點(diǎn),交y軸于點(diǎn)C,過點(diǎn)C作x軸的平行線與拋物線上的另一個(gè)交點(diǎn)為D,連接AC、BC.點(diǎn)P是該拋物線上一動(dòng)點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為m(m>4).(1)求該拋物線的表達(dá)式和∠ACB的正切值;(2)如圖2,若∠ACP=45°,求m的值;(3)如圖3,過點(diǎn)A、P的直線與y軸于點(diǎn)N,過點(diǎn)P作PM⊥CD,垂足為M,直線MN與x軸交于點(diǎn)Q,試判斷四邊形ADMQ的形狀,并說明理由.22.(10分)如圖,經(jīng)過原點(diǎn)的拋物線y=﹣x2+2mx(m>0)與x軸的另一個(gè)交點(diǎn)為A,過點(diǎn)P(1,m)作直線PA⊥x軸于點(diǎn)M,交拋物線于點(diǎn)B.記點(diǎn)B關(guān)于拋物線對稱軸的對稱點(diǎn)為C(點(diǎn)B、C不重合),連接CB、CP.(I)當(dāng)m=3時(shí),求點(diǎn)A的坐標(biāo)及BC的長;(II)當(dāng)m>1時(shí),連接CA,若CA⊥CP,求m的值;(III)過點(diǎn)P作PE⊥PC,且PE=PC,當(dāng)點(diǎn)E落在坐標(biāo)軸上時(shí),求m的值,并確定相對應(yīng)的點(diǎn)E的坐標(biāo).23.(12分)如圖,在Rt△ABC中,,CD⊥AB于點(diǎn)D,BE⊥AB于點(diǎn)B,BE=CD,連接CE,DE.(1)求證:四邊形CDBE為矩形;(2)若AC=2,,求DE的長.24.(14分)某科技開發(fā)公司研制出一種新型產(chǎn)品,每件產(chǎn)品的成本為2500元,銷售單價(jià)定為3200元.在該產(chǎn)品的試銷期間,為了促銷,鼓勵(lì)商家購買該新型品,公司決定商家一次購買這種新型產(chǎn)品不超過10件時(shí),每件按3200元銷售:若一次購買該種產(chǎn)品超過10件時(shí),每多購買一件,所購買的全部產(chǎn)品的銷售單價(jià)均降低5元,但銷售單價(jià)均不低于2800元.商家一次購買這種產(chǎn)品多少件時(shí),銷售單價(jià)恰好為2800元?設(shè)商家一次購買這種產(chǎn)品x件,開發(fā)公司所獲的利潤為y元,求y(元)與x(件)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍該公司的銷售人員發(fā)現(xiàn):當(dāng)商家一次購買產(chǎn)品的件數(shù)超過某一數(shù)量時(shí),會(huì)出現(xiàn)隨著一次購買的數(shù)量的增多,公司所獲的利潤反而減少這一情況.為使商家一次購買的數(shù)量越多,公司所獲的利潤越大,公司應(yīng)將最低銷售單價(jià)調(diào)整為多少元?(其它銷售條件不變)

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】

根據(jù)正方體平面展開圖的特征得出每個(gè)相對面,再由相對面上的兩個(gè)數(shù)互為相反數(shù)可得出x的值.【詳解】解:“3”與“-3”相對,“y”與“-2”相對,“x”與“-8”相對,故x=8,故選D.本題主要考查了正方體相對面上的文字,解決本題的關(guān)鍵是要熟練掌握正方體展開圖的特征.2、C【解析】

根據(jù),可以估算出位于哪兩個(gè)整數(shù)之間,從而可以解答本題.【詳解】解:∵即

故選:C.本題考查估算無理數(shù)的大小,解題的關(guān)鍵是明確估算無理數(shù)大小的方法.3、B【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).【詳解】解:根據(jù)科學(xué)計(jì)數(shù)法的定義可得,3000000000=3×109,故選擇B.本題考查了科學(xué)計(jì)數(shù)法的定義,確定n的值是易錯(cuò)點(diǎn).4、C【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對值<1時(shí),n是負(fù)數(shù).【詳解】31600000000=3.16×1.故選:C.本題考查科學(xué)記數(shù)法,解題的關(guān)鍵是掌握科學(xué)記數(shù)法的表示.5、C【解析】分析:求出扇形的圓心角以及半徑即可解決問題;詳解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,∴S扇形DBE=.故選C.點(diǎn)睛:本題考查扇形的面積公式、三角形內(nèi)角和定理等知識(shí),解題的關(guān)鍵是記住扇形的面積公式:S=.6、A【解析】

連接OB.在△OAB中,OA=OB(⊙O的半徑),∴∠OAB=∠OBA(等邊對等角);又∵∠OAB=28°,∴∠OBA=28°;∴∠AOB=180°-2×28°=124°;而∠C=∠AOB(同弧所對的圓周角是所對的圓心角的一半),∴∠C=62°;故選A7、D【解析】【分析】根據(jù)在直角三角形中,銳角的正弦為對邊比斜邊,可得答案.【詳解】∵∠BDC=90°,∴∠B+∠BCD=90°,∵∠ACB=90°,即∠BCD+∠ACD=90°,∴∠ACD=∠B=α,A、在Rt△BCD中,sinα=,故A正確,不符合題意;B、在Rt△ABC中,sinα=,故B正確,不符合題意;C、在Rt△ACD中,sinα=,故C正確,不符合題意;D、在Rt△ACD中,cosα=,故D錯(cuò)誤,符合題意,故選D.【點(diǎn)睛】本題考查銳角三角函數(shù)的定義及運(yùn)用:在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.8、A【解析】

直接利用圓周角定理結(jié)合三角形的外角的性質(zhì)即可得.【詳解】連接BE,如圖所示:

∵∠ACB=∠AEB,

∠AEB>∠D,

∴∠C>∠D.

故選:A.考查了圓周角定理以及三角形的外角,正確作出輔助線是解題關(guān)鍵.9、A【解析】

根據(jù)中位數(shù),眾數(shù),平均數(shù),方差等知識(shí)即可判斷;【詳解】觀察圖象可知,共有50個(gè)學(xué)生,從低到高排列后,中位數(shù)是25位與26位的平均數(shù),即為1.故選A.本題考查中位數(shù),眾數(shù),平均數(shù),方差的定義,解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考常考題型.10、C【解析】

科學(xué)記數(shù)法的表示形式為的形式,其中為整數(shù).確定的值時(shí),要看把原數(shù)變成時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,的絕對值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對值>1時(shí),是正數(shù);當(dāng)原數(shù)的絕對值<1時(shí),是負(fù)數(shù).【詳解】42.4億=4240000000,用科學(xué)記數(shù)法表示為:4.24×1.故選C.考查科學(xué)記數(shù)法,掌握絕對值大于1的數(shù)的表示方法是解題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、①③④【解析】

①根據(jù)直角三角形斜邊上的中線等于斜邊的一半可判斷①;②先證明△ABM∽△ACN,再根據(jù)相似三角形的對應(yīng)邊成比例可判斷②;③先根據(jù)直角三角形兩銳角互余的性質(zhì)求出∠ABM=∠ACN=30°,再根據(jù)三角形的內(nèi)角和定理求出∠BCN+∠CBM=60°,然后根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和求出∠BPN+∠CPM=120°,從而得到∠MPN=60°,又由①得PM=PN,根據(jù)有一個(gè)角是60°的等腰三角形是等邊三角形可判斷③;④當(dāng)∠ABC=45°時(shí),∠BCN=45°,進(jìn)而判斷④.【詳解】①∵BM⊥AC于點(diǎn)M,CN⊥AB于點(diǎn)N,P為BC邊的中點(diǎn),∴PM=BC,PN=BC,∴PM=PN,正確;②在△ABM與△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴,錯(cuò)誤;③∵∠A=60°,BM⊥AC于點(diǎn)M,CN⊥AB于點(diǎn)N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM=180°-60°-30°×2=60°,∵點(diǎn)P是BC的中點(diǎn),BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等邊三角形,正確;④當(dāng)∠ABC=45°時(shí),∵CN⊥AB于點(diǎn)N,∴∠BNC=90°,∠BCN=45°,∵P為BC中點(diǎn),可得BC=PB=PC,故④正確.所以正確的選項(xiàng)有:①③④故答案為①③④本題主要考查了直角三角形斜邊的中線等于斜邊的一半的性質(zhì),相似三角形、等邊三角形、等腰直角三角形的判定與性質(zhì),等腰三角形三線合一的性質(zhì),仔細(xì)分析圖形并熟練掌握性質(zhì)是解題的關(guān)鍵.12、51.【解析】∵一組數(shù)據(jù):3,a,4,6,7,它們的平均數(shù)是5,∴,解得,,∴=1.故答案為5,1.13、1【解析】解:原式==1-2+1=1.故答案為1.14、1或-1【解析】【分析】直接利用完全平方公式的定義得出2(m-3)=±8,進(jìn)而求出答案.詳解:∵x2+2(m-3)x+16是關(guān)于x的完全平方式,∴2(m-3)=±8,解得:m=-1或1,故答案為-1或1.點(diǎn)睛:此題主要考查了完全平方公式,正確掌握完全平方公式的基本形式是解題關(guān)鍵.15、1或﹣1【解析】

根據(jù)矩形的對角線將矩形分成面積相等的兩個(gè)直角三角形,找到圖中的所有矩形及相等的三角形,即可推出S四邊形CEOF=S四邊形HAGO,根據(jù)反比例函數(shù)比例系數(shù)的幾何意義即可求出k2+4k+1=6,再解出k的值即可.【詳解】如圖:∵四邊形ABCD、HBEO、OECF、GOFD為矩形,又∵BO為四邊形HBEO的對角線,OD為四邊形OGDF的對角線,∴S△BEO=S△BHO,S△OFD=S△OGD,S△CBD=S△ADB,∴S△CBD﹣S△BEO﹣S△OFD=S△ADB﹣S△BHO﹣S△OGD,∴S四邊形CEOF=S四邊形HAGO=2×3=6,∴xy=k2+4k+1=6,解得k=1或k=﹣1.故答案為1或﹣1.本題考查了反比例函數(shù)k的幾何意義、矩形的性質(zhì)、一元二次方程的解法,解題的關(guān)鍵是判斷出S四邊形CEOF=S四邊形HAGO.16、π﹣1.【解析】

連接CD,作DM⊥BC,DN⊥AC,證明△DMG≌△DNH,則S四邊形DGCH=S四邊形DMCN,求得扇形FDE的面積,則陰影部分的面積即可求得.【詳解】連接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,點(diǎn)D為AB的中點(diǎn),∴DC=AB=1,四邊形DMCN是正方形,DM=.則扇形FDE的面積是:=π.∵CA=CB,∠ACB=90°,點(diǎn)D為AB的中點(diǎn),∴CD平分∠BCA.又∵DM⊥BC,DN⊥AC,∴DM=DN.∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN.在△DMG和△DNH中,∵,∴△DMG≌△DNH(AAS),∴S四邊形DGCH=S四邊形DMCN=1.則陰影部分的面積是:π﹣1.故答案為π﹣1.本題考查了三角形的全等的判定與扇形的面積的計(jì)算的綜合題,正確證明△DMG≌△DNH,得到S四邊形DGCH=S四邊形DMCN是關(guān)鍵.17、.【解析】

首先根據(jù)等邊三角形、“雙旋三角形”的定義得出△AB'C'是頂角為150°的等腰三角形,其中AB'=AC'=a.過C'作C'D⊥AB'于D,根據(jù)30°角所對的直角邊等于斜邊的一半得出C'DAC'a,然后根據(jù)S△AB'C'AB'?C'D即可求解.【詳解】∵等邊△ABC的邊長為a,∴AB=AC=a,∠BAC=60°.∵將△ABC的邊AB繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)α(0°<α<90°)得到AB',∴AB'=AB=a,∠B'AB=α.∵邊AC繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)β(0°<β<90°)得到AC',∴AC'=AC=a,∠CAC'=β,∴∠B'AC'=∠B'AB+∠BAC+∠CAC'=α+60°+β=60°+90°=150°.如圖,過C'作C'D⊥AB'于D,則∠D=90°,∠DAC'=30°,∴C'DAC'a,∴S△AB'C'AB'?C'Da?aa1.故答案為:a1.本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了含30°角的直角三角形的性質(zhì),等邊三角形的性質(zhì)以及三角形的面積.三、解答題(共7小題,滿分69分)18、(1)1;(1)y=x1﹣4x+1或y=x1+6x+1.【解析】

(1)解方程求出點(diǎn)A的坐標(biāo),根據(jù)勾股定理計(jì)算即可;(1)設(shè)新拋物線對應(yīng)的函數(shù)表達(dá)式為:y=x1+bx+1,根據(jù)二次函數(shù)的性質(zhì)求出點(diǎn)C′的坐標(biāo),根據(jù)題意求出直線CC′的解析式,代入計(jì)算即可.【詳解】解:(1)由x1﹣4=0得,x1=﹣1,x1=1,∵點(diǎn)A位于點(diǎn)B的左側(cè),∴A(﹣1,0),∵直線y=x+m經(jīng)過點(diǎn)A,∴﹣1+m=0,解得,m=1,∴點(diǎn)D的坐標(biāo)為(0,1),∴AD==1;(1)設(shè)新拋物線對應(yīng)的函數(shù)表達(dá)式為:y=x1+bx+1,y=x1+bx+1=(x+)1+1﹣,則點(diǎn)C′的坐標(biāo)為(﹣,1﹣),∵CC′平行于直線AD,且經(jīng)過C(0,﹣4),∴直線CC′的解析式為:y=x﹣4,∴1﹣=﹣﹣4,解得,b1=﹣4,b1=6,∴新拋物線對應(yīng)的函數(shù)表達(dá)式為:y=x1﹣4x+1或y=x1+6x+1.本題考查的是拋物線與x軸的交點(diǎn)、待定系數(shù)法求函數(shù)解析式,掌握二次函數(shù)的性質(zhì)、拋物線與x軸的交點(diǎn)的求法是解題的關(guān)鍵.19、y=2x+1.【解析】

直接把點(diǎn)A(﹣1,1),B(1,5)代入一次函數(shù)y=kx+b(k≠0),求出k、b的值即可.【詳解】∵一次函數(shù)y=kx+b(k≠0)的圖象經(jīng)過點(diǎn)A(﹣1,1)和點(diǎn)B(1,5),∴,解得:.故一次函數(shù)的解析式為y=2x+1.本題考查了待定系數(shù)法求一次函數(shù)的解析式,熟知待定系數(shù)法求一次函數(shù)解析式一般步驟是解答此題的關(guān)鍵.20、(1)①;②n≤1;(2)ac≤1,見解析.【解析】

(1)①△=1求解b=1,將點(diǎn)(3,1)代入平移后解析式,即可;②頂點(diǎn)為(1,)關(guān)于P(1,n)對稱點(diǎn)的坐標(biāo)是(﹣1,2n﹣),關(guān)于點(diǎn)P中心對稱的新拋物線y'=(x+1)2+2n﹣=x2+x+2n,聯(lián)立方程組即可求n的范圍;(2)將點(diǎn)(c,1)代入y=ax2﹣bx+c得到ac﹣b+1=1,b=ac+1,當(dāng)1<x<c時(shí),y>1.≥c,b≥2ac,ac+1≥2ac,ac≥1;【詳解】解:(1)①ax2﹣bx=x,ax2﹣(b+1)x=1,△=(b+1)2=1,b=﹣1,平移后的拋物線y=a(x﹣1)2﹣b(x﹣1)過點(diǎn)(3,1),∴4a﹣2b=1,∴a=﹣,b=﹣1,原拋物線:y=﹣x2+x,②其頂點(diǎn)為(1,)關(guān)于P(1,n)對稱點(diǎn)的坐標(biāo)是(﹣1,2n﹣),∴關(guān)于點(diǎn)P中心對稱的新拋物線y'=(x+1)2+2n﹣=x2+x+2n.由得:x2+2n=1有解,所以n≤1.(2)由題知:a>1,將此拋物線y=ax2﹣bx向上平移c個(gè)單位(c>1),其解析式為:y=ax2﹣bx+c過點(diǎn)(c,1),∴ac2﹣bc+c=1(c>1),∴ac﹣b+1=1,b=ac+1,且當(dāng)x=1時(shí),y=c,對稱軸:x=,拋物線開口向上,畫草圖如右所示.由題知,當(dāng)1<x<c時(shí),y>1.∴≥c,b≥2ac,∴ac+1≥2ac,ac≤1;本題考查二次函數(shù)的圖象及性質(zhì);掌握二次函數(shù)圖象平移時(shí)改變位置,而a的值不變是解題的關(guān)鍵.21、(1)y=x2﹣3x+1;tan∠ACB=;(2)m=;(3)四邊形ADMQ是平行四邊形;理由見解析.【解析】

(1)由點(diǎn)A、B坐標(biāo)利用待定系數(shù)法求解可得拋物線解析式為y=x2-3x+1,作BG⊥CA,交CA的延長線于點(diǎn)G,證△GAB∽△OAC得=,據(jù)此知BG=2AG.在Rt△ABG中根據(jù)BG2+AG2=AB2,可求得AG=.繼而可得BG=,CG=AC+AG=,根據(jù)正切函數(shù)定義可得答案;(2)作BH⊥CD于點(diǎn)H,交CP于點(diǎn)K,連接AK,易得四邊形OBHC是正方形,應(yīng)用“全角夾半角”可得AK=OA+HK,設(shè)K(1,h),則BK=h,HK=HB-KB=1-h,AK=OA+HK=2+(1-h)=6-h.在Rt△ABK中,由勾股定理求得h=,據(jù)此求得點(diǎn)K(1,).待定系數(shù)法求出直線CK的解析式為y=-x+1.設(shè)點(diǎn)P的坐標(biāo)為(x,y)知x是方程x2-3x+1=-x+1的一個(gè)解.解之求得x的值即可得出答案;(3)先求出點(diǎn)D坐標(biāo)為(6,1),設(shè)P(m,m2-3m+1)知M(m,1),H(m,0).及PH=m2-3m+1),OH=m,AH=m-2,MH=1.①當(dāng)1<m<6時(shí),由△OAN∽△HAP知=.據(jù)此得ON=m-1.再證△ONQ∽△HMQ得=.據(jù)此求得OQ=m-1.從而得出AQ=DM=6-m.結(jié)合AQ∥DM可得答案.②當(dāng)m>6時(shí),同理可得.【詳解】解:(1)將點(diǎn)A(2,0)和點(diǎn)B(1,0)分別代入y=ax2+bx+1,得,解得:;∴該拋物線的解析式為y=x2﹣3x+1,過點(diǎn)B作BG⊥CA,交CA的延長線于點(diǎn)G(如圖1所示),則∠G=90°.∵∠COA=∠G=90°,∠CAO=∠BAG,∴△GAB∽△OAC.∴=2.∴BG=2AG,在Rt△ABG中,∵BG2+AG2=AB2,∴(2AG)2+AG2=22,解得:AG=.∴BG=,CG=AC+AG=2+=.在Rt△BCG中,tan∠ACB═.(2)如圖2,過點(diǎn)B作BH⊥CD于點(diǎn)H,交CP于點(diǎn)K,連接AK.易得四邊形OBHC是正方形.應(yīng)用“全角夾半角”可得AK=OA+HK,設(shè)K(1,h),則BK=h,HK=HB﹣KB=1﹣h,AK=OA+HK=2+(1﹣h)=6﹣h,在Rt△ABK中,由勾股定理,得AB2+BK2=AK2,∴22+h2=(6﹣h)2.解得h=,∴點(diǎn)K(1,),設(shè)直線CK的解析式為y=hx+1,將點(diǎn)K(1,)代入上式,得=1h+1.解得h=﹣,∴直線CK的解析式為y=﹣x+1,設(shè)點(diǎn)P的坐標(biāo)為(x,y),則x是方程x2﹣3x+1=﹣x+1的一個(gè)解,將方程整理,得3x2﹣16x=0,解得x1=,x2=0(不合題意,舍去)將x1=代入y=﹣x+1,得y=,∴點(diǎn)P的坐標(biāo)為(,),∴m=;(3)四邊形ADMQ是平行四邊形.理由如下:∵CD∥x軸,∴yC=yD=1,將y=1代入y=x2﹣3x+1,得1=x2﹣3x+1,解得x1=0,x2=6,∴點(diǎn)D(6,1),根據(jù)題意,得P(m,m2﹣3m+1),M(m,1),H(m,0),∴PH=m2﹣3m+1,OH=m,AH=m﹣2,MH=1,①當(dāng)1<m<6時(shí),DM=6﹣m,如圖3,∵△OAN∽△HAP,∴,∴=,∴ON===m﹣1,∵△ONQ∽△HMQ,∴,∴,∴,∴OQ=m﹣1,∴AQ=OA﹣OQ=2﹣(m﹣1)=6﹣m,∴AQ=DM=6﹣m,又∵AQ∥DM,∴四邊形ADMQ是平行四邊形.②當(dāng)m>6時(shí),同理可得:四邊形ADMQ是平行四邊形.綜上,四邊形ADMQ是平行四邊形.本題主要考查二次函數(shù)的綜合問題,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式、相似三角形的判定與性質(zhì)、平行四邊形的判定與性質(zhì)及勾股定理、三角函數(shù)等知識(shí)點(diǎn).22、(I)4;(II)(III)(2,0)或(0,4)【解析】

(I)當(dāng)m=3時(shí),拋物線解析式為y=-x2+6x,解方程-x2+6x=0得A(6,0),利用對稱性得到C(5,5),從而得到BC的長;(II)解方程-x2+2mx=0得A(2m,0),利用對稱性得到C(2m-1,2m-1),再根據(jù)勾股定理和兩點(diǎn)間的距離公式得到(2m-2)2+(m-1)2+12+(2m-1)2=(2m-1)2+m2,然后解方程即可;(III)如圖,利用△PME≌△CBP得到PM=BC=2m-2,ME=BP=m-1,則根據(jù)P點(diǎn)坐標(biāo)得到2m-2=m,解得m=2,再計(jì)算出ME=1得到此時(shí)E點(diǎn)坐標(biāo);作PH⊥y軸于H,如圖,利用△PHE′≌△PBC得到PH=PB=m-1,HE′=BC=2m-2,利用P(1,m)得到m-1=1,解得m=2,然后計(jì)算出HE′得到E′點(diǎn)坐標(biāo).【詳解】解:(I)當(dāng)m=3時(shí),拋物線解析式為y=﹣x2+6x,當(dāng)y=0時(shí),﹣x2+6x=0,解得x1=0,x2=6,則A(6,0),拋物線的對稱軸為直線x=3,∵P(1,3),∴B(1,5),∵點(diǎn)B關(guān)于拋物線對稱軸的對稱點(diǎn)為C∴C(5,5),∴BC=5﹣1=4;(II)當(dāng)y=0時(shí),﹣x2+2mx=0,解得x1=0,x2=2m,則A(2m,0),B(1,2m﹣1),∵點(diǎn)B關(guān)于拋物線對稱軸的對稱點(diǎn)為C,而拋物線的對稱軸為直線x=m,∴C(2m﹣1,2m﹣1),∵PC⊥PA,∴PC2+AC2=PA2,∴(2m﹣2)2+(m﹣1)2+12+(2m﹣1)2=(2m﹣1)2+m2,整理得2m2﹣5m+3=0,解得m1=1,m2=,即m的值為;(III)如圖,∵PE⊥PC,PE=PC,∴△PME≌△CBP,∴PM=BC=2m﹣2,ME=BP=2m﹣1﹣m=m﹣1,而P(1,m)∴2m﹣2=m,解得m=2,∴ME=m﹣1=1,∴E(2,0);作PH⊥y軸于H,如圖,易得△PHE′≌△PBC,∴PH=PB=m﹣1,HE′=BC=2m﹣2,而P(1,m)∴m﹣1=1,解得m=2,∴HE′=2m﹣2=2,∴E′(0,4);綜上所述,m的值為2,點(diǎn)E的坐標(biāo)為(2,0)或(0,4).本題考

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論