黑龍江省哈爾濱市風華中學2024屆中考數(shù)學模擬試題含解析_第1頁
黑龍江省哈爾濱市風華中學2024屆中考數(shù)學模擬試題含解析_第2頁
黑龍江省哈爾濱市風華中學2024屆中考數(shù)學模擬試題含解析_第3頁
黑龍江省哈爾濱市風華中學2024屆中考數(shù)學模擬試題含解析_第4頁
黑龍江省哈爾濱市風華中學2024屆中考數(shù)學模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

黑龍江省哈爾濱市風華中學2024屆中考數(shù)學模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在平面直角坐標系中,平行四邊形OABC的頂點A的坐標為(﹣4,0),頂點B在第二象限,∠BAO=60°,BC交y軸于點D,DB:DC=3:1.若函數(shù)y=kx(k>0,x>0)的圖象經(jīng)過點C,則A.33B.32C.22.如圖是測量一物體體積的過程:步驟一:將180mL的水裝進一個容量為300mL的杯子中;步驟二:將三個相同的玻璃球放入水中,結(jié)果水沒有滿;步驟三:再將一個同樣的玻璃球放入水中,結(jié)果水滿溢出.根據(jù)以上過程,推測一個玻璃球的體積在下列哪一范圍內(nèi)?(1mL=1cm3)().A.10cm3以上,20cm3以下 B.20cm3以上,30cm3以下C.30cm3以上,40cm3以下 D.40cm3以上,50cm3以下3.去年二月份,某房地產(chǎn)商將房價提高40%,在中央“房子是用來住的,不是用來炒的”指示下達后,立即降價30%.設(shè)降價后房價為x,則去年二月份之前房價為()A.(1+40%)×30%x B.(1+40%)(1﹣30%)xC. D.4.“射擊運動員射擊一次,命中靶心”這個事件是()A.確定事件B.必然事件C.不可能事件D.不確定事件5.在銀行存款準備金不變的情況下,銀行的可貸款總量與存款準備金率成反比例關(guān)系.當存款準備金率為7.5%時,某銀行可貸款總量為400億元,如果存款準備金率上調(diào)到8%時,該銀行可貸款總量將減少多少億()A.20 B.25 C.30 D.356.已知反比例函數(shù)y=﹣,當﹣3<x<﹣2時,y的取值范圍是()A.0<y<1 B.1<y<2 C.2<y<3 D.﹣3<y<﹣27.如圖,直線m∥n,∠1=70°,∠2=30°,則∠A等于(

)A.30° B.35° C.40° D.50°8.如圖是一次數(shù)學活動課制作的一個轉(zhuǎn)盤,盤面被等分成四個扇形區(qū)域,并分別標有數(shù)字-1,0,1,2.若轉(zhuǎn)動轉(zhuǎn)盤兩次,每次轉(zhuǎn)盤停止后記錄指針所指區(qū)域的數(shù)字(當指針恰好指在分界線上時,不記,重轉(zhuǎn)),則記錄的兩個數(shù)字都是正數(shù)的概率為()A. B. C. D.9.計算36÷(﹣6)的結(jié)果等于()A.﹣6 B.﹣9 C.﹣30 D.610.下列運算正確的是()A.(﹣2a)3=﹣6a3 B.﹣3a2?4a3=﹣12a5C.﹣3a(2﹣a)=6a﹣3a2 D.2a3﹣a2=2a二、填空題(共7小題,每小題3分,滿分21分)11.如圖,用黑白兩種顏色的紙片,按黑色紙片數(shù)逐漸增加1的規(guī)律拼成如圖圖案,則第4個圖案中有__________白色紙片,第n個圖案中有__________張白色紙片.12.對角線互相平分且相等的四邊形是()A.菱形 B.矩形 C.正方形 D.等腰梯形13.將161000用科學記數(shù)法表示為1.61×10n,則n的值為________.14.在一個不透明的口袋中,有3個紅球、2個黃球、一個白球,它們除顏色不同之外其它完全相同,現(xiàn)從口袋中隨機摸出一個球記下顏色后放回,再隨機摸出一個球,則兩次摸到一個紅球和一個黃球的概率是_____.15.數(shù)學家吳文俊院士非常重視古代數(shù)學家賈憲提出的“從長方形對角線上任一點作兩條分別平行于兩鄰邊的直線,則所容兩長方形面積相等(如圖所示)”這一推論,他從這一推論出發(fā),利用“出入相補”原理復原了《海島算經(jīng)》九題古證.(以上材料來源于《古證復原的原則》《吳文俊與中國數(shù)學》和《古代世界數(shù)學泰斗劉徽》)請根據(jù)上圖完成這個推論的證明過程.證明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(______________+______________).易知,S△ADC=S△ABC,______________=______________,______________=______________.可得S矩形NFGD=S矩形EBMF.16.如圖,在3×3的方格中,A、B、C、D、E、F分別位于格點上,從C、D、E、F四點中任取一點,與點A、B為頂點作三角形,則所作三角形為等腰三角形的概率是__.17.從﹣2,﹣1,1,2四個數(shù)中,隨機抽取兩個數(shù)相乘,積為大于﹣4小于2的概率是_____.三、解答題(共7小題,滿分69分)18.(10分)已知線段a及如圖形狀的圖案.(1)用直尺和圓規(guī)作出圖中的圖案,要求所作圖案中圓的半徑為a(保留作圖痕跡)(2)當a=6時,求圖案中陰影部分正六邊形的面積.19.(5分)如圖,將矩形ABCD繞點A順時針旋轉(zhuǎn),得到矩形AB′C′D′,點C的對應點C′恰好落在CB的延長線上,邊AB交邊C′D′于點E.(1)求證:BC=BC′;(2)若AB=2,BC=1,求AE的長.20.(8分)如圖,∠BAC的平分線交△ABC的外接圓于點D,交BC于點F,∠ABC的平分線交AD于點E.(1)求證:DE=DB:(2)若∠BAC=90°,BD=4,求△ABC外接圓的半徑;(3)若BD=6,DF=4,求AD的長21.(10分)九(1)班數(shù)學興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x(1≤x≤90)天的售價與銷售量的相關(guān)信息如下表:時間x(天)

1≤x<50

50≤x≤90

售價(元/件)

x+40

90

每天銷量(件)

200-2x

已知該商品的進價為每件30元,設(shè)銷售該商品的每天利潤為y元[求出y與x的函數(shù)關(guān)系式;問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結(jié)果.22.(10分)如圖,已知是的直徑,點、在上,且,過點作,垂足為.求的長;若的延長線交于點,求弦、和弧圍成的圖形(陰影部分)的面積.23.(12分)某中學為開拓學生視野,開展“課外讀書周”活動,活動后期隨機調(diào)查了九年級部分學生一周的課外閱讀時間,并將結(jié)果繪制成兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖的信息回答下列問題:(1)本次調(diào)查的學生總數(shù)為_____人,被調(diào)查學生的課外閱讀時間的中位數(shù)是_____小時,眾數(shù)是_____小時;并補全條形統(tǒng)計圖;(2)在扇形統(tǒng)計圖中,課外閱讀時間為5小時的扇形的圓心角度數(shù)是_____;(3)若全校九年級共有學生800人,估計九年級一周課外閱讀時間為6小時的學生有多少人?24.(14分)如圖,在△ABC中,∠C=90°.作∠BAC的平分線AD,交BC于D;若AB=10cm,CD=4cm,求△ABD的面積.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】解:∵四邊形ABCD是平行四邊形,點A的坐標為(﹣4,0),∴BC=4,∵DB:DC=3:1,∴B(﹣3,OD),C(1,OD),∵∠BAO=60°,∴∠COD=30°,∴OD=3,∴C(1,3),∴k=3,故選D.點睛:本題考查了平行四邊形的性質(zhì),掌握平行四邊形的性質(zhì)以及反比例函數(shù)圖象上點的坐標特征是解題的關(guān)鍵.2、C【解析】分析:本題可設(shè)玻璃球的體積為x,再根據(jù)題意列出不等式組求得解集得出答案即可.詳解:設(shè)玻璃球的體積為x,則有解得30<x<1.故一顆玻璃球的體積在30cm3以上,1cm3以下.故選C.點睛:此題考查一元一次不等式組的運用,解此類題目常常要根據(jù)題意列出不等式組,再化簡計算得出x的取值范圍.3、D【解析】

根據(jù)題意可以用相應的代數(shù)式表示出去年二月份之前房價,本題得以解決.【詳解】由題意可得,去年二月份之前房價為:x÷(1﹣30%)÷(1+40%)=,故選:D.【點睛】本題考查了列代數(shù)式,解答本題的關(guān)鍵是明確題意,列出相應的代數(shù)式.4、D【解析】試題分析:“射擊運動員射擊一次,命中靶心”這個事件是隨機事件,屬于不確定事件,故選D.考點:隨機事件.5、B【解析】設(shè)可貸款總量為y,存款準備金率為x,比例常數(shù)為k,則由題意可得:,,∴,∴當時,(億),∵400-375=25,∴該行可貸款總量減少了25億.故選B.6、C【解析】分析:由題意易得當﹣3<x<﹣2時,函數(shù)的圖象位于第二象限,且y隨x的增大而增大,再計算出當x=-3和x=-2時對應的函數(shù)值,即可作出判斷了.詳解:∵在中,﹣6<0,∴當﹣3<x<﹣2時函數(shù)的圖象位于第二象限內(nèi),且y隨x的增大而增大,∵當x=﹣3時,y=2,當x=﹣2時,y=3,∴當﹣3<x<﹣2時,2<y<3,故選C.點睛:熟悉“反比例函數(shù)的圖象和性質(zhì)”是正確解答本題的關(guān)鍵.7、C【解析】試題分析:已知m∥n,根據(jù)平行線的性質(zhì)可得∠3=∠1=70°.又因∠3是△ABD的一個外角,可得∠3=∠2+∠A.即∠A=∠3-∠2=70°-30°=40°.故答案選C.考點:平行線的性質(zhì).8、C【解析】

列表得,

1

2

0

-1

1

(1,1)

(1,2)

(1,0)

(1,-1)

2

(2,1)

(2,2)

(2,0)

(2,-1)

0

(0,1)

(0,2)

(0,0)

(0,-1)

-1

(-1,1)

(-1,2)

(-1,0)

(-1,-1)

由表格可知,總共有16種結(jié)果,兩個數(shù)都為正數(shù)的結(jié)果有4種,所以兩個數(shù)都為正數(shù)的概率為,故選C.考點:用列表法(或樹形圖法)求概率.9、A【解析】分析:根據(jù)有理數(shù)的除法法則計算可得.詳解:31÷(﹣1)=﹣(31÷1)=﹣1.故選A.點睛:本題主要考查了有理數(shù)的除法,解題的關(guān)鍵是掌握有理數(shù)的除法法則:兩數(shù)相除,同號得正,異號得負,并把絕對值相除.2除以任何一個不等于2的數(shù),都得2.10、B【解析】

先根據(jù)同底數(shù)冪的乘法法則進行運算即可?!驹斀狻緼.;故本選項錯誤;B.﹣3a2?4a3=﹣12a5;故本選項正確;C.;故本選項錯誤;D.不是同類項不能合并;故本選項錯誤;故選B.【點睛】先根據(jù)同底數(shù)冪的乘法法則,冪的乘方,積的乘方,合并同類項分別求出每個式子的值,再判斷即可.二、填空題(共7小題,每小題3分,滿分21分)11、133n+1【解析】分析:觀察圖形發(fā)現(xiàn):白色紙片在4的基礎(chǔ)上,依次多3個;根據(jù)其中的規(guī)律得出第n個圖案中有白色紙片即可.詳解:∵第1個圖案中有白色紙片3×1+1=4張第2個圖案中有白色紙片3×2+1=7張,第3圖案中有白色紙片3×3+1=10張,∴第4個圖案中有白色紙片3×4+1=13張第n個圖案中有白色紙片3n+1張,故答案為:13、3n+1.點睛:考查學生的探究能力,解題時必須仔細觀察規(guī)律,通過歸納得出結(jié)論.12、B【解析】

根據(jù)平行四邊形的判定與矩形的判定定理,即可求得答案.【詳解】∵對角線互相平分的四邊形是平行四邊形,對角線相等的平行四邊形是矩形,∴對角線相等且互相平分的四邊形一定是矩形.故選B.【點睛】此題考查了平行四邊形,矩形,菱形以及等腰梯形的判定定理.此題比較簡單,解題的關(guān)鍵是熟記定理.13、5【解析】

【科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】∵161000=1.61×105.∴n=5.故答案為5.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.14、【解析】

先畫樹狀圖展示所有36種等可能的結(jié)果數(shù),再找出兩次摸到一個紅球和一個黃球的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】畫樹狀圖如下:由樹狀圖可知,共有36種等可能結(jié)果,其中兩次摸到一個紅球和一個黃球的結(jié)果數(shù)為12,所以兩次摸到一個紅球和一個黃球的概率為,故答案為.【點睛】本題考查了列表法或樹狀圖法:通過列表法或樹狀圖法展示所有等可能的結(jié)果求出n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后根據(jù)概率公式求出事件A或B的概率.15、S△AEFS△FMCS△ANFS△AEFS△FGCS△FMC【解析】

根據(jù)矩形的性質(zhì):矩形的對角線把矩形分成面積相等的兩部分,由此即可證明結(jié)論.【詳解】S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(S△ANF+S△FCM).易知,S△ADC=S△ABC,S△ANF=S△AEF,S△FGC=S△FMC,可得S矩形NFGD=S矩形EBMF.故答案分別為S△AEF,S△FCM,S△ANF,S△AEF,S△FGC,S△FMC.【點睛】本題考查矩形的性質(zhì),解題的關(guān)鍵是靈活運用矩形的對角線把矩形分成面積相等的兩部分這個性質(zhì),屬于中考??碱}型.16、.【解析】

解:根據(jù)從C、D、E、F四個點中任意取一點,一共有4種可能,選取D、C、F時,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=;故答案為.【點睛】本題考查概率的計算及等腰三角形的判定,熟記等要三角形的性質(zhì)及判定方法和概率的計算公式是本題的解題關(guān)鍵.17、【解析】

列表得出所有等可能結(jié)果,從中找到積為大于-4小于2的結(jié)果數(shù),根據(jù)概率公式計算可得.【詳解】列表如下:-2-112-22-2-4-12-1-21-2-122-4-22由表可知,共有12種等可能結(jié)果,其中積為大于-4小于2的有6種結(jié)果,∴積為大于-4小于2的概率為=,故答案為.【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.三、解答題(共7小題,滿分69分)18、(1)如圖所示見解析,(2)當半徑為6時,該正六邊形的面積為【解析】試題分析:(1)先畫一半徑為a的圓,再作所畫圓的六等分點,如圖所示,連接所得六等分點,作出兩個等邊三角形即可;(2)如下圖,連接OA、OB、OC、OD,作OE⊥AB于點E,由已知條件先求出AB和OE的長,再求出CD的長,即可求得△OCD的面積,這樣即可由S陰影=6S△OCD求出陰影部分的面積了.試題解析:(1)所作圖形如下圖所示:(2)如下圖,連接OA、OB、OC、OD,作OE⊥AB于點E,則由題意可得:OA=OB=6,∠AOB=120°,∠OEB=90°,AE=BE,△BOC,△AOD都是等腰三角形,△OCD的三邊三角形,∴∠ABO=30°,BC=OC=CD=AD,∴BE=OB·cos30°=,OE=3,∴AB=,∴CD=,∴S△OCD=,∴S陰影=6S△OCD=.19、(1)證明見解析;(2)AE=.【解析】

(1)連結(jié)AC、AC′,根據(jù)矩形的性質(zhì)得到∠ABC=90°,即AB⊥CC′,根據(jù)旋轉(zhuǎn)的性質(zhì)即可得到結(jié)論;(2)根據(jù)矩形的性質(zhì)得到AD=BC,∠D=∠ABC′=90°,根據(jù)旋轉(zhuǎn)的性質(zhì)得到BC′=AD′,AD=AD′,證得BC′=AD′,根據(jù)全等三角形的性質(zhì)得到BE=D′E,設(shè)AE=x,則D′E=2﹣x,根據(jù)勾股定理列方程即可得到結(jié)論.【詳解】解::(1)連結(jié)AC、AC′,∵四邊形ABCD為矩形,∴∠ABC=90°,即AB⊥CC′,∵將矩形ABCD繞點A順時針旋轉(zhuǎn),得到矩形AB′C′D′,∴AC=AC′,∴BC=BC′;(2)∵四邊形ABCD為矩形,∴AD=BC,∠D=∠ABC′=90°,∵BC=BC′,∴BC′=AD′,∵將矩形ABCD繞點A順時針旋轉(zhuǎn),得到矩形AB′C′D′,∴AD=AD′,∴BC′=AD′,在△AD′E與△C′BE中∴△AD′E≌△C′BE,∴BE=D′E,設(shè)AE=x,則D′E=2﹣x,在Rt△AD′E中,∠D′=90°,由勾定理,得x2﹣(2﹣x)2=1,解得x=,∴AE=.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),三角形全等的判定和性質(zhì),勾股定理的應用等,熟練掌握性質(zhì)定理是解題的關(guān)鍵.20、(1)見解析;(2)2(3)1【解析】

(1)通過證明∠BED=∠DBE得到DB=DE;

(2)連接CD,如圖,證明△DBC為等腰直角三角形得到BC=BD=4,從而得到△ABC外接圓的半徑;

(3)證明△DBF∽△ADB,然后利用相似比求AD的長.【詳解】(1)證明:∵AD平分∠BAC,BE平分∠ABD,∴∠1=∠2,∠3=∠4,∴∠BED=∠1+∠3=∠2+∠4=∠5+∠4=∠DBE,∴DB=DE;(2)解:連接CD,如圖,∵∠BAC=10°,∴BC為直徑,∴∠BDC=10°,∵∠1=∠2,∴DB=BC,∴△DBC為等腰直角三角形,∴BC=BD=4,∴△ABC外接圓的半徑為2;(3)解:∵∠5=∠2=∠1,∠FDB=∠BDA,∴△DBF∽△ADB,∴=,即=,∴AD=1.【點睛】本題考查了三角形的外接圓與外心:三角形外接圓的圓心是三角形三條邊垂直平分線的交點,叫做三角形的外心.也考查了圓周角定理和相似三角形的判定與性質(zhì).21、(1);(2)第45天時,當天銷售利潤最大,最大利潤是6050元;(3)41.【解析】

(1)根據(jù)單價乘以數(shù)量,可得利潤,可得答案.(2)根據(jù)分段函數(shù)的性質(zhì),可分別得出最大值,根據(jù)有理數(shù)的比較,可得答案.(3)根據(jù)二次函數(shù)值大于或等于4800,一次函數(shù)值大于或等于48000,可得不等式,根據(jù)解不等式組,可得答案.【詳解】(1)當1≤x<50時,,當50≤x≤90時,,綜上所述:.(2)當1≤x<50時,二次函數(shù)開口下,二次函數(shù)對稱軸為x=45,當x=45時,y最大=-2×452+180×45+2000=6050,當50≤x≤90時,y隨x的增大而減小,當x=50時,y最大=6000,綜上所述,該商品第45天時,當天銷售利潤最大,最大利潤是6050元.(3)解,結(jié)合函數(shù)自變量取值范圍解得,解,結(jié)合函數(shù)自變量取值范圍解得所以當20≤x≤60時,即共41天,每天銷售利潤不低于4800元.【點睛】本題主要考查了1.二次函數(shù)和一次函數(shù)的應用(銷售問題);2.由實際問題列函數(shù)關(guān)系式;3.二次函數(shù)和一次函數(shù)的性質(zhì);4.分類思想的應用.22、(1)OE=;(2)陰影部分的面積為【解析】

(1)由題意不難證明OE為△ABC的中位線,要求OE的長度即要求BC的長度,根據(jù)特殊角的三角函數(shù)即可求得;(2)由題意不難證明△COE≌△AFE,進而將要求的陰影部分面積轉(zhuǎn)化為扇形FOC的面積,利用扇形面積公式求解即可.【詳解】解:(1)∵AB是⊙O的直徑,∴∠ACB=90°,∵OE⊥AC,∴OE?//?BC,又∵點O是AB中點,∴OE是△ABC的中位線,∵∠D=60°,∴∠B=60°,又∵AB=6,∴BC=AB·cos60°=3,∴OE=BC=;(2)連接OC,∵∠D=60°,∴∠AOC=120°,∵OF⊥AC,∴AE=CE,=,∴∠AOF=∠COF=60°,∴△AOF為等邊三角形,∴AF=AO=CO,∵在Rt△C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論