版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
初中數(shù)學(xué)輔助線(Juniorhighschoolmathematicsauxiliaryline)
Juniorhighschoolmathematicsauxiliaryline
1.triangleproblemaddingauxiliarylinemethod
Method1:questionsaboutthemiddlelineofatriangle,often
doublingthemiddle1ine.Itiseasytosolvetheproblemwith
themidpointoftheproblem,oftenusingthemiddlelineofthe
triangle.
Method2:thesubjectthatcontainsthebisector,oftentakes
theangularbisectorasthesymmetryaxis,andusestheproperty
ofthebisectorandtheconditioninthequestiontoconstruct
thecongruenttriangle,thussolvestheproblembyusingthe
knowledgeofcongruenttriangle.
Method3:theconclusionisthatthetwolinesegmentsareequal,
theauxiliarylinesareoftendrawnintocongruenttriangles,
orsometheoremsaboutthebisectionlineareused.
Method4:conclusionisalinewithanotherlineandthethird
lineisequaltothiskindofproblems,oftenwithlongorshort
cutmethod,theso-calledtenniniallymethodistoputthethird
linesaredividedintotwoparts,onepartofthecardisequal
tothefirst1ine,andtheotherpartisequaltosecondlines.
Theaddingmethodofauxiliarylinein2.parallelogram
Theparallelogram(includingrectangular,square,diamond)two
groupofdiagonalanddiagonaledges,hassomeofthesame
nature,sotherearealsocommoninaddingauxiliarylinemethod,
theobjectiveistocreatelineparallel,vertical,similar,
congruenttriangles,theparallelogramproblemintoatriangle,
squareandotherissuesofcommonprocessing,hasthefollowing
severalcommonmethods,forexamplesimplesolutionsas
follows:
(1)diagonalortranslationdiagonal:
(2)theverticalstructureoftheedgeoppositethevertex;the
righttriangle
(3)parallellinesconnectingthediagonalintersectionpoint
withthemidpointofonesideorthediagonalintersectionpoint
areconstructed,andtheparallelormiddlelineoftheline
segmentisconstructed
(4)alinesegmentconnectingthevertextoapointonthe
oppositeedgeorextendingtheline,constructingatriangle,
asimilaroranequaltriangle.
(5)makeadiagonallineperpendiculartothevertexandform
alineparallelortrianglecongruent
3.laddercommonlyusedintheauxiliarylineoftim
Atrapeziumisaspecialquadrilateral.Itisasynthesisof
parallelogramandtriangleknowledge.Byaddingproper
auxiliary1ines,thetrapezoidalproblemisreducedtoa
parallelogramoratriangleproblem.Theauxiliarylineis
addedasabridgetosolvetheproblem:
(1)moveonewaistinthetrapezoid.
(2)trapezoidoutsidetranslationonewaist
(3)insidetheladder,movetwowaist
(4)extendtwowaist
(5)theendsofthetopandbottomoftheladderarehigh
(6)translationdiagonal
(7)connecttheacmeofaladderandthemidpointofawaist.
(8)themidpointofonewaististheparallellineoftheother
waist.
(9)makemiddlepositionline;
Ofcourse,intherelevantdemonstrationandcalculationofthe
ladder,theauxiliarylinesaddedarenotnecessarilyfixedand
single.Itisthekeytosolvetheproblemofturningthe
trapeziumproblemintoparallelogramortrianglethroughthe
auxiliarylineofthebridge.
Amethodofmakingauxiliarylines
I.midpoint,middleline,extension1ine,parallelline.
Apointincaseofconditionsinline,themedian1ine,then
amidpoint,extendthemidlineormedianlineastheauxiliary
line,theextensionofasegmentisequaltothemedianline
orline;anotherauxiliarylineisthemidpointforparallel
linesorlinesegmentsknownside,inordertoachievethe
applicationofatheoremthepurposeofmakingorhelp.
Two:vertical,bisector,flip,congruent,even.
Incaseswherethereisabisectoroftheverticalortheangle,
thegraphcanberotatedby180degreesbythemethodofaxial
symmetryandbyotherconditions,andthecontourofthe
auxiliarylinewillcomeintobeing.Thesymmetryaxisisoften
thebisectoroftheverticalortheangle.
Three:experimentiftheedgesareequalandrotated.
Apolygononbothsidesofthecornersincaseofequalorequal
conditionsinthecorner,sometimeswitheachother,thenthe
angleofgraphrotationtosomeextent,youcangetcongruent,
thenauxiliarylinepracticesstillcomeintobeing.Thecenter
ofsymmetryvariesfromsubjecttocenter,sometimeswithout
center.Itcanbedividedinto"heart"and"nomind“rotation
ofthetwo.
Four:maketheangle,theflat,thesimilar,thedifference,
thedifference,theproductandthecommercialview.
Apolygononbothsidesofthecornersincaseofequalorequal
conditions,tosegmentorangleanddifferenceproductisoften
associatedwithsimilarbusiness.Inmakingtwotrianglesalike,
therearegenerallytwoways:first,tocreateanauxiliary
angleequaltotheknownangle;second,tomovealineinthe
triangle.Averse:"angle,flat,similaranddifferenceproduct
dealerssee.”
Five:areatofindthebottomhigh,multilateralchangethree
sides.
Inthecaseofthearea,thesquareandtheproductoftheline
segmentintheconditionandtheconclusioncanstillbe
regardedastheareaofthesolution,andoftenthebottomor
theheightistheauxiliaryline,whiletheequalbottomor
equalheightofthetwotriangleisthekeytothethinking.
Ifapolygonisencountered,theideaiscutupintoatriangle;
otherwise,itisestablished.
Inaddition,MingandQingDynastiesinChinaareafor
mathematicianstoprovethePythagoreantheorem,theauxiliary
lineapproach,namely"patching“hasmorethan200kinds,most
oftheareaattheendofthree,themultilateralboundary”.
Juniorhighschoolgeometrycommonauxiliarylineformula
Peoplesaygeometryisverydifficult,andthedifficultyis
intheauxiliaryline.Auxiliaryline,howtoadd?Grasp
theoremsandconcepts.
Wemuststudyhard,findoutthelaw,andrelyonexperience.
Triangle
Thegraphhasanangularbisectorthatcanbeperpendicularto
bothsides.Youcanalsolookatthefigureinhalf,symmetrical,
thentherelationshipis.
Anglebisector,parallelline,isoscelestriangletoadd.Angle
bisector,plusverticalline,trythreelinestogether.
A1ineofverticalbisector,oftenjoinedtobothends.Line
segmentsanddifferences,andhalftimes,extended,shortened,
andtestable.
Thelinesegmentsanddifferenceinequalitiesmovetothesame
triangle.Themiddleofthetriangleistwopoints,andthe
connectionisamiddleline.
Thereisamiddlelineinthetriangle,extendingthemiddle
lineandsoon.
Quadrilateral
Theparallelogramappearsandthecenterofsymmetrydivides.
Theproblemhowtoconvertladder,anddelta.
Movethewaist,movediagonally,andlengthenthetwowaistto
makeithigh.Ifthereisamiddlepointofthewaist,carefully
connectthemiddleline.
Theabovemethoddoesnotwork,overwaistmidpointcongruent
creation.Similartotheline,lineparalleltothehabit.
Theplotratioformulaisthekeysegmentforchange.Direct
proofofdifficulty,equalsubstitution,lesstrouble.
Thehypotenuseaboveline,alargeproportionofitems.
Examplesofcommonlyusedmethodsforassistinglinesin
triangles
Onetimesthecenterline
1:ABCADBCisknown,onthesideofthemidline,asanisosceles
righttrianglewithABedge,ACedgeisrectangularshape
anisotropy,asshowninFigure5-2,confirmationofEF=2AD.
Two,takefromauxiliary1inemethod.
InABC,AD/BAC/ACBsplit,/B=2,AB=ACCDconfirmation.
Three,extendtheknownsidestructuretriangle:
Forexample:Figure7-1:givenAC=BD,ADACinAgroup,BC
groupofBDinB:AD=BC,confirmation
Analysis:toAD=BC,ofwhichcontainAD,BCthereareseveral
congruenttriangles,DeltaADCanddeltaplan:BCD,DeltaAOD
anddeltaBOC,DeltaABDanddeltaBAC,butaccordingtothe
existingconditionsarenotequaltothedifferenceofangle
congruentcard,therefore,cantrytomakeanewangle.Letthe
angleastwotriangularpublicangle.
Proof:extendedDA,CB,respectively,andtheirelongationat
Epoint,
ADACBCgroupBDgroupofdreams(known)
L/CAE/DBE==90DEG(verticaldefinition)
InthedeltaDBEanddeltaCAE
Dreams
StardeltaDBE=CAE(AAS)
ED=EB=EA*EC(congruenttrianglescorrespondingequal
sides)
L=EDEAECEB
Namely:AD=BC.
Whenconditionsareinsufficient,newconditionscanbecreated
byaddingauxiliarylinestocreateconditionsforthequestion
Four,connectthequadrilateraldiagonal,thequadrilateral
problemintoatriangletosolve.
Forexample:asshowninfigure8-1:AB,CD,ADandBCprovethat
AB=CD.
Analysis:thegraphisquadrilateral,weonlylearnthe
knowledgeabouttriangle,andmusttransformitintotriangle
tosolve.
Proof:connectAC(orBD)
ABCDADBC"Dreams”(known)
L/l=2/3=4,//(twolineparallel,alternateanglesequal)
InthedeltaABCanddeltaCDA
Dreams
StardeltaABC=CDA(ASA)
ABCD(r=congruenttrianglescorrespondingequalsides)
Five.Thelineisusuallyextendedwhenthereisalinesegment
perpendiculartotheanglebisector.
Forexample:asshowninFigure9-1:inRtDeltaABC,AB=AC
/BAC=90/1=2DEGangle,theextensionofBDinECEgroup.
Confirmation:BD=2CE
Analysis:toBD=2CE,thoughttoconstructthesegments2CE,
CEandABCanglebisectorandvertical,thoughttoextendthe.
Proof:extendedBAandCEtopointF,respectively.
BECF(known)groupofdreams
L/BEF/BEC==90DEG(verticaldefinition)
InthedeltaBEFanddeltaBEC,
Dreams
StardeltaBEF=BEC(ASA)*CE=FE=CF(congruenttriangles
correspondingequalsides)
AnCF/BAC=90?BEdreams(known)
L/BAC/CAF==90deg/1+/BDA=90deg/1+/BFC=90
DEG
L/BDA=/BFC
InthedeltaABDanddeltaACF
StardeltaABD=ACF(AAS)*BD=CF(congruenttriangles
correspondingequalsides)*BD=2CE
Six.Connecttheknownpointsandconstructcongruent
triangles.
Forexample:known:figure10-1;ACandBDintersectat0,and
AB=DC,AC=BD/A/D=confirmation.
Analysis:Card/A=/D,permittheirtriangleDeltaABOand
deltaDCOcongruent,andonlyAB=DCandtheverticalangle
ofthetwoconditions,acondition,topermitthecongruent,
onlytofindanotherothercongruenttriangles,AB=DC,AC=
BD,ifconnectBC,DeltaABCandDeltaDCBiscongruent,soget
/A=/D.
Proof:connectBC,DeltaABCanddeltaDCBin
Dreams
StardeltaABC=DCB(SSS)
L/A/D=(congruenttrianglescorrespondingequalsides)
Seven,takelinesegments,midpointstructure,congruent,
threetangible.
Forexample:figure11-1:AB=DC/A=/D/ABC/DCB=
confirmation.
Analysis:AB=DC/A=D/AD,thoughtofasthemidpointof
N,NC,NBconnection,thentheSASaxiomsofdeltaABNDelta
DCN=,soBN=CN,ABN=//DCN.Theonlycard/NBC=M/NCB,
andBCMN,themidpointconnection,theSSSaxiomsofdeltaNBM
=NCM/NBC=NCB/so.Proofofproblem.
Proof:takethemidpointofAD,BC,N,M,connectNB,NM,NC.
ThenAN=DN,BM=CM,
InthedeltaABNanddeltaDCN
Dreams
StardeltaABN=DCN(SAS)
L/ABN=NB/DCN=NC(congruenttrianglescorrespondingedges,
equalangles)
InthedeltaNBManddeltaNCM
Dreams
StardeltaNMB=NCM,r=(SSS)/NBC/NCB(congruenttriangles
correspondingequalangles)/NBC/ABN/r=NCB/DCN/ABC
/DCB=namely.
Twotheauxiliarylinethatisinducedbythebisectorofangles
Formula:abisectorgraph,tomakebothsidesofthevertical.
Youcanalsolookatthefigureinhalf,symmetrical,thenthe
relationshipis.Anglebisector,parallel1ine,isosceles
triangletoadd.Anglebisector,plusverticalline,trythree
linestogether.
Theangularbisectorhastwoproperties:Aandsymmetry;Band
thebisectorofthebisectoroftheangularbisectorareequal
tothedistanceofthetwosidesofthecorner.Thereare
generallytwokindsofauxiliarylineswithangularbisector.
Averticallinefromonepointtotheotherfromthebisector;
Theuseofangularbisectortoconstructsymmetricalfigures
(e.g.,cuttingshortedgesonthelongsideofaside).
Normally,whenarightorverticalconditionoccurs,avertical
lineisusuallyconsidered;inothercases,asymmetric
structureisconsidered.Asforwhichmethodtochoose,combine
thetitle,graphandknownconditions.
Anauxiliarylinewithanangle
(I)interception,construction,congruence
Theproofofgeometryliesinthesuppositionandtheattempt,
butthiskindofattemptandthesuppositionareincertainlaw
basicabove,hopedschoolmatescangraspthecorrelation
geometrylaw,
Insolvinggeometryproblems,trytoguessandtryaccording
tocertainrules.Thefollowingisabriefintroductiontothe
auxiliarylinesinvolvedinthetheoremscommontogeometry.
Figure1-1/AOC=/BOC,suchas0E=0F,DE,DFandconnectwith
deltaOED,DeltatownofOFD,thuscreatingconditionsforour
proofline,angle.
Figure1-2,AB//CD,BE/BCD/CEsplit,splitBCD,EinAD,
toverify:BC=AB+CD.
Analysis:thisproblemisrelatedtotheanglebisectorofangle
bisector,canbeusedtoconstructthesolutionofcongruent
triangles,dividethelinetoconstructtheaxisofsymmetry,
andtheproblemisthatlineandthebadtimesproblem.The
methodintheproofoflinesegmentandthebadtimestothe
commonproblemistoextendthemethodorinterceptmethodto
prove,extendtheshortlineorinalonglinetointercepta
portionofthelengthisequaltotheshortline.Butwhether
orextendedtoprovetheequallineintercept,extendedtoprove
thattheextensionofthelineandalinesegmenttoproveequal
interceptioninterceptionaftertherestofthelinewithan
equal,andachievethepurposeoftheproof.
Simpleproof:inthisquestion,wecaninterceptBF=ABonlong
segmentBC,andthenproveCF=CD,soastoachievethepurpose
ofproof.Thisusesangularbisectortoconstructcongruent
triangles.Anothercongruentselfproof.Theproofofthis
problemcanalsobeextendedtotheextensionlineofBEand
CDtoproveitatonepoint.Tryityourself.
(two)theverticallineonbothsidesoftheanglelineisequal
totheverticalline
Theangleofthebisectorisperpendiculartobothsidesofthe
bisector,andtheproblemisprovedbythedistancebetweenthe
pointsonthebisectorofthebisectorandthedistancebetween
thetwosides.
Figure2-1,knownasAB>AD,CD=BC/BAC=/FAC.
Proof:/ADC+/B=180?
Analysis:fromC/BADtobothsidesofthevertical.InC/
ADCandangleBandangle.
(three)theverticalstructureofangularbisector;isosceles
triangle
Theverticalangularbisectorfromacornerontheside,sothat
bothsidesandcorneroftheintersection,thencutanisosceles
triangle,pedalforthemidpointonthebottom,theangle
bisectorandbeonthebottomlineandhigh,onetothreelines
bynatureandnatureinisoscelestrianglethebitline,(if
thereisalinesegmentperpendiculartotheangularbisector
inthesubject,thelineisextendedtointersecttheotherside
ofthecorner).
Knownas:3-1,AB>AC/BAD=/DAC,CD,ADinDgroup,Histhe
midpointofBC.
Confirmation:DH=(AB-AC)
Analysis:theextensionofCDandtheintersectionofABat
pointEarecongruenttriangles.Problemprovable.
(four)parallellinesontheothersideofthecornermadefrom
apointontheangleline
Inthecaseofanangularbisector,theparallellineofone
sideofthebisectoronthebisectorofthebisectoris
constructedtoformanisoscelestriangle.Theparallel1ines
oftheangularbisectorareintersectedwiththereverse
extensionlineontheotherside,soanisoscelestriangleis
alsoformed.Asshowninfigures4-1and4-2.
Threebythelineandthedifferencetothinkoftheauxiliary
line
Formula:
Linesegmentsanddifferences,andhalftimes,extended,
shortened,andtestable.Thelinesegmentsanddifference
inequalitiesmovetothesametriangle.
Whenprovingalineequaltotheothertwolinesandwhenthe
generalmethodisonlythenmethod:
1.Length:acutinalonglineisequaltooneoftheother
two,andthenprovesthattheremainderisequaltotheother;
2,improve:ashort1ineextension,theextensionpartisequal
toanothershortsegment,andthenprovethatthenewlineis
equaltothelengthofline.
Toprovetheinequalityoflineanddifference,itisusually
associatedwiththesumoftwolinesinatriangleisgreater
thanthirdsides,andthedifferenceislessthanthirdsides,
soitcanbeprovedinatriangle.
Inthethreesidesofatrianglerelationshipthatunequal
relationshipbetweenthesegment,suchasdirectevidence,can
connecttwooralongTingedgetoformatriangle,theline
appearsintheconclusioninoneorseveraltriangles,and
provedwiththeunequalrelationshipbetweenthethreesides
ofatriangle,suchas:
Inthetrianglecornerandcorneritisnotgreaterthanany
adjacentifdirectcertificatedoesnotcomeout,canconnect
twoorasideextension,
Toverifythestructureofthetriangle,atriangleinthe
Bighornangleposition,smallangleintheinteriorposition
ofthetriangle,theexteriorangletheorem:
Fourtheauxiliarylinethatcomesfromthemiddlepoint
Formula:
Themiddleofthetriangleistwopoints,andtheconnection
isamiddleline.Thereisamiddlelineinthetriangle,
extendingthemiddlelineandsoon.
Inatriangle,ifalittleisknownonthesideofatriangle
midpoint,itshouldfirstthinkoftriangle1ine,middle1ine,
doublecenterlineextendinganditsrelatedproperties
(hypotenuselineproperties,isoscelestrianglebottommidline,
thenthroughtheexplorationofnature),findawaytosolve
theproblem.
(1)themidlinedividestheoriginaltriangleintotwosmall
trianglesofequalsize
AsFigure1,ADisaABCline,SABD=SACD=SABC(deltadelta
deltadeltaABDanddeltaACDisbecausethebottomlevel).
Example1..InFigure2,inDeltaABC,ADisthemedian1ine,
extendingADtoE,andmakingDE=ADandDFthemiddleofdelta
DCE.TheareaoftheknownDeltaABCis2,andtheareaofthe
deltaCDFis.
Solution:becauseADisthemiddlelineofABC,soS,ACD=S,
ACD=1,ABC=,2=1,andbecauseCDisthemiddlelineofdelta
ACE,soS,Delta,CDE=S,delta,
SinceDFisthemiddlelineofdeltaCDE,soS,Delta,CDF=S,
Delta,CDE=*1=.
StardeltaCDFarea.
(two)themiddle1ineofthetriangleshouldbeconsideredfrom
themiddlepoint
Example2..AsshowninFigure3,inthequadrilateralABCD,
AB=CD,E,FarethemidpointofBCandAD,andtheextended1ines
ofBAandCDarerespectivelyEFextension1inesGandH.Proof:
/BGE=/CHE.
Proof:1inkBDandtakethemidpointofBDasM,andconnect
ME,MF,
DreamsMEisthemedianlineofthedeltaBCD,
RMECD,R/MEF=/CHE,
DreamsMFisthemedianlineofthedeltaABD,
RMFAB,R/MFE=/BGE,
AB=CDME=MFdreams,peryleneperylene/MEF=/MFE,
WhichangleBGE=angleCHE.
(three)themiddlelineshouldthinkofextendingthemiddle
line
Example3.,figure4,knowninDeltaABC,AB=5,AC=3,evenBC
onthecentrallineAD=2,thelengthoftheBC.
Solution:extendADtoE,makeDE=AD,thenAE=2AD=2*2=4.
InaACDandaEBD/ADC=/AD=ED,dreams,EDB,CD=BD,
StardeltaACD=EBD,RAC=BE,
ThusBE=AC=3.
InABE,forAE2+BE2=42+32=25=AB2,theangleE=90degrees,
RBD===,soBC=2BD=2.
4.casesofFigure5,knownasdeltaABC,ADisthebisector
ofangleBAC,ADandBConthesideofthemidline.Confirmation:
DeltaABCisisoscelestriangle.
Proof:extendADtoE,makeDE=AD.
Examp1e3provable:
DeltaDeltaBED=CAD,
TheEB=AC/E=/2,
And/1=/2,
L/1=/E,
AB=EBandAB=AC,namelyR,DeltaABCisanisoscelestriangle.
(four)thenatureofthecenterlineoftherightangled
triangle
5.casesofFigure6,knownasAB//DCABCD,ACladder,BCgroup,
ADgroupBD,verify:AC=BD.
Proof:ABDE,CEEpoint,link,DE,CErespectivelyRtDelta
ABD,DeltaABCRtABonthehypotenuseline,theDE=CE=AB/CDE=
/DCE,therefore.
AB//DCdreams,
L/CDE=/DCE=/2/1,
L/1=/2,
InDeltaADEanddeltaBCE,
DE=CE/1=/imprisonment,2,AE=BE,
StardeltaADEDeltaBCE=AD=BC,R,thusABCDistrapezoid
isoscelestrapezoid,soAC=BD.
(five)thebisectoroftheangleandthelineofaverticalline
shouldbethoughtofthemiddlelineoftheisoscelestriangle
(six)midlineextension
Auxiliarylineofcongruenttriangles
Themethodoffindingcongruenttriangles:
(1)wecanproceedfromtheconclusiontoseewhichtwopossible
congruenttrianglesaretobeprovedinthetwoequalsegments
(orangles);
(2)fromtheknownconditions,wecanseewhichtwotriangles
areequalunderthegivenconditions;
(3)consideringtheconditionsandconclusions,theycan
determinewhichtwotrianglesarecongruentwitheachother;
(4)iftheabovemethodsarenotpossible,wemayconsider
addingauxiliarylinestoformcongruenttriangles.
Themethodofcommonauxiliarylineintriangle:
Extendingthemiddle1ineandconstructingcongruent
triangles;
Usingfoldingtoconstructcongruenttriangles;
Third,drawparallellinesandconstructcongruenttriangles;
Makeisoscelestriangleofconnectionstructure.
Commonauxiliarylinemethodhasthefollowingseveralkinds:
Theisoscelestrianglecanbeusedastheheightonthebottom
edge,andtheproblemissolvedbythenatureof"three1i
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣告與數(shù)字媒體營銷考核試卷
- 住宅建筑的建筑測(cè)量和定量分析考核試卷
- 2024-2025年高考化學(xué)重要考點(diǎn)練習(xí)卷:化學(xué)原理綜合題型
- 工作總價(jià)管理提升企業(yè)績效的關(guān)鍵考核試卷
- 日用衛(wèi)生產(chǎn)品的品牌口碑與用戶評(píng)價(jià)考核試卷
- 指靜脈識(shí)別技術(shù)在法務(wù)行業(yè)的實(shí)際案例分析考核試卷
- 智慧城市和智能能源系統(tǒng)考核試卷
- 南京信息工程大學(xué)《水力學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 可持續(xù)發(fā)展與巴黎協(xié)定考核試卷
- 《基于結(jié)晶器參數(shù)優(yōu)化的銅板帶水平連鑄質(zhì)量提升研究》
- 古代辭章領(lǐng)略古代辭章的風(fēng)華與韻味
- 開放性指骨骨折的護(hù)理查房課件
- Part3-4 Unit5 Ancient Civilization教案-【中職專用】高一英語精研課堂(高教版2021·基礎(chǔ)模塊2)
- 2023年山東濟(jì)南市文化和旅游局所屬事業(yè)單位招聘42人筆試參考題庫(共500題)答案詳解版
- 開拓海外市場(chǎng):2024年新年計(jì)劃
- 2023-2024學(xué)年遼寧省沈陽126中八年級(jí)(上)期中數(shù)學(xué)試卷(含解析)
- 高一選科指導(dǎo)課件
- 生產(chǎn)檢驗(yàn)記錄表
- 化工廠設(shè)計(jì)車間布置設(shè)計(jì)
- 工業(yè)產(chǎn)品質(zhì)量安全風(fēng)險(xiǎn)管控清單及日管控、周排查、月調(diào)度記錄表
- 七年級(jí)上學(xué)期期中家長會(huì) (共31張PPT)
評(píng)論
0/150
提交評(píng)論