版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Two-SampleTestsandOne-WayANOVAChapter10ObjectivesInthischapter,youlearn:
HowtousehypothesistestingforcomparingthedifferencebetweenThemeansoftwoindependentpopulationsThemeansoftworelatedpopulationsTheproportionsoftwoindependentpopulationsThevariancesoftwoindependentpopulationsThemeansofmorethantwopopulationsTwo-SampleTestsTwo-SampleTestsPopulationMeans,IndependentSamplesPopulationMeans,RelatedSamplesPopulationVariancesGroup1vs.Group2Samegroupbeforevs.aftertreatmentVariance1vs.Variance2Examples:PopulationProportionsProportion1vs.Proportion2DCOVADifferenceBetweenTwoMeansPopulationmeans,independentsamplesGoal:Testhypothesisorformaconfidenceintervalforthedifferencebetweentwopopulationmeans,μ1–μ2
ThepointestimateforthedifferenceisX1–X2*σ1andσ2unknown,assumedequalσ1andσ2unknown,notassumedequalDCOVADifferenceBetweenTwoMeans:IndependentSamplesPopulationmeans,independentsamples*UseSptoestimateunknownσ.UseaPooled-Variance
ttest.σ1andσ2unknown,assumedequalσ1andσ2unknown,notassumedequalUseS1andS2toestimateunknownσ1andσ2.UseaSeparate-variancettestDifferentdatasourcesUnrelatedIndependentSampleselectedfromonepopulationhasnoeffectonthesampleselectedfromtheotherpopulationDCOVAHypothesisTestsfor
TwoPopulationMeansLower-tailtest:H0:μ1
μ2H1:μ1<μ2i.e.,H0:μ1–μ2
0H1:μ1–μ2
<0Upper-tailtest:H0:μ1≤μ2H1:μ1
>
μ2i.e.,H0:μ1–μ2
≤0H1:μ1–μ2
>0Two-tailtest:H0:μ1=μ2H1:μ1
≠
μ2i.e.,H0:μ1–μ2
=0H1:μ1–μ2
≠0TwoPopulationMeans,IndependentSamplesDCOVATwoPopulationMeans,IndependentSamplesLower-tailtest:H0:μ1–μ2
0H1:μ1–μ2
<0Upper-tailtest:H0:μ1–μ2
≤0H1:μ1–μ2
>0Two-tailtest:H0:μ1–μ2
=0H1:μ1–μ2
≠0aa/2a/2a-ta-ta/2tata/2RejectH0iftSTAT<-taRejectH0iftSTAT>taRejectH0iftSTAT<-ta/2
ortSTAT>ta/2
Hypothesistestsforμ1–μ2
DCOVAPopulationmeans,independentsamplesHypothesistestsforμ1-μ2withσ1andσ2unknownandassumedequalAssumptions:
SamplesarerandomlyandindependentlydrawnPopulationsarenormallydistributedorbothsamplesizesareatleast30Populationvariancesareunknownbutassumedequal*σ1andσ2unknown,assumedequalσ1andσ2unknown,notassumedequalDCOVAPopulationmeans,independentsamplesThepooledvarianceis:Theteststatisticis:WheretSTAThasd.f.=(n1+n2–2)(continued)*σ1andσ2unknown,assumedequalσ1andσ2unknown,notassumedequalHypothesistestsforμ1-μ2withσ1andσ2unknownandassumedequalDCOVAPopulationmeans,independentsamplesTheconfidenceintervalfor
μ1–μ2is:Wheretα/2hasd.f.=n1+n2–2*Confidenceintervalforμ1-μ2withσ1andσ2unknownandassumedequalσ1andσ2unknown,assumedequalσ1andσ2unknown,notassumedequalDCOVAPooled-VariancetTestExampleYouareafinancialanalystforabrokeragefirm.IsthereadifferenceindividendyieldbetweenstockslistedontheNYSE&NASDAQ?Youcollectthefollowingdata:
NYSE
NASDAQ
Number2125Samplemean 3.272.53Samplestddev 1.301.16Assumingbothpopulationsareapproximatelynormalwithequalvariances,is
thereadifferenceinmean
yield(
=0.05)?DCOVAPooled-VariancetTestExample:CalculatingtheTestStatisticTheteststatisticis:(continued)H0:μ1-μ2=0i.e.(μ1=μ2)H1:μ1-μ2≠0i.e.(μ1≠μ2)DCOVAPooled-VariancetTestExample:HypothesisTestSolutionH0:μ1-μ2=0i.e.(μ1=μ2)H1:μ1-μ2≠0i.e.(μ1≠μ2)
=0.05df=21+25-2=44CriticalValues:t=±2.0154TestStatistic:Decision:Conclusion:RejectH0ata=0.05Thereisevidenceofadifferenceinmeans.t02.0154-2.0154.025RejectH0RejectH0.0252.040DCOVAPooled-VariancetTestExample:ConfidenceIntervalforμ1-μ2SincewerejectedH0canwebe95%confidentthatμN(yùn)YSE>μN(yùn)ASDAQ?95%ConfidenceIntervalforμN(yùn)YSE-μN(yùn)ASDAQSince0islessthantheentireinterval,wecanbe95%confidentthatμN(yùn)YSE>μN(yùn)ASDAQDCOVAPopulationmeans,independentsamplesHypothesistestsforμ1-μ2withσ1andσ2unknown,notassumedequalAssumptions:
SamplesarerandomlyandindependentlydrawnPopulationsarenormallydistributedorbothsamplesizesareatleast30Populationvariancesareunknownandcannotbeassumedtobeequal*σ1andσ2unknown,assumedequalσ1andσ2unknown,notassumedequalDCOVAPopulationmeans,independentsamples(continued)*σ1andσ2unknown,assumedequalσ1andσ2unknown,notassumedequalHypothesistestsforμ1-μ2withσ1andσ2unknownandnotassumedequalDCOVATheformulaeforthistestarenotcoveredinthisbook.Seereference8fromthischapterformoredetails.ThistestutilizestwoseparatesamplevariancestoestimatethedegreesoffreedomforthettestSeparate-VariancetTestExampleYouareafinancialanalystforabrokeragefirm.IsthereadifferenceindividendyieldbetweenstockslistedontheNYSE&NASDAQ?Youcollectthefollowingdata:
NYSE
NASDAQ
Number2125Samplemean 3.272.53Samplestddev 1.301.16Assumingbothpopulationsareapproximatelynormalwithunequalvariances,is
thereadifferenceinmean
yield(
=0.05)?DCOVASeparate-VariancetTestExample:CalculatingtheTestStatistic(continued)H0:μ1-μ2=0i.e.(μ1=μ2)H1:μ1-μ2≠0i.e.(μ1≠μ2)DCOVASeparate-VariancetTestExample:HypothesisTestSolutionH0:μ1-μ2=0i.e.(μ1=μ2)H1:μ1-μ2≠0i.e.(μ1≠μ2)
=0.05df=40CriticalValues:t=±2.021TestStatistic:Decision:Conclusion:FailToRejectH0ata=0.05Thereisinsufficientevidenceofadifferenceinmeans.t02.021-2.021.025RejectH0RejectH0.0252.019DCOVARelatedPopulations
ThePairedDifferenceTest
TestsMeansof2RelatedPopulations PairedormatchedsamplesRepeatedmeasures(before/after)Usedifferencebetweenpairedvalues:EliminatesVariationAmongSubjectsAssumptions:DifferencesarenormallydistributedOr,ifnotNormal,uselargesamplesRelatedsamplesDi=X1i-X2iDCOVARelatedPopulations
ThePairedDifferenceTestTheith
paireddifferenceisDi,whereRelatedsamplesDi=X1i-X2i
ThepointestimateforthepaireddifferencepopulationmeanμDisD:nisthenumberofpairsinthepairedsampleThesamplestandarddeviationisSD(continued)DCOVATheteststatisticforμD
is:PairedsamplesWheretSTAThasn-1d.f.ThePairedDifferenceTest:
FindingtSTATDCOVALower-tailtest:H0:μD
0H1:μD<0Upper-tailtest:H0:μD≤0H1:μD
>0Two-tailtest:H0:μD=0H1:μD
≠0PairedSamplesThePairedDifferenceTest:PossibleHypothesesaa/2a/2a-ta-ta/2tata/2RejectH0iftSTAT<-taRejectH0iftSTAT>taRejectH0iftSTAT<-ta/2
ortSTAT>ta/2
WheretSTAThasn-1d.f.DCOVATheconfidenceintervalforμDisPairedsampleswhereThePairedDifferenceConfidenceIntervalDCOVAAssumeyousendyoursalespeopletoa“customerservice”trainingworkshop.Hasthetrainingmadeadifferenceinthenumberofcomplaints?Youcollectthefollowingdata:PairedDifferenceTest:Example
NumberofComplaints:
(2)-(1)Salesperson
Before(1)
After(2)
Difference,
DiC.B. 6
4-2T.F. 20
6-14M.H. 3
2-1R.K. 0
00M.O. 4
0
-4 -21
D=Din
=-4.2DCOVAHasthetrainingmadeadifferenceinthenumberofcomplaints(atthe0.01level)?
-4.2D=H0:μD=0H1:
μD
0TestStatistic:t0.005=±4.604
d.f.=n-1=4Reject
/2
-4.6044.604Decision:
DonotrejectH0(tstatisnotintherejectionregion)Conclusion:
Thereisinsufficientofachangeinthenumberofcomplaints.PairedDifferenceTest:SolutionReject
/2
-1.66
=.01DCOVATheconfidenceintervalforμDis:Sincethisintervalcontains0youare99%confidentthatμD=0ThePairedDifferenceConfidenceInterval--ExampleDCOVAD=-4.2,SD=5.67TwoPopulationProportionsGoal:testahypothesisorformaconfidenceintervalforthedifferencebetweentwopopulationproportions, π1–π2
ThepointestimateforthedifferenceisPopulationproportionsAssumptions:
n1π1
5,n1(1-π1)5n2π2
5,n2(1-π2)5
DCOVATwoPopulationProportionsPopulationproportionsThepooledestimatefortheoverallproportionis:whereX1andX2arethenumberofitemsofinterestinsamples1and2Inthenullhypothesisweassumethenullhypothesisistrue,soweassumeπ1=π2andpoolthetwosampleestimatesDCOVATwoPopulationProportionsPopulationproportionsTheteststatisticforπ1–π2isaZstatistic:(continued)whereDCOVAHypothesisTestsfor
TwoPopulationProportionsPopulationproportionsLower-tailtest:H0:π1
π2H1:π1<π2i.e.,H0:π1–π2
0H1:π1–π2
<0Upper-tailtest:H0:π1≤π2H1:π1
>
π2i.e.,H0:π1–π2
≤0H1:π1–π2
>0Two-tailtest:H0:π1=π2H1:π1
≠
π2i.e.,H0:π1–π2
=0H1:π1–π2
≠0DCOVAHypothesisTestsfor
TwoPopulationProportionsPopulationproportionsLower-tailtest:H0:π1–π2
0H1:π1–π2
<0Upper-tailtest:H0:π1–π2
≤0H1:π1–π2
>0Two-tailtest:H0:π1–π2
=0H1:π1–π2
≠0aa/2a/2a-za-za/2zaza/2RejectH0ifZSTAT<-ZaRejectH0ifZSTAT>ZaRejectH0ifZSTAT<-Za/2
orZSTAT>Za/2
(continued)DCOVAHypothesisTestExample:
TwopopulationProportionsIsthereasignificantdifferencebetweentheproportionofmenandtheproportionofwomenwhowillvoteYesonPropositionA?Inarandomsample,36of72menand35of50womenindicatedtheywouldvoteYesTestatthe.05levelofsignificanceDCOVAThehypothesistestis:H0:π1–π2
=0(thetwoproportionsareequal)H1:π1–π2
≠0(thereisasignificantdifferencebetweenproportions)Thesampleproportionsare:Men: p1=36/72=0.50Women: p2=35/50=0.70Thepooledestimatefortheoverallproportionis:HypothesisTestExample:
TwopopulationProportions(continued)DCOVATheteststatisticforπ1–π2is:HypothesisTestExample:
TwoPopulationProportions(continued).025-1.961.96.025-2.20Decision:
RejectH0Conclusion:
Thereisevidenceofasignificantdifferenceintheproportionofmenandwomenwhowillvoteyes.RejectH0RejectH0CriticalValues=±1.96For=.05DCOVAConfidenceIntervalfor
TwoPopulationProportionsPopulationproportionsTheconfidenceintervalfor
π1–π2is:DCOVAConfidenceIntervalforTwoPopulationProportions--ExampleThe95%confidenceintervalforπ1–π2is:Sincethisintervaldoesnotcontain0canbe95%confidentthetwoproportionsaredifferent.DCOVATestingfortheRatioOfTwoPopulationVariancesTestsforTwoPopulationVariancesFteststatisticH0:σ12=σ22H1:σ12≠σ22H0:σ12≤σ22H1:σ12>σ22*Hypotheses FSTATS12/S22S12=Varianceofsample1(thelargersamplevariance)n1=samplesizeofsample1S22=Varianceofsample2(thesmallersamplevariance)n2=samplesizeofsample2n1–1=numeratordegreesoffreedomn2–1=denominatordegreesoffreedomWhere:DCOVATheFcriticalvalue
isfoundfromtheFtableTherearetwodegreesoffreedomrequired:numeratoranddenominatorThelargersamplevarianceisalwaysthenumeratorWhenIntheFtable,numeratordegreesoffreedomdeterminethecolumndenominatordegreesoffreedomdeterminetherowTheFDistributiondf1=n1–1;df2=n2–1DCOVAFindingtheRejectionRegionH0:σ12=σ22H1:σ12≠σ22H0:σ12≤σ22H1:σ12>σ22F
0
Fα
RejectH0DonotrejectH0RejectH0ifFSTAT>FαF
0
/2RejectH0DonotrejectH0Fα/2
RejectH0ifFSTAT>Fα/2DCOVAFTest:AnExampleYouareafinancialanalystforabrokeragefirm.YouwanttocomparedividendyieldsbetweenstockslistedontheNYSE&NASDAQ.Youcollectthefollowingdata:
NYSE
NASDAQ
Number 21 25Mean 3.27 2.53Stddev 1.30 1.16Isthereadifferenceinthe variancesbetweentheNYSE &NASDAQatthe
=
0.05level?DCOVAFormthehypothesistest:H0:σ21=σ22(thereisnodifferencebetweenvariances)H1:σ21≠σ22(thereisadifferencebetweenvariances)FTest:ExampleSolutionFindtheFcriticalvaluefor
=0.05:Numeratord.f.=n1–1=21–1=20Denominatord.f.=n2–1=25–1=24Fα/2=F.025,20,24=2.33DCOVATheteststatisticis:0
/2=.025F0.025=2.33RejectH0DonotrejectH0H0:σ12=σ22H1:σ12
≠
σ22FTest:ExampleSolutionFSTAT=1.256isnotintherejectionregion,sowedonotrejectH0(continued)Conclusion:Thereisnotsufficientevidenceofadifferenceinvariancesat=.05F
DCOVAGeneralANOVASettingInvestigatorcontrolsoneormorefactorsofinterestEachfactorcontainstwoormorelevelsLevelscanbenumericalorcategoricalDifferentlevelsproducedifferentgroupsThinkofeachgroupasasamplefromadifferentpopulationObserveeffectsonthedependentvariableArethegroupsthesame?Experimentaldesign:theplanusedtocollectthedataDCOVACompletelyRandomizedDesignExperimentalunits(subjects)areassignedrandomlytogroupsSubjectsareassumedhomogeneousOnlyonefactororindependentvariableWithtwoormorelevelsAnalyzedbyone-factoranalysisofvariance(ANOVA)DCOVAOne-WayAnalysisofVarianceEvaluatethedifferenceamongthemeansofthreeormoregroupsExamples:Numberofaccidentsfor1st,2nd,and3rdshiftExpectedmileageforfivebrandsoftiresAssumptionsPopulationsarenormallydistributedPopulationshaveequalvariancesSamplesarerandomlyandindependentlydrawnDCOVAHypothesesofOne-WayANOVA
Allpopulationmeansareequali.e.,nofactoreffect(novariationinmeansamonggroups)
Atleastonepopulationmeanisdifferenti.e.,thereisafactoreffectDoesnotmeanthatallpopulationmeansaredifferent(somepairsmaybethesame)DCOVAOne-WayANOVAWhenTheNullHypothesisisTrueAllMeansarethesame:(NoFactorEffect)DCOVAOne-WayANOVAWhenTheNullHypothesisisNOTtrueAtleastoneofthemeansisdifferent(FactorEffectispresent)or(continued)DCOVAPartitioningtheVariationTotalvariationcanbesplitintotwoparts:SST=TotalSumofSquares
(Totalvariation)SSA=SumofSquaresAmongGroups
(Among-groupvariation)SSW=SumofSquaresWithinGroups
(Within-groupvariation)SST=SSA+SSWDCOVAPartitioningtheVariationTotalVariation=theaggregatevariationoftheindividualdatavaluesacrossthevariousfactorlevels(SST)Within-GroupVariation=variationthatexistsamongthedatavalueswithinaparticularfactorlevel(SSW)Among-GroupVariation=variationamongthefactorsamplemeans(SSA)SST=SSA+SSW(continued)DCOVAPartitionofTotalVariationVariationDuetoFactor(SSA)VariationDuetoRandomError(SSW)TotalVariation(SST)=+DCOVATotalSumofSquaresWhere:
SST=Totalsumofsquares c=numberofgroupsorlevels
nj=numberofvaluesingroupj
Xij=ithobservationfromgroupj
X=grandmean(meanofalldatavalues)SST=SSA+SSWDCOVATotalVariation(continued)DCOVAAmong-GroupVariationWhere:
SSA=Sumofsquaresamonggroups c=numberofgroups
nj=samplesizefromgroupj
Xj=samplemeanfromgroupj
X=grandmean(meanofalldatavalues)SST=SSA+SSWDCOVAAmong-GroupVariationVariationDuetoDifferencesAmongGroupsMeanSquareAmong=SSA/degreesoffreedom(continued)DCOVAAmong-GroupVariation(continued)DCOVAWithin-GroupVariationWhere:
SSW=Sumofsquareswithingroups c=numberofgroups
nj=samplesizefromgroupj
Xj=samplemeanfromgroupj
Xij=ithobservationingroupjSST=SSA+SSWDCOVAWithin-GroupVariationSummingthevariationwithineachgroupandthenaddingoverallgroupsMeanSquareWithin=SSW/degreesoffreedom(continued)DCOVAWithin-GroupVariation(continued)DCOVAObtainingtheMeanSquaresTheMeanSquaresareobtainedbydividingthevarioussumofsquaresbytheirassociateddegreesoffreedomMeanSquareAmong(d.f.=c-1)MeanSquareWithin(d.f.=n-c)MeanSquareTotal(d.f.=n-1)DCOVAOne-WayANOVATableSourceofVariationSumOfSquaresDegreesofFreedomMeanSquare(Variance)AmongGroupsc-1MSA=WithinGroupsSSWn-cMSW=TotalSSTn–1SSAMSAMSWFc=numberofgroupsn=sumofthesamplesizesfromallgroupsdf=degreesoffreedomSSAc-1SSWn-cFSTAT=DCOVAOne-WayANOVA
FTestStatisticTeststatistic
MSAismeansquaresamonggroups MSWismeansquareswithingroupsDegreesoffreedomdf1=c–1(c=numberofgroups)df2=n–c(n=sumofsamplesizesfromallpopulations)H0:μ1=μ2=…
=μcH1:AtleasttwopopulationmeansaredifferentDCOVAInterpretingOne-WayANOVA
FStatisticTheFstatisticistheratiooftheamongestimateofvarianceandthewithinestimateofvarianceTheratiomustalwaysbepositivedf1=c-1willtypicallybesmall
df2=n-cwilltypicallybelargeDecisionRule:RejectH0ifFSTAT>Fα,otherwisedonotrejectH00
RejectH0DonotrejectH0FαDCOVAOne-WayANOVA
FTestExampleYouwanttoseeifthreedifferentgolfclubsyielddifferentdistances.Yourandomlyselectfivemeasurementsfromtrialsonanautomateddrivingmachineforeachclub.Atthe0.05significancelevel,isthereadifferenceinmeandistance?
Club1
Club2
Club3
254 234 200
263 218 222
241 235 197
237 227 206
251 216 204DCOVA?????One-WayANOVAExample:
ScatterPlot270260250240230220210200190??????????Distance
Club1
Club2
Club3
254 234 200
263 218 222
241 235 197
237 227 206
251 216 204Club123DCOVAOne-WayANOVAExampleComputations
Club1
Club2
Club3
254 234 200
263 218 222
241 235 197
237 227 206
251 216 204X1=249.2X2=226.0X3=205.8X=227.0n1=5n2=5n3=5n=15c=3SSA=5(249.2–227)2+5(226–227)2+5(205.8–227)2=4716.4SSW=(254–249.2)2+(263–249.2)2+…+(204–205.8)2=1119.6MSA=4716.4/(3-1)=2358.2MSW=1119.6/(15-3)=93.3DCOVAOne-WayANOVAExampleSolutionH0:μ1=μ2=μ3H1:μjnotallequal
=0.05df1=2df2=12TestStatistic:Decision:Conclusion:RejectH0at
=0.05Thereisevidencethatatleastoneμjdiffersfromtherest0
=.05F0.05=3.89RejectH0DonotrejectH0CriticalValue:Fα
=3.89DCOVASUMMARYGroupsCountSumAverageVarianceClub151246249.2108.2Club25113022677.5Club351029205.894.2ANOVASourceofVariationSSdfMSFP-valueFcritBetweenGroups4716.422358.225.2750.00003.89WithinGroups1119.61293.3Total5836.014
One-WayANOVAExcelOutputDCOVAOne-WayANOVA
MinitabOutputOne-wayANOVA:DistanceversusClubSourceDFSSMSFPClub24716.42358.225.280.000Error121119.693.3Total145836.0S=9.659R-Sq=80.82%R-Sq(adj)=77.62%Individual95%CIsForMeanBasedonPooledStDevLevelNMeanStDev-------+---------+---------+---------+--15249.2010.40(-----*-----)25226.008.80(-----*-----)35205.809.71(-----*-----)-------+---------+---------+---------+--208224240256PooledStDev=9.66DCOVAANOVAAssumptionsRandomnessandIndependenceSelectrandomsamplesfromthecgroups(orrandomlyassignthelevels)NormalityThesamplevaluesforeachgrouparefromanormalpopulationHomogeneityofVarianceAllpopulationssampledfromhavethesamevarianceCanbetestedwithLevene’sTestDCOVAANOVAAssumptions
Levene’sTestTeststheassumptionthatthevariancesofeachpopulationareequal.First,definethenullandalternativehypotheses:H0:σ21=σ22=…=σ2cH1:Notallσ2jareequalSecond,computetheabsolutevalueofthedifferencebetweeneach
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版高樓外墻裝飾施工協(xié)議版B版
- 2024年新版建筑工程預(yù)算定額合同
- 2024年樣品機(jī)器試用協(xié)議模板一
- 2024年標(biāo)準(zhǔn)型攪拌機(jī)銷售協(xié)議范本版B版
- 2024年小學(xué)二年級(jí)數(shù)學(xué)(北京版)-總復(fù)習(xí):綜合練習(xí)-1教案
- 2018房地產(chǎn)經(jīng)紀(jì)人考試《業(yè)務(wù)操作》試題
- 2024年度基礎(chǔ)設(shè)施建設(shè)投資借款協(xié)議范本3篇
- 2025年衢州貨運(yùn)從業(yè)資格證模擬考試題庫下載
- 2025年滄州考貨運(yùn)上崗證試答題
- 單位人事管理制度展示合集
- 城市營銷方案書
- 雙閉環(huán)直流調(diào)速系統(tǒng)-
- 中國老年教育發(fā)展的背景和歷史回顧
- 人工智能原理與方法智慧樹知到課后章節(jié)答案2023年下哈爾濱工程大學(xué)
- 分布式光伏電站項(xiàng)目施工方案
- 2024屆廣東省廣州市華南師范大附屬中學(xué)數(shù)學(xué)七年級(jí)第一學(xué)期期末綜合測試試題含解析
- PPP模式項(xiàng)目的風(fēng)險(xiǎn)管理分析
- 硫酸安全技術(shù)說明書-MSDS
- GB/T 17421.2-2023機(jī)床檢驗(yàn)通則第2部分:數(shù)控軸線的定位精度和重復(fù)定位精度的確定
- 第五次全國經(jīng)濟(jì)普查綜合試點(diǎn)業(yè)務(wù)培訓(xùn)班課件 從業(yè)人員及工資總額
- 勞動(dòng)能力鑒定復(fù)查申請(qǐng)書
評(píng)論
0/150
提交評(píng)論