版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
吉林省長春市解放大路中學2024年中考沖刺卷數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列圖標中,是中心對稱圖形的是()A. B.C. D.2.比較4,,的大小,正確的是()A.4<< B.4<<C.<4< D.<<43.如圖,在平行四邊形ABCD中,點E在邊DC上,DE:EC=3:1,連接AE交BD于點F,則△DEF的面積與△BAF的面積之比為()A.3:4 B.9:16 C.9:1 D.3:14.下列安全標志圖中,是中心對稱圖形的是()A. B. C. D.5.如圖,在等腰直角三角形ABC中,∠C=90°,D為BC的中點,將△ABC折疊,使點A與點D重合,EF為折痕,則sin∠BED的值是()A. B. C. D.6.把拋物線y=﹣2x2向上平移1個單位,得到的拋物線是()A.y=﹣2x2+1 B.y=﹣2x2﹣1 C.y=﹣2(x+1)2 D.y=﹣2(x﹣1)27.用配方法解方程x2﹣4x+1=0,配方后所得的方程是()A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=﹣3 D.(x+2)2=﹣38.對于數(shù)據(jù):6,3,4,7,6,0,1.下列判斷中正確的是()A.這組數(shù)據(jù)的平均數(shù)是6,中位數(shù)是6 B.這組數(shù)據(jù)的平均數(shù)是6,中位數(shù)是7C.這組數(shù)據(jù)的平均數(shù)是5,中位數(shù)是6 D.這組數(shù)據(jù)的平均數(shù)是5,中位數(shù)是79.某種圓形合金板材的成本y(元)與它的面積(cm2)成正比,設半徑為xcm,當x=3時,y=18,那么當半徑為6cm時,成本為()A.18元 B.36元 C.54元 D.72元10.在下列四個標志中,既是中心對稱又是軸對稱圖形的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在矩形ABCD中,AB=,AD=1,把該矩形繞點A順時針旋轉(zhuǎn)α度得矩形AB′C′D′,點C′落在AB的延長線上,則圖中陰影部分的面積是_____.12.要使式子有意義,則的取值范圍是__________.13.出售某種手工藝品,若每個獲利x元,一天可售出個,則當x=_________元,一天出售該種手工藝品的總利潤y最大.14.如圖,直徑為1000mm的圓柱形水管有積水(陰影部分),水面的寬度AB為800mm,則水的最大深度CD是______mm.15.如圖,點A在雙曲線上,AB⊥x軸于B,且△AOB的面積S△AOB=2,則k=______.16.的算術平方根是_______.三、解答題(共8題,共72分)17.(8分)每到春夏交替時節(jié),雌性楊樹會以滿天飛絮的方式來傳播下一代,漫天飛舞的楊絮易引發(fā)皮膚病、呼吸道疾病等,給人們造成困擾,為了解市民對治理楊絮方法的贊同情況,某課題小組隨機調(diào)查了部分市民(問卷調(diào)查表如表所示),并根據(jù)調(diào)查結果繪制了如下尚不完整的統(tǒng)計圖.治理楊絮一一您選哪一項?(單選)A.減少楊樹新增面積,控制楊樹每年的栽種量B.調(diào)整樹種結構,逐漸更換現(xiàn)有楊樹C.選育無絮楊品種,并推廣種植D.對雌性楊樹注射生物干擾素,避免產(chǎn)生飛絮E.其他根據(jù)以上統(tǒng)計圖,解答下列問題:(1)本次接受調(diào)查的市民共有人;(2)扇形統(tǒng)計圖中,扇形E的圓心角度數(shù)是;(3)請補全條形統(tǒng)計圖;(4)若該市約有90萬人,請估計贊同“選育無絮楊品種,并推廣種植”的人數(shù).18.(8分)如圖,已知點A,B的坐標分別為(0,0)、(2,0),將△ABC繞C點按順時針方向旋轉(zhuǎn)90°得到△A1B1C.(1)畫出△A1B1C;(2)A的對應點為A1,寫出點A1的坐標;(3)求出B旋轉(zhuǎn)到B1的路線長.19.(8分)如圖,菱形ABCD的邊長為20cm,∠ABC=120°,對角線AC,BD相交于點O,動點P從點A出發(fā),以4cm/s的速度,沿A→B的路線向點B運動;過點P作PQ∥BD,與AC相交于點Q,設運動時間為t秒,0<t<1.(1)設四邊形PQCB的面積為S,求S與t的關系式;(2)若點Q關于O的對稱點為M,過點P且垂直于AB的直線l交菱形ABCD的邊AD(或CD)于點N,當t為何值時,點P、M、N在一直線上?(3)直線PN與AC相交于H點,連接PM,NM,是否存在某一時刻t,使得直線PN平分四邊形APMN的面積?若存在,求出t的值;若不存在,請說明理由.20.(8分)某校團委為研究該校學生的課余活動情況,采取抽樣調(diào)查的方法,從閱讀、運動、娛樂、其他等四個方面調(diào)查了若干名學生的興趣愛好,并將調(diào)查的結果繪制了如下的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列各題:(1)在這次研究中,一共調(diào)查了多少名學生?(2)“其他”在扇形統(tǒng)計圖中所占的圓心角是多少度?(3)補全頻數(shù)分布直方圖;(4)該校共有3200名學生,請你估計一下全校大約有多少學生課余愛好是閱讀.21.(8分)已知,拋物線(為常數(shù)).(1)拋物線的頂點坐標為(,)(用含的代數(shù)式表示);(2)若拋物線經(jīng)過點且與圖象交點的縱坐標為3,請在圖1中畫出拋物線的簡圖,并求的函數(shù)表達式;(3)如圖2,規(guī)矩的四條邊分別平行于坐標軸,,若拋物線經(jīng)過兩點,且矩形在其對稱軸的左側(cè),則對角線的最小值是.22.(10分)如圖,在△ABC中,已知AB=AC,AB的垂直平分線交AB于點N,交AC于點M,連接MB.若∠ABC=70°,則∠NMA的度數(shù)是度.若AB=8cm,△MBC的周長是14cm.①求BC的長度;②若點P為直線MN上一點,請你直接寫出△PBC周長的最小值.23.(12分)某藥廠銷售部門根據(jù)市場調(diào)研結果,對該廠生產(chǎn)的一種新型原料藥未來兩年的銷售進行預測,并建立如下模型:設第t個月該原料藥的月銷售量為P(單位:噸),P與t之間存在如圖所示的函數(shù)關系,其圖象是函數(shù)P=(0<t≤8)的圖象與線段AB的組合;設第t個月銷售該原料藥每噸的毛利潤為Q(單位:萬元),Q與t之間滿足如下關系:Q=(1)當8<t≤24時,求P關于t的函數(shù)解析式;(2)設第t個月銷售該原料藥的月毛利潤為w(單位:萬元)①求w關于t的函數(shù)解析式;②該藥廠銷售部門分析認為,336≤w≤513是最有利于該原料藥可持續(xù)生產(chǎn)和銷售的月毛利潤范圍,求此范圍所對應的月銷售量P的最小值和最大值.24.如圖所示,在長和寬分別是a、b的矩形紙片的四個角都剪去一個邊長為x的正方形.(1)用a,b,x表示紙片剩余部分的面積;(2)當a=6,b=4,且剪去部分的面積等于剩余部分的面積時,求正方形的邊長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
根據(jù)中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是中心對稱圖形,故本選項錯誤;B、是中心對稱圖形,故本選項正確;C、不是中心對稱圖形,故本選項錯誤;D、不是中心對稱圖形,故本選項錯誤.故選B.【點睛】本題考查了中心對稱圖形的概念:中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.2、C【解析】
根據(jù)4=<且4=>進行比較【詳解】解:易得:4=<且4=>,所以<4<故選C.【點睛】本題主要考查開平方開立方運算。3、B【解析】
可證明△DFE∽△BFA,根據(jù)相似三角形的面積之比等于相似比的平方即可得出答案.【詳解】∵四邊形ABCD為平行四邊形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故選B.4、B【解析】試題分析:A.不是中心對稱圖形,故此選項不合題意;B.是中心對稱圖形,故此選項符合題意;C.不是中心對稱圖形,故此選項不符合題意;D.不是中心對稱圖形,故此選項不合題意;故選B.考點:中心對稱圖形.5、A【解析】∵△DEF是△AEF翻折而成,
∴△DEF≌△AEF,∠A=∠EDF,
∵△ABC是等腰直角三角形,
∴∠EDF=45°,由三角形外角性質(zhì)得∠CDF+45°=∠BED+45°,
∴∠BED=∠CDF,
設CD=1,CF=x,則CA=CB=2,
∴DF=FA=2-x,
∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,
解得x=,
∴sin∠BED=sin∠CDF=.
故選:A.6、A【解析】
根據(jù)“上加下減”的原則進行解答即可.【詳解】解:由“上加下減”的原則可知,把拋物線y=﹣2x2向上平移1個單位,得到的拋物線是:y=﹣2x2+1.故選A.【點睛】本題考查的是二次函數(shù)的圖象與幾何變換,熟知“上加下減”的原則是解答此題的關鍵.7、A【解析】
方程變形后,配方得到結果,即可做出判斷.【詳解】方程,變形得:,配方得:,即故選A.【點睛】本題考查的知識點是了解一元二次方程﹣配方法,解題關鍵是熟練掌握完全平方公式.8、C【解析】
根據(jù)題目中的數(shù)據(jù)可以按照從小到大的順序排列,從而可以求得這組數(shù)據(jù)的平均數(shù)和中位數(shù).【詳解】對于數(shù)據(jù):6,3,4,7,6,0,1,這組數(shù)據(jù)按照從小到大排列是:0,3,4,6,6,7,1,這組數(shù)據(jù)的平均數(shù)是:中位數(shù)是6,故選C.【點睛】本題考查了平均數(shù)、中位數(shù)的求法,解決本題的關鍵是明確它們的意義才會計算,求平均數(shù)是用一組數(shù)據(jù)的和除以這組數(shù)據(jù)的個數(shù);中位數(shù)的求法分兩種情況:把一組數(shù)據(jù)從小到大排成一列,正中間如果是一個數(shù),這個數(shù)就是中位數(shù),如果正中間是兩個數(shù),那中位數(shù)是這兩個數(shù)的平均數(shù).9、D【解析】
設y與x之間的函數(shù)關系式為y=kπx2,由待定系數(shù)法就可以求出解析式,再求出x=6時y的值即可得.【詳解】解:根據(jù)題意設y=kπx2,∵當x=3時,y=18,∴18=kπ?9,則k=,∴y=kπx2=?π?x2=2x2,當x=6時,y=2×36=72,故選:D.【點睛】本題考查了二次函數(shù)的應用,解答時求出函數(shù)的解析式是關鍵.10、C【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念對各選項分析判斷利用排除法求解.【詳解】解:A、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;B、既不是中心對稱圖形,也不是軸對稱圖形,故本選項錯誤;C、既是中心對稱圖形又是軸對稱圖形,故本選項正確;D、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤.故選C.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
∵在矩形ABCD中,AB=,∠DAC=60°,∴DC=,AD=1.由旋轉(zhuǎn)的性質(zhì)可知:D′C′=,AD′=1,∴tan∠D′AC′==,∴∠D′AC′=60°.∴∠BAB′=30°,∴S△AB′C′=×1×=,S扇形BAB′==.S陰影=S△AB′C′-S扇形BAB′=-.故答案為-.【點睛】錯因分析
中檔題.失分原因有2點:(1)不能準確地將陰影部分面積轉(zhuǎn)化為易求特殊圖形的面積;(2)不能根據(jù)矩形的邊求出α的值.12、【解析】
根據(jù)二次根式被開方數(shù)必須是非負數(shù)的條件可得關于x的不等式,解不等式即可得.【詳解】由題意得:2-x≥0,解得:x≤2,故答案為x≤2.13、1【解析】先根據(jù)題意得出總利潤y與x的函數(shù)關系式,再根據(jù)二次函數(shù)的最值問題進行解答.解:∵出售某種手工藝品,若每個獲利x元,一天可售出(8-x)個,
∴y=(8-x)x,即y=-x2+8x,
∴當x=-=1時,y取得最大值.
故答案為:1.14、200【解析】
先求出OA的長,再由垂徑定理求出AC的長,根據(jù)勾股定理求出OC的長,進而可得出結論.【詳解】解:∵⊙O的直徑為1000mm,
∴OA=OA=500mm.
∵OD⊥AB,AB=800mm,
∴AC=400mm,
∴OC===300mm,∴CD=OD-OC=500-300=200(mm).
答:水的最大深度為200mm.故答案為:200【點睛】本題考查的是垂徑定理的應用,根據(jù)勾股定理求出OC的長是解答此題的關鍵.15、-4【解析】:由反比例函數(shù)解析式可知:系數(shù),∵S△AOB=2即,∴;又由雙曲線在二、四象限k<0,∴k=-416、3【解析】
根據(jù)算術平方根定義,先化簡,再求的算術平方根.【詳解】因為=9所以的算術平方根是3故答案為3【點睛】此題主要考查了算術平方根的定義,解題需熟練掌握平方根和算術平方根的概念且區(qū)分清楚,才不容易出錯.要熟悉特殊數(shù)字0,1,-1的特殊性質(zhì).三、解答題(共8題,共72分)17、(1)2000;(2)28.8°;(3)補圖見解析;(4)36萬人.【解析】分析:(1)將A選項人數(shù)除以總?cè)藬?shù)即可得;(2)用360°乘以E選項人數(shù)所占比例可得;(3)用總?cè)藬?shù)乘以D選項人數(shù)所占百分比求得其人數(shù),據(jù)此補全圖形即可得;(4)用總?cè)藬?shù)乘以樣本中C選項人數(shù)所占百分比可得.詳解:(1)本次接受調(diào)查的市民人數(shù)為300÷15%=2000人,(2)扇形統(tǒng)計圖中,扇形E的圓心角度數(shù)是360°×=28.8°,(3)D選項的人數(shù)為2000×25%=500,補全條形圖如下:(4)估計贊同“選育無絮楊品種,并推廣種植”的人數(shù)為90×40%=36(萬人).點睛:本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?8、(1)畫圖見解析;(2)A1(0,6);(3)弧BB1=.【解析】
(1)根據(jù)旋轉(zhuǎn)圖形的性質(zhì)首先得出各點旋轉(zhuǎn)后的點的位置,然后順次連接各點得出圖形;(2)根據(jù)圖形得出點的坐標;(3)根據(jù)弧長的計算公式求出答案.【詳解】解:(1)△A1B1C如圖所示.(2)A1(0,6).(3).【點睛】本題考查了旋轉(zhuǎn)作圖和弧長的計算.19、(1)S=﹣2(0<t<1);(2);(3)見解析.【解析】
(1)如圖1,根據(jù)S=S△ABC-S△APQ,代入可得S與t的關系式;
(2)設PM=x,則AM=2x,可得AP=x=4t,計算x的值,根據(jù)直角三角形30度角的性質(zhì)可得AM=2PM=,根據(jù)AM=AO+OM,列方程可得t的值;
(3)存在,通過畫圖可知:N在CD上時,直線PN平分四邊形APMN的面積,根據(jù)面積相等可得MG=AP,由AM=AO+OM,列式可得t的值.【詳解】解:(1)如圖1,∵四邊形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=60°,AC⊥BD,∴∠OAB=30°,∵AB=20,∴OB=10,AO=10,由題意得:AP=4t,∴PQ=2t,AQ=2t,∴S=S△ABC﹣S△APQ,=,=,=﹣2t2+100(0<t<1);(2)如圖2,在Rt△APM中,AP=4t,∵點Q關于O的對稱點為M,∴OM=OQ,設PM=x,則AM=2x,∴AP=x=4t,∴x=,∴AM=2PM=,∵AM=AO+OM,∴=10+10﹣2t,t=;答:當t為秒時,點P、M、N在一直線上;(3)存在,如圖3,∵直線PN平分四邊形APMN的面積,∴S△APN=S△PMN,過M作MG⊥PN于G,∴,∴MG=AP,易得△APH≌△MGH,∴AH=HM=t,∵AM=AO+OM,同理可知:OM=OQ=10﹣2t,t=10=10﹣2t,t=.答:當t為秒時,使得直線PN平分四邊形APMN的面積.【點睛】考查了全等三角形的判定與性質(zhì),對稱的性質(zhì),三角形和四邊形的面積,二次根式的化簡等知識點,計算量大,解答本題的關鍵是熟練掌握動點運動時所構成的三角形各邊的關系.20、(1)總調(diào)查人數(shù)是100人;(2)在扇形統(tǒng)計圖中“其它”類的圓心角是36°;(3)補全頻數(shù)分布直方圖見解析;(4)估計一下全校課余愛好是閱讀的學生約為960人.【解析】
(1)利用參加運動的人數(shù)除以其所占的比例即可求得這次調(diào)查的總?cè)藬?shù);(2)用360°乘以“其它”類的人數(shù)所占的百分比即可求解;(3)求得“其它”類的人數(shù)、“娛樂”類的人數(shù),補全統(tǒng)計圖即可;(4)用總?cè)藬?shù)乘以課余愛好是閱讀的學生人數(shù)所占的百分比即可求解.【詳解】(1)從條形統(tǒng)計圖中得出參加運動的人數(shù)為20人,所占的比例為20%,∴總調(diào)查人數(shù)=20÷20%=100人;(2)參加娛樂的人數(shù)=100×40%=40人,從條形統(tǒng)計圖中得出參加閱讀的人數(shù)為30人,∴“其它”類的人數(shù)=100﹣40﹣30﹣20=10人,所占比例=10÷100=10%,在扇形統(tǒng)計圖中“其它”類的圓心角=360×10%=36°;(3)如圖(4)估計一下全校課余愛好是閱讀的學生約為3200×=960(人).【點睛】本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖的應用,從條形統(tǒng)計圖、扇形統(tǒng)計圖中獲取必要的信息是解決問題的關鍵.21、(1);(2)圖象見解析,或;(3)【解析】
(1)將拋物線的解析式配成頂點式,即可得出頂點坐標;(2)根據(jù)拋物線經(jīng)過點M,用待定系數(shù)法求出拋物線的解析式,即可得出圖象,然后將縱坐標3代入拋物線的解析式中,求出橫坐標,然后將點再代入反比例函數(shù)的表達式中即可求出反比例函數(shù)的表示式;(3)設出A的坐標,表示出C,D的坐標,得到CD的長度,根據(jù)題意找到CD的最小值,因為AD的長度不變,所以當CD最小時,對角線AC最小,則答案可求.【詳解】解:(1),拋物線的頂點的坐標為.故答案為:(2)將代入拋物線的解析式得:解得:,拋物線的解析式為.拋物線的大致圖象如圖所示:將代入得:,解得:或拋物線與反比例函數(shù)圖象的交點坐標為或.將代入得:,.將代入得:,.綜上所述,反比例函數(shù)的表達式為或.(3)設點的坐標為,則點的坐標為,的坐標為.的長隨的增大而減小.矩形在其對稱軸的左側(cè),拋物線的對稱軸為,當時,的長有最小值,的最小值.的長度不變,當最小時,有最小值.的最小值故答案為:.【點睛】本題主要考查二次函數(shù),反比例函數(shù)與幾何綜合,掌握二次函數(shù),反比例函數(shù)的圖象與性質(zhì)是解題的關鍵.22、(1)50;(2)①6;②1【解析】試題分析:(1)根據(jù)等腰三角形的性質(zhì)和線段垂直平分線的性質(zhì)即可得到結論;(2)①根據(jù)線段垂直平分線上的點到線段兩端點的距離相等的性質(zhì)可得AM=BM,然后求出△MBC的周長=AC+BC,再代入數(shù)據(jù)進行計算即可得解;②當點P與M重合時,△PBC周長的值最小,于是得到結論.試題解析:解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°.∵AB的垂直平分線交AB于點N,∴∠ANM=90°,∴∠NMA=50°.故答案為50;(2)①∵MN是AB的垂直平分線,∴AM=BM,∴△MBC的周長=BM+CM+BC=AM+CM+BC=AC+BC.∵AB=8,△MBC的周長是1,∴BC=1﹣8=6;②當點P與M重合時,△PBC周長的值最小,理由:∵PB+PC=PA+PC,PA+PC≥AC,∴P與M重合時,PA+PC=AC,此時PB+PC最小,∴△PBC周長的最小值=AC+BC=8+6=1.23、(1)P=t+2;(2)①當0<t≤8時,w=240;當8<t≤12時,w=2t2+12t+16;當12<t≤24時,w=﹣t2+42t+88;②此范圍所對應的月銷售量P的最小值為12噸,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024冷庫租賃合同書范本(適用小型企業(yè))
- 2024年度互聯(lián)網(wǎng)廣告技術服務合同
- 2024年買賣合同標的為新能源汽車
- 2024年度影視制作與發(fā)行承包合同
- 2024年度房地產(chǎn)商業(yè)綜合體建設項目施工合同
- 公租房個人收入證明(12篇)
- 2024年度安置房社區(qū)文化活動合同
- 手機教學課件教學
- 2024年度品牌合作框架協(xié)議
- 2024年度特許經(jīng)營合同標的及許可使用范圍
- 海洋工程柔性立管發(fā)展概況
- 漢語教師志愿者培訓大綱
- 護理導論 評判性思維
- SPC培訓資料_2
- 學習適應性測驗(AAT)
- ADS創(chuàng)建自己的元件庫
- MATLAB仿真三相橋式整流電路(詳細完美)
- 2019年重慶普通高中會考通用技術真題及答案
- 天秤座小奏鳴曲,Libra Sonatine;迪安斯,Roland Dyens(古典吉他譜)
- 鋼筋混凝土工程施工及驗收規(guī)范最新(完整版)
- 光纜施工規(guī)范及要求
評論
0/150
提交評論