![機(jī)器學(xué)習(xí)繪圖模板_第1頁(yè)](http://file4.renrendoc.com/view8/M01/0A/27/wKhkGWb2zGOAfPdqAABN_rsvM_I607.jpg)
![機(jī)器學(xué)習(xí)繪圖模板_第2頁(yè)](http://file4.renrendoc.com/view8/M01/0A/27/wKhkGWb2zGOAfPdqAABN_rsvM_I6072.jpg)
![機(jī)器學(xué)習(xí)繪圖模板_第3頁(yè)](http://file4.renrendoc.com/view8/M01/0A/27/wKhkGWb2zGOAfPdqAABN_rsvM_I6073.jpg)
![機(jī)器學(xué)習(xí)繪圖模板_第4頁(yè)](http://file4.renrendoc.com/view8/M01/0A/27/wKhkGWb2zGOAfPdqAABN_rsvM_I6074.jpg)
![機(jī)器學(xué)習(xí)繪圖模板_第5頁(yè)](http://file4.renrendoc.com/view8/M01/0A/27/wKhkGWb2zGOAfPdqAABN_rsvM_I6075.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
MLVisualsBasiccomponentsSoftmaxConvolveSharpenSoftmaxConvolveSharpenArchitecturesCCCCNNLayerConv3-32x4MaxpoolConv3-64x2Maxpool(2x2)Conv3-128x1Maxpool(2x2)FC-512FeatureVectorOutputInput32x32x3LLLLLLLLLLLLLLAMFCSMConvCCCCCCCLLLLLLLConvCCCCCCCFCSMLLLLLLLCCCCCCCFCSMLLLCCCCCCCCCCFCSMCCCConvA)LSTMB)MixedLSTM/1DConvD)MixedAtt-BiLSTM/1DConvC)MixedBiLSTM/1DConvLLLLLLLCCCCCCCFCSMLLLCCCConvAMLLLLLLLCCCCCCCFCSMLLLCCCConvLLLLLLLCCCCCCCFCSMLLLCCCConvAMLLLLLLLLLLLLLLLLLCCCCCCCFCSMLLLCCCConvCCCCCCCLSTMlayerAttentionlayerCNNlayerCCCCCCCCCCCCCLSTMlayerAttentionlayerCNNlayerLLLLLLLAMFCSMConvCCCCCCCInputLayerHiddenLayersOutputLayerX=A[0]a[4]A[1]A[3]X?a[1]1a[1]2a[1]3a[1]na[2]1a[2]2a[2]3a[2]na[3]1a[3]2a[3]3a[3]nA[2]A[4]InputLayerHiddenLayersOutputLayerX=A[0]a[4]A[1]A[3]X?[1a]1a[1]2a[1]3a[1]na[2]1a[2]2a[2]3a[2]na[3]1a[3]2a[3]3a[3]nA[2]A[4]InputLayerHiddenLayersOutputLayerX=A[0]a[4]A[1]A[3]X?a[1]1a[1]2a[1]3a[1]na[2]1a[2]2a[2]3a[2]na[3]1a[3]2a[3]3a[3]nA[2]A[4]NxNx3+b1+b2MxMMxM+b1+b2ReLUReLUa[l]MxMX2a[l-1]CONVoperationNxNx3+b1+b2MxMMxM+b1+b2ReLUReLUMxMX2CONVoperationNxNx3+b1+b2MxMMxM+b1+b2ReLUReLUMxMX2CONVoperationS=1S=2StridinginCONVNxNx192NxNx64NxNx32NxNx128NxNx1921x1Same3x3Same5x5SameMaxPoolSames=1InceptionModuleMulti-HeadAttentionAdd&NormInputEmbeddingOutputEmbeddingFeedForwardAdd&NormMaskedMulti-HeadAttentionAdd&NormMulti-HeadAttentionAdd&NormFeedForwardAdd&NormLinearSoftmaxInputsOutputs(shiftedright)PositionalEncodingPositionalEncodingMulti-HeadAttentionAdd&NormInputEmbeddingOutputEmbeddingFeedForwardAdd&NormMaskedMulti-HeadAttentionAdd&NormMulti-HeadAttentionAdd&NormFeedForwardAdd&NormLinearSoftmaxInputsOutputs(shiftedright)PositionalEncodingPositionalEncodingTokenizeIlovecodingandwriting“Ilovecodingandwriting”MLConceptsSize#bedZIPWealthFamily?Walk?SchoolPRICE?XYX?=0?=1HowdoesNNwork(InspriredfromCoursera)LogisticRegressionBasicNeuronModelSize$Size$LinearregressionReLU(x)NxNNxNNxNNxN25622556...214210211R-G-BUnrollingFeaturevectorsLargeNNMedNNSmallNNSVM,LRetcηAmountofDataWhydoesDeeplearningwork?a[1]1a[1]2a[1]3InputHiddenOutputX=A[0]a[1]4a[2]A[1]A[2]X?Onehiddenlayerneuralnetworka[1]1a[1]2x[1]a[2]x[2]x[2]x[3]x[1]NeuralnetworktemplatesTrainValidTestx1x2x1x2x1x2Train-Dev-Testvs.ModelfittingUnderfittingGoodfitOverfittingx[2]x[3]x[1]a[L]x1x2r=1x1x2DropOutNormalizationw1w1w2Jw1w2Jw1w2w2BeforeNormalizationAfterNormalizationEarlystoppingDevTrainErrit.x1x2w[1]w[2]w[L-2]w[L-1]w[L]FNTNTPFPDeepneuralnetworksUnderstandingPrecision&Recallw1w2SGDBGDw1w2SGDBatchvs.Mini-batch
GradientDescentBatch
GradientDescentvs.SGDx[2]x[3]x[1]p[1]p[2]SoftmaxPredictionwith2outputsAbstractbackgroundsdair.aiGradientBackgroundsMLandHealthPainLocationAssessmentNopainICAConvConvConvConvConvConvEEGTimeSeriesTimesliceConvSpatialFeatureLearningEEGImagesSpectralTopographyMapsAlphaAlphaThetaLSTM+AMBetaConvConvConvConvConvConvConvConvConvConvTemporalFeatureAggregationPainIntensityAssessmentConvConvConvConvConvConvConvConvConvConvActivations(U=WX)Scalpmaps()TestSubjectS1S2S3S4S5S6S7S8S9S10S11S12S13AverageAccuracyPainIntensity0.82090.88820.95690.96250.93220.956310.97070.98090.92260.90150.8920.80940.922623077PainLocation0.72430.80280.93970.99510.928610.99480.90880.88440.89560.88160.70810.75910.878684615Level1Level2Level3Level4NoPainLowPainModeratePainHighPainSignalSegmentationAEPFFTPSDTheta(4~8Hz)Alpha(8~13Hz)Beta(13~30Hz)BicubicSpectralTopographyMapImageGenerationConv3-32x4Maxpool(2x2)Conv3-64x2Maxpool(2x2)Conv3-128Maxpool(2x2)FC-512FeatureVectorInput32x32x3OutputConvNetConfigurationConv3-32Conv3-32Conv3-32Max-PoolConv3-32Conv3-128Max-PoolConv3-64Conv3-64Max-PoolInputConvConvMax-PoolMax-PoolFCLayer1SoftmaxFCLayer2Layer3Layer4Stack1Stack2Stack3InputConv3-32Conv3-32Conv3-32Max-PoolConv3-32Conv3-128Conv3-64Conv3-64Max-PoolLayer1Layer2Layer3FeatureVectorFC-512OutputMax-PoolFC-512OutputConvNetConfigurationStack4Conv3-32Conv3-32Conv3-32Max-PoolConv3-32Conv3-128Max-PoolConv3-64Conv3-64Max-PoolStack1Stack2Stack3FC-512OutputStack4Level1Level2Level3Level4TimeLevel5NoPainLowPainMediumPainHighPainUnbearablePain(a)(b)Miscellaneous3641616323264128128256256128+256128164+1286432+643216+321616Convolution3x3MaxPooling2x2Convolution1x1SkipconnectionUpSampling2x2BlockcopiedDropout0.1Dropout0.2Dropout0.3Conv3-32Conv3-32Conv3-32Max-PoolConv3-32Conv3-128Max-PoolConv3-64Conv3-64Max-PoolInputConvConvMax-PoolMax-PoolFCLayer1SoftmaxFCLayer2Layer3Layer4Layer1Layer2Layer3Layer4InputConv3-32Conv3-32Conv3-32Max-PoolConv3-32Conv3-128Conv3-64Conv3-64Max-PoolLayer1Layer2Layer3FeatureVectorFC-512OutputMax-PoolFC-512OutputPreviouslayer1x1convolutions1x1convolutions3x3convolutions1x1convolutions5x5convolutions3x3maxpooling1x1convolutionsFilterconcatenationPreviouslayer1x1convolutions1x1convolutions3x3convolutions1x1convolutions5x5convolutions3x3maxpooling1x1convolutionsFilterconcatenationInput1x11conv1x11convInception1Inception21x7conv1x7convFCFCOutputInception2Inception2Previouslayer1x3conv,1padding1x5conv,2padding1x3conv,1padding1x7conv,3paddingFilterconcatenation1x3conv,1padding1x3conv,1paddingInputConvMax-PoolMax-PoolMax-PoolInceptionInceptionMax-PoolConvMax-PoolConvInceptionInceptionInceptionInceptionInceptionInceptionInceptionAvg-PoolConvFCFCSoftmaxAvg-PoolConvFCSoftmaxAvg-PoolConvFCFCSoftmaxAuxiliaryClassifierAuxiliaryClassifierPreviouslayer1x1conv.1x1conv.3x3conv.1x1conv.3x3conv.Pool1x1conv.Filterconcatenation3x3conv.Previouslayer1x1conv.1x1conv.1x1conv.3x3conv.Pool1x1conv.Filterconcatenation1x3conv.3x1conv.1x3conv.3x1conv.(a)(b)R1R2R3R1R2R3R1R1R1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 產(chǎn)品保修合同
- 大型美食城招商合同范本
- 商住樓物業(yè)管理合同
- 汽車維修合同書(shū)范本
- 鍋爐工合同書(shū)
- 我要出租房屋租賃合同范本
- 室內(nèi)場(chǎng)景識(shí)別定位約束條件下的手機(jī)實(shí)例化AR方法研究
- 2025年外研版三年級(jí)起點(diǎn)七年級(jí)歷史下冊(cè)階段測(cè)試試卷含答案
- 2025年浙教新版九年級(jí)歷史下冊(cè)階段測(cè)試試卷含答案
- 2025年粵人版選修二地理上冊(cè)階段測(cè)試試卷
- 籃球俱樂(lè)部合伙協(xié)議
- 電力基建復(fù)工安全教育培訓(xùn)
- 2018注冊(cè)環(huán)保工程師考試公共基礎(chǔ)真題及答案
- 勞務(wù)經(jīng)紀(jì)人培訓(xùn)
- 如何提高售后服務(wù)的快速響應(yīng)能力
- 成人氧氣吸入療法-中華護(hù)理學(xué)會(huì)團(tuán)體標(biāo)準(zhǔn)
- Unit-3-Reading-and-thinking課文詳解課件-高中英語(yǔ)人教版必修第二冊(cè)
- 高數(shù)(大一上)期末試題及答案
- 婚介公司紅娘管理制度
- 煤礦電氣試驗(yàn)規(guī)程
- 物業(yè)客服培訓(xùn)課件PPT模板
評(píng)論
0/150
提交評(píng)論