齊次化妙解圓錐曲線(解析版)_第1頁
齊次化妙解圓錐曲線(解析版)_第2頁
齊次化妙解圓錐曲線(解析版)_第3頁
齊次化妙解圓錐曲線(解析版)_第4頁
齊次化妙解圓錐曲線(解析版)_第5頁
已閱讀5頁,還剩85頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

OA+kOB=+=4n,kOAkOB=?=-4m.11直線mx+ny=1與橢圓+=1交于A(x1,y1(,B =1聯(lián)立得2-4n- 1聯(lián)立得(12n2-4(2+24mn+12m2-3=0,程.2整理得15y2+2kxy+(4-k2)x2=0;222+2k+(4-k2)=0;易知kOA=和kOB=是方程152+2k+(4-k2)=0的兩個(gè)根,由韋達(dá)定理得kOA+kOB=y=kx+4①y=kx+4①2+1)x2+32kx+60=0,x1+x2kOM+kON=+=+=2k+=2k+=2,解得k=-15,故所求直線方程為y=-15x+4. (y=kx+m02x2+4kmb2x+2b2(m2-b2)=0,所以x1x2=2b2(m2+b2)y1x1x2+y1y2=+=+=0,又因?yàn)橹本€Q1Q2方程等價(jià)于為y-y0=-(x-x0),即y=-x++y0,33=0,所以2=0,化簡可得+-m2x2-n2y2-2mnxy=0,2n22+(1-2m2b2)x2-4mnb2xy=0,2n22-4mnb2+1-2m2b2=0,1k2=1-2m2b2=-1又因?yàn)橹本€Q1Q2方程等價(jià)于為y-y0=-(x-x0),即y=-x++y0,1.設(shè)直線方程為m(x-xo)+n(y-y且兩直線間存在斜率關(guān)系(顯性或隱性)如果你發(fā)現(xiàn)但要注意敘述的嚴(yán)謹(jǐn)性和完整性否則易被老師扣去過程分44 OA=,kOB=.將直線y=kx+b變形得-=1,記m=,n=-,則直線可化為my+nx=1,2=2px(my+nx),整理得y2-2pmxy-2pnx2=0,2-2pm-2pn=0,易知kOA=和kOB=是方程2-2pm-2pn=0的兩個(gè)根,由韋達(dá)定理得kOA?kOB=-2pn=-1,即n=,代入求直線方程my+nx=1得my+x=1,即x=2pmy+2p, 題目1直線x+2y-3=0與圓x2+y2+x-6y+c=0相交于P,OPOQ=-1,適合用齊次化來處理.代入圓x2+y2+x-6y+c=0得x2+y2+(x-6y)?+c2=0,kOPOQ==-1,計(jì)算可得c=3. 2=2px(p>0(上一點(diǎn)A(2,a(到其焦點(diǎn)的距離為3.-=3?p=2?y2=4x.POQO=-1, 552=4x,由拋物線定義可得|AB|=x1+x2+2,=8.1x2+y1y2=0,+n得:y2-4my-4n=0,1y2=-4n;x1x2=n2;∴n2-4n=0,解得n=0或n=4,y-ny-nx-m錐聯(lián)立,一次項(xiàng)乘以mx+ny,常數(shù)項(xiàng)乘以(mx+ny(2,構(gòu)造ay2+bxy+cx2=0,然后等式兩邊同時(shí)除以x2(前面注明x不等于02+b?+c=0,可以直接利用韋達(dá)定理得出斜率之和或者斜率之積,+266+4=4x-1+4,即(y-2)2+4(y-2(=4x-1,一次項(xiàng)化成二次項(xiàng)得:(y-2)2+4(y-2([m(x-1)+n(y-2)]=4x-1[(x-1)+n(y-2)],即(1+4n)2+(4m-4n(-4m=0,kpAkPB=PA+kPB=0.求證:直線AB斜率為定值.+3x2+(6x+12y((mx+ny(=0,(12n+4(y2+6(2m+n(xy+(6m+3(x2=0,同時(shí)除以x2,(12n+4(2+6(2m+n(+(6m+3(=0,Al+kPlBl=+==0,-6(2m+n(=0,mx+ny=1的斜率-=.772+4t2+6t+12t=0,:設(shè)直線ms+nt=6可方便運(yùn)算,3s2+4t2+t(ms+nt)+2t(ms+nt)=0,化簡得:(4+2n(2+(2m+n(+(3+m)=0,:.=.==0,x-1=s,y-=t,n=-2m代入ms+nt=6,得m(x-1)-2m(y-=6,:直線AB的斜率是. 線AB過定點(diǎn).聯(lián)立得y2-x2-4x(mx+ny(-2(mx+ny(2=0,(1-2n2(y2-(4n+4mn(xy-(2m2+4m+1(x2=0,-2n2(2-(4n+4mn(-(2m2+4m+1(=0,kPlAl+kPlBl=+=-=0,4n+4mn=4n(m+1(=0,n=0或m=-1,AB不與x軸垂直,n≠0,:m=-1,-x+ny=1過 xpyxpy88在新坐標(biāo)中轉(zhuǎn)換為:+=-1,即k+k=-1.展開得:x/2+4y/2+8y/=0整理為:(4+8n)y/2+8mx/y/+x/2=0+8mk/+1=0所以k+k=-=-1,所以2m-2n=1?m=n+代入mx/+ny/=1,整理得n(x/+y/)+-1=0,對于任意n都成立.=2=-1=2=-1 ∴+y2=1.+x2=,x1x2=,且Δ=16k2(k-1(2-8k(k-2((1+2k2(>0,解得k>0或k<-2.kAP+kAQ=+=+=2k+(2-k(+=2k+(2-k(?99=2k+(2-k(?=2k-2(k-1(=2.即有直線AP與AQ斜率之和為2.mx+ny=1過點(diǎn)(1,2(,m+2n=1,m=1-2n,x2+2(y-1(2=2,x2+2y2-4y=0,2y2+x2-4y(mx+ny(=0,k1+k2=-=-==2. 點(diǎn).-1,代入∵直線P2A與直線P2B的斜率的和為-1,∴kP2A+kP2B=+==-1,x2+8ktx+4t2-4=0,x1+x2=,x1x2=,則kP2A+kP2B=+=1+4k2:mx+ny=1,+y2+2y=0,x2+4y2+8y(mx+ny(=0,(8n+4(y2+8mxy+x2=0,2,(8n+4(2+8m+1=0,(8n+4(k2+8mk+1=0,k1+k2=-=-1,=EF+EF/=2、3,b2=a2-c2=2,:所求橢圓方程為+=1.②-①,可得k1==-=-.,設(shè)M(xM,yM(,直線AB的方程為y-1=k1(x-1(,即y=k1x+k2,代入橢圓方程并化簡得(2+3k(x2+6k1k2x+3k-6=0,:xM=,yM=,==,直線MN的方程為y-2=.=-,即中點(diǎn)的軌跡方程為2(x2-x(-(x+1([+3[(y+1(2-(y+1([=0,2x2+3y2+3y(mx+ny(+2x(mx+ny(=0,(3+3n(y2+(2n+3m(xy+(2+2m(x2=0,,得(3+3n(k2+(2n+3m(k+2+2m=0,“k1+k2=1,:-=1,-m-n=1, 2為定值.2=4y:拋物線C:x2=4y.-4kx-8k=0.由Δ=16k2+32k>0,得k>0或k<-2,1+x2=4k,x1x2=-8k,=(x1+2((x2+2(=x1x2+2(x1+x2(+4=-8k+8k+4=1.. 2+4yl2+6xl+12yl=0①,2+4yl2+6xl(mxl+nyl)+12yl(mxl+nyl)=0,2+(6n+12m)xlyl+(3+6m)xl2=0,kAEl+kAFl=-=2,化簡得n=-m-,代入直線mxl+nyl=1得mxl+(-m-yl=1,整理得mxl-yl(-yl-1=0,直線ElFl恒過xl-yl=0和直線-yl-1=0的交點(diǎn)(-,-,則直線EF恒定過點(diǎn)(-,-.AElAFl==2,即m=4n+,直線ElFl的方程為n(4xl+yl)+xl-1=0,直線ElFl恒過4xl+yl=0和直線xl-1=0的交點(diǎn),-,則直線EF恒定過點(diǎn),-.【解析】設(shè)直線EF的方程為y=kx+m,即y-=k(x-1)+k+m-,變形得=1,將橢圓+=1變形為+=14k+m+y-2+6(1-2k)(x-1)(y-+(3m-3k-(x-1)2=0,4k+m+2+6(1-2k)+3m-3k-=0?,代入直線EF的方程得y=kx+=k(x+-,所以直線EF恒定過定點(diǎn)(-,-.②由韋達(dá)定理得kAE?kAE=3m-3k-=2,所以m=11k+4(k+m+-5,代入直線EF的方程為y=kx+-=k(x--,所以直線EF恒定過定點(diǎn),-.(y=kx+b)x2+8kbx+4b2-12=0,x1+x2=-8kbx1去分母得(kx1+b-(x2-1)+(kx2+b-(x1-1)=2(x1-1)(x2-1)(2k-2)x1x2+(b-k+(x1+x2)+1-2b=0,(2k-2)?+(b-k+-+1-2b=0,故b=-,或b=-k+.當(dāng)b=-時(shí),直線EFy=kx+b=k(x+-恒過定點(diǎn)(-,-;舍去. 線與AC相交于點(diǎn)D.2從而a=2,c=、2,b2=a2-c2=2,故所求動(dòng)點(diǎn)D的軌跡方程為+=1.2(y=kx-1由+=1消去y得(2k2+1)x2-4kx-2=0,顯然Δ=(-4k)2+8(2k2+1)=k2+8>0+x2=,x1x2=-.==k2+-=k2+=--、2即直線PM與PN的斜率之積為定值. y2+22py-2px=0?,不妨設(shè)直線AB的方程為:mx+ny=1,2+2、2py(mx+ny)-2px(mx+ny)=0,2pm-2pn)xy-2pmx2=0,yxyx2pm-yxyx2pm-2pn)y1xy1xx和kPB=易知kPA=PB/=-2pm=-1,即m=1+2n,+2n(x/+ny/=1得(2+y/)n+x/-1=0,(2)設(shè)M為曲線C上一點(diǎn),C在M處的切線與直線AB平行,且AM⊥BM,求直線ABxx則直線AB的斜率為k==(x1+x2(=×4=1.xxxx+2(x1+x2(+20=0,即為-4t+8+20=0xx的方程為y=x+7.B/+ny=1,4y+4=x2+4x+4,x2+4(x-y((mx+ny(=0,x2+4(mx2+nxy-mxy-ny2(=0,(1+4m(x2+4(n-m(xy-4ny2=0,x≠0,同除以x2,得-4n2+4(n-m(+(1+4m(=0, 4nk2-4(n-m(k-(1+4m(=0,mx+ny=1,斜率-=1,m=-n,k1k2==-1, 1+4m=4n,n=,m=-,-x+y=1,x-y+8=0右2,上1,(x-2(-(y-1(+8=0,x-y+7=0. 2(y=kx+m聯(lián)立+=1,得(2k2+1(x2+4kmx+2m2-6=0,由Δ=(4km(2-4(2k2+1((2m2-6(>0,知m2<6k2+3,1+x2=-4km」AM丄AN,:A—.A—=(x1-2,y1-1(.(x2-2,y2-1(=0,即(k2+1(x1x2+(km-k-2((x1+x2(+m2-2m+5=0,:(k2+1(.+(km-k-2((-+m2-2m+5=0,化簡整理得,4k2+8km+3m2-2m-1=(2k+m-1((2k+3m+1(=0,:m=1-2k或m=-,當(dāng)m=-時(shí),y=kx-,過定點(diǎn),-.設(shè)D(x0,y0(,則y0=kx0+m,:x0-2+(y0-2=2+2==,:|DQ|=-2(2++2=,為定值.」AM丄AN,:A—.A—=(t-2,s-1(.(t-2,-s-1(=t2-4t-s2+5=t2-4t+2=0,解得t=或=-2+-1(2=,為定值.(x+2(2+(y+1(2=1Lmx+ny=1+2y(x+2(2+(y+1(2=1Lmx+ny=1+(4m+4n(xy+(4m+1(x2=0,得:(4n+2(k2+(4m+4n(k+(4m+1(=0,」AM丄AN,:kAM.kAN=-1,:=-1,4m+1=-4n-2,=|AP|=. 1+y2=-4m:(t+2(2y1y2+(t-2(my1+my2+=0,即(t+2(2y1y2+(t-2m2y1y2+(y1+y2(+=-+=0,化簡得-32(t+2(2+(t-2[-32m2-32m2+64(m2+2([=0,即(t+2(2-4(t-2=0,t+2=±2(t-,解得t=-或t=.Ol:mx+ny=12+2y2-4x(mx+ny(=0,2y2-4nxy+(1-4Ol:mx+ny=1等式兩邊同時(shí)除以x,22-4n+(1-4m(=0,kAP.kAQ=kAM.kAN==-,“MD丄ND,:kMD.kND=-1,==4,4 =1;聯(lián)立橢圓方程得x2+4mkx+2=0,則x1+x2=-,x1x2=.y1y2=(kx1+m)(kx2+m)=k2x1x2+mk(x1+x2)+m2=,由PA⊥PB,得(x1-2)(x2-2)+y1y2=0,代入得4k2+8mk+3m2=0,m=-2k,m=-k,直線AB的方程為y=k(x-所以過定點(diǎn),0(.設(shè)直線為mx+ny=1;下面對橢圓方程進(jìn)行化簡x2+4x+2y2=0;變成x2+4x(mx+ny)+2y2=0?2y2 齊次化運(yùn)算為什么不是解決圓錐曲線的常規(guī)武器是常規(guī)武器呢?首先我們總結(jié)一下齊次化運(yùn)算步驟消元的基本思路是消未知數(shù),而本方法是消去常數(shù),這也是學(xué)生不適應(yīng)之處.但更大的難點(diǎn)是f 與橢圓方程可得整理得:(y+9(x2+6yx+9y-81=0,解得:x=-3或x=,x-思路二:連接CB,由橢圓第三定義得,kCAkCB=-,而kCAkCB=-,kCA=,kBD=kBP==,BCkBD=-,就可以采用本方法解答.設(shè)x-3=t,得t2+9y2+6t=0,故設(shè)6=mt+ny易算.計(jì)算如下:2+n.+(m+1(=0→k1k2==-→m=-4→-4(x-3(+ny=6,可知直線CD過定點(diǎn) 1=2k2得到kACkAD=-,即可采用齊次化運(yùn)算了..=-,設(shè)y+1=t,得x2+4t2-8t=0,所以設(shè)8=mx+n(y+1)=mx+nt易算.計(jì)算如下:的方程的方程:y=x-. =8.P為直線x=6上的動(dòng)點(diǎn),PA與E的另一交點(diǎn)為C,PB與E的另一交=3,故橢圓E的方程是+y2=1.+m2(x2+6m2x+9m2-81=0,由韋達(dá)定理-3xc=?xc=,代入直線PA的方程為y=(x+3(得:yc=,+m2(x2-6m2x+9m2-9=0,由韋達(dá)定理3xD=?xD=,代入直線PB的方程為y=(x-3(得yD=,即x=.(mx+ny=19+y=1,聯(lián)立得:x2-6x+9y2=0,x2-6x(mx(mx+ny=1 將橢圓C:+y2=1和直線AB:x=my+1按照{(diào)平移至以點(diǎn)M為坐標(biāo)原點(diǎn),得+y/2=1和x/+2=my/+1,x/2+2y/2+2y/+2=0,將my/-x/=1代入x/2+2y/2+4x/+2=0構(gòu)造齊次化得x/2+2y/2+4x/(my/-x/)+2(my/-x/)2=0,整理得(2m2+2)y/2-x/2=0?.2+2)y2+2my-1=0, -2m-1y1+y2=m2+2,y1y2 -2m-1要證∠OMA=∠OMB,即證kAM+kBM=0,2-2)+y2(x1-2)=0,用x=my+1消去x得:2my1y2-(y1+y2)=0,線MA和直線MB的傾斜角互補(bǔ)(即斜率之和為零). 2=8x;xy=xl-1=yyl2=8(xl-1),即yl2-8xl2+1)yl2+(16mn-8n)xlyl+(8m2-8m)xl2=0,2得:l y2 x.kBPl+kBQl=-,所以m=,所以xl+nyl=1,即yl=,xl-1l==xl-1l==yy直線BM的方程:y=x+1,或y=-x-1.2+2,消x得y2-2ty-4=0,即y1+y2=2t,y1y2=-4,(y1+y2(2y1x1+2y2x2+2則有kBN+kBM=+=(y1+y2(2y1x1+2y2x2+2則有kBN+kBM=+(x1+2((x2+2(((x1+2((x2+2(y2=2x(mx+ny(-4(mx+ny(2,y2=2mx2+2nxy-4(m2x2+n2y2+2mnxy(,(1+4n2(y2+(8mn-2n(xy+(4m2-2m(x2=0,+4n2(k2+(8mn-2n(k+4m2-2m=0,k1+k2=-82n=-2n1(n1(=x=1=1x=1x或x=1=1x=1x或2、2==-221<2,x2<2,由y1=kx1-k,y2=kx2-k得kMA+kMB=--,將y=k(x-1(代入+y2=1可得(2k2+1(x2-4k2x+2k2-2=0,∴x1+x2=,x1x2=,1x2-3k(x1+x2(+4k=(4k3-4k-12k3+8k3+4k(=0,從而kMA+kMB=0,故MA,MB的傾斜角:mx+ny=1過(-1,0(即-m=1.m=-1,x2+4x+2y2+2=0,x2+4x(mx+ny(+2y2+2(mx+ny(2=0,(2+2n2(y2+(4n+4mn(xy+(1+4m+2m2(x2=0,+2n2(k2+(4n+4mn(k+1+4m+2m2=0,k1+k2=-=0,+1(x2+4kx-6=0,Δ=16k2+24(2k2+1(>0,根據(jù)韋達(dá)定理及斜率公式可得kQA+kQB=2k+(1-t(-=,令4-t=0,可得t=4符合題意.l方程:y=kx+1,x1x2=2k1,+1(x2+4kx-6=0,Δ=16k2+24(2k2+1(>0,x1x2=2k1,∴kQA+kQB=+====2k+(1-t(-==0,根是由初中的一元二次方程知識(shí)可知:若x1和x2是一元二次方程ax2+bx+c=0的兩個(gè)根,則ax2+bx+c=a(x-x1)(x-x2),我們把a(bǔ)x2+bx+c=a(x-x1)(x-x2)叫做二次方程的雙根式,所謂的點(diǎn)乘雙根法就是構(gòu)建雙根式是去解決含x1+x2和x1x2或者可轉(zhuǎn)化為含含x1+x2和x1x2的計(jì)算問題,其中以向量的數(shù)量積有關(guān)的問點(diǎn)乘雙根法是通過對雙根式ax2+bx+c=a(x-x1)(x-x2)進(jìn)行賦值x=x0和y=y0,直接計(jì)算(x1-x0)(x2-x0y1 2-2)+y1y2=0,(y=kx+m(y=kx+m)x2+8mkx+4(m2-3)=0,)x2+8mkx+4(m2-3)=(3+4k2)(x-x1)(x-x2)①體代換以達(dá)到簡化計(jì)算的目的,故對雙根式①中的x進(jìn)行賦值x=2得4(3+4k2)+16mk+4(m2-3)=(2-x1)(2-x2),3+4k2整體求出(x1-2)(x2-2)=16k2+16mk3+4k2接下來先求出y1y2,y1y2=(kx1+m)(kx2+m)=k2(x1+x2+,只需對雙根是進(jìn)行賦值x=-,并兩邊同時(shí)乘以k2可得y1y2=k2(x1+x2+2+16mk+4m2+3m2-12k2=0,3+4k23+4k22+16mk+7m2=0,分解因式得(7m+2k)(m+2k)=0,∴m=-k或m=-2k,當(dāng)m=-k時(shí),直線ly=kx+m ),直線AB:x=my+1(其中m=),2-1)①=m2(y1+y2++(y1-1)?(y2-1)=0y2-4my-4=0,y2-4my-4=m2(y-y1)(y-y2)②.令y=-,得+8-4=m2(--y1((--y2(,所以m2y1+y2+=+4=0④++4=0,k2x2-2(2+k2)x+k2=0,x1+x2=4+1+y2=k(x1+x2-2)=,y1y2=k2(x1-1)(x2-1)=k2[x1x2-(x1+x2)+1]=-4,1-1)2+1)+1-1)2-1)=0,x1x2+(x1+x2)+y1y2-(y1+y2)+2=0,-x1),B/則y0 定點(diǎn).OA設(shè)AB:x=my+n①,A(x1,y1),B(x2注意到kOA=,kOB=,所以kOA和kOB方程n2+2pm-2p=0的兩個(gè)根,所以n=2p,代入①可得x=my+2p,x2+y1y2=(my1+n)(my2+n)+y1y2=m2(y1+y2++y1y2①.+n,y2-2pmy-2pn=0,又因?yàn)閥1和y2是方程y2-2pmy-2pn=0,所以y2-2pmy-2pn=(y-y1)(y-y2),令y=0,則-2pn=y1y2②;令y=-,則=(y1+y2+③.代入x=my+n可得x=my+2p,所以直線AB恒定過定點(diǎn)(2p,0)x2-2雙曲線的方程.OAOB=-1,適合用齊次化來處理.+y2+xy+-x2=0,兩邊同除以x2,+k2+k+-=0,注意到kOA=,kOB=,k+-=0的兩個(gè)根,所以kOA?kOB=+k+-=0的兩個(gè)根,所以kOA?kOB=+cc -2+b2)2+b2)3x-y=3ay(x2a),消去y得4x2+4ax-3x-y=3a1+x2=-a,x1x2=-,由弦長公式得AB=1+k2(x1+x2)2-4x1x2=1+(-a)2-4(-=4,x2+y1y2=x1x2+(x1-c)(x2-c)=0①.-3a2)x2+6a2cx-3a2c2-5a2b2=0,又因?yàn)閤1和x2是方程(5b2-3a2)x2+6a2cx-3a2c2-5a2b2=0,2-3a2)x2+6a2cx-3a2c2-5a2b2=(5b2-3a2)(x-x1)(x-x2).2-5b212令x=0得3a2c2+52-5b2123x2-y2=3a2y=a),消去y得4x2+4ax3x2-y2=3a21+x2=-a,x1x2=-,由弦長公式得AB=1+k2(x1+x2)2-4x1x2=1+(-a)2-4(-=4, 2:y=-(x-1),-(2k2+4)x+k2=0的兩個(gè)根為x1,x2,2x2-(2k2+4)x+k2=k2(x-x1)(x-x2),+1)(x2+1)==4+,2, ),N?N=(x1-x2-+(y1-y2-=0①yy=kx+2=2x2,消y得x2-x-1=0=(x-x1)(x-x2)②,將x=代入②式得-x1-x2(=-1③;yy=kx+2=2x2,消x得y2+(4+y+4=(y-y1)(y-y2)④,將y=代入④得8-y1-y2(=--+4⑤, 2>,要證OA2+OB2<AB2(因?yàn)锳B2=OA2+OB2-2|OA||OB|cos∠AOB)?),①當(dāng)AB⊥x軸時(shí),x1=x2=-1,則y1=,y2=-,則?=x1x2+y1y2=1-=1-==<0=-2+=-+=0,所以O(shè)A2+OB2<AB2a所以?=x1x2+y1y2=x1x2+k2(x1+1)(x2+1)⑴.ry=k(x+1)x2+y2=1得b2x2+a2k2(x+1)2-a2b2=0,22x2+a2k2(x+1)2-a2b2=(a2k2+b2)(x1-x)(x2-x),=②;+1)(x2+1)=③,2k2+b2a2k2+b2a2k2+b2,將②③代入①得?=a2k2-a2b2+k2?b2-a2b2=2k2+b2a2k2+b2a2k2+b2,2=b2+c2=b2+1,則b2=a2-1,所以a2+b2-a2b2=2a2-1-a2(a2-1)=-a4+3a2-1=-(a2-2+<0,所以O(shè)A?OB<0,綜上可得:OA2+OB2< 故曲線C的方程為x2+=1.(y=kx+1x2+=1,消去y并整理得(k2+4)x2+2kx(y=kx+1故x1+x2=-,x1x2=-.1x2+y1y2=0,而y1y2=k2x1x2+k(x1+x2)+1,k2+4k2+4k2+42.于是x1x2+y1y2=-3-3k2-2k2+1=0k2+4k2+4k2+42.=-,x2=,x2+y1y2=0①,(y=kx+1將y1y2=k2(x1+x1+代入①得?=x1x2+k2(x1+x1+=0②.x2+=1得(k2+4)x2+2kx-3=(k2+4)(x-x1)(x-(y=kx+1令x=0得x1x2=③;4令x=-,則(k2+4)(x1+x1+=-4,即(x1+x1+=④.4=y2=1,即x1=-,x2=,故A(-,1=m(y-1)(其中m=),故有x1x2=m2(y1-1)(y2-1)因?yàn)?=x1x2+y1y2=0,所以m2(y1-1)(y2-1)+y1y2=0①.x=m(y-1)x2+=1得4m2(y-1)2+y2-4=(4m2+1)(y-yx=m(y-1)將②③代入①m2?-3+4m2-4=0,即=x+y-(x+y)=(x-x)+4(1-x-1+x)=-3(x1-x2)(x1+x2)=. (2)設(shè)M為曲線C上一點(diǎn),C在M處的切線與直線AB平行,且AM⊥BM,求直線AB1=2=,x1+x2=4,于是直線AB的斜率k=====1.將y=x+m代入y=,得x2-4x-4m=0,當(dāng)Δ=16(m+1)>0即m>-1時(shí),x1=2-2、m+1,x2=2+2、m+1,所以直線AB的方程:y=x+7.=(2-x1,1-y1),B—=(2-x2,1-=(2-x1,1-y1),B—=(2-x2,1-y2),AMAMy設(shè)直線AB的方程:y=x+m,聯(lián)立{y=x+m=x24化簡得x2-4x-4m=0,2是方程x2-4x-4m=0的兩個(gè)根,故有x2-4x-4m=(x-x1)(x-x2)②,2-1)=(x1+m-1)(x2+m-1),令x=1-m代入②得(x1+m-1)(x2+m-1)=m2-2m-3④,將③④代入①得-4-4m+m2-2m-3=0,解之得m=7或m=-1(舍去),xl2+4xl-4yl=xl2+4xl(mxl-myl)-4yl(mxl-myl)=0,4myl2-8mxlyl+4mxl2+xl2=0,故由韋達(dá)定理得kMA/?kMB/==-1,m=-,直線A/B/的方程為x/-y/=-8,平移回原坐標(biāo)系得直線AB方程為(x-2)-(y-1)=-8,即x-y+7=0. y2=8x.x2+y1y2=(y1-m)(y2-m)+y1y2=0①.m消去x得y2-8y+8m=0,又因?yàn)閥1和y2是y2-8y+8m=0的兩個(gè)根,所以y2-8y+8m=(y-y1)(y-y2),令y=0得8m=y1y2②;令y=m,m2=(y1-m)(y2-m)③,將②③代入①得m2+8m=0,解得m1=0或m2=-8, FOF2-2,y2)=0,1-2)2-2)+k2(x1+2)(x2+2)=0①=1=12+5k2(x2+5k2(x+2)2-20=0則方程x2+5k2(x+2)2-20=0可以等價(jià)轉(zhuǎn)化(1+5k2)(x1-x)(x2-x)=0即x2+5k2(x+2)2-20=(1+5k2)(x1-x)(x2-x)令x=2,4+80k2-20=(1+5k2)(x1-2)(x2-2)?(x1-2)(x2-2)=將x1=my1-2,x2=my2-2代入①得(my1-4)(my2-4)+y1y2=0②.(my-2)2+5y2-20=(m2+5)(y1-y)(y2-y)=0,y1y2= -16m2+5m2?m2-16距離的最大值.=c==-,化簡得:y=+(1-m(2,又+=1,解得m=或m=1(舍去),此時(shí)P到直線l的距(y=kx+m+=1且整理可得:(3+4k2(x2+8kmx+4m2-12=0,-y2-=-(x1-1((x2-1(,x1+x2(+(m-2+=0,整理可得2k2+4m2-3m+6km-=0,即(k+m-(2k+4m+3(=0,k+m-=0或2k+4m+3=0,(1-2+-2=,由于>3x2+6x+4(y2+3y(=0,4y2+3x2+6(x+2y((mx+ny(=0,(12n+4(y2+6(2m+n(xy+(6m+3(x2=0,等式兩邊同時(shí)除以x2,(12n+4(2+6(2m+n(+(6m+3(=0,kPA?kPB=-,=-,-m-n=1,(1-2+-2=,由于> 2=2px過點(diǎn)A(2,4(.2=8x(2)證明:顯然直線PQ斜率不為0,故可設(shè)PQ:x=my+t,將PQ的方程與y2=8x聯(lián)立得y2-8my-8t=設(shè)P(x1,y1(2(,則y1+y2=8m,y1y2=-8t,所以Δ>0?64m2+32t>0?2m2+t>0,kPA===,同理:kQA=,y1+4y2+4,y1+4y2+4,∴2(y1+y2(=y1y2+4(y1+y2(,1y2=-2(y1+y2(,即t=2m,代入直線得x=my+2m=m(y+2(, 2=12AM+kAN=0求出6(k-1((b+3k-1(=0,得到k=1;出S△OMN=從而求出△OMN的面積的最大值.2-8>0,解得a2>8,故C:+=1,則Δ=36k2b2-4(1+3k2((3b2-12(=-12(b2-12k2-4(>0,則b2<12k2+4,+x2=,x1x2=,y1-1+x1-3y1-1+x1-3 =y2-1(x2-3((y1-1(+(x1-3((y =x2-3(x1-3((x2-3(=(x2-3((kx1+b-1(+(x1-3((kx2+b-=(x1-3((x2-3(=2kx1x2+(b-1-3k((x1+x2(-6b+6(x1-3((x2-3(=0,即6(k-1((b+3k-1(=0,Δ=36b2-16(3b2-12(>0,解得-4<b<4,x1+x2(2-4x1x2=·2?2-(3b2-12(=1+1=16b2-b4=-(b2-8(2+64,2=8值或范圍. 所以雙曲線C的方程為-=1.Δ=64k2m2+4(1-4k2((4m2+4(>0,m2+1-4k2>0①,=2k(-+(m-2k(-4m=1,--2-+4整理得(m+2k((m+2k-1(=0.此時(shí),將m=1-2k代入①得(1-2k(2+1-4k2=2-4k>0,k<,進(jìn)行求解. =、3求解;>b>0(的離心率e=,又因?yàn)閍2=b2+c2,所以橢圓的方程為+=1;與橢圓方程聯(lián)立求得M,N,-,又A(-2,0(,-=-4=,=-4=,kAN=42-(-2(2所以kAM?kAN=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論