版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省南京市秦淮區(qū)四校2023-2024學年中考押題數(shù)學預(yù)測卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在一組數(shù)據(jù):1,2,4,5中加入一個新數(shù)3之后,新數(shù)據(jù)與原數(shù)據(jù)相比,下列說法正確的是()A.中位數(shù)不變,方差不變 B.中位數(shù)變大,方差不變C.中位數(shù)變小,方差變小 D.中位數(shù)不變,方差變小2.解分式方程﹣3=時,去分母可得()A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=43.如圖,A、B、C三點在正方形網(wǎng)格線的交點處,若將△ABC繞著點A逆時針旋轉(zhuǎn)得到△AC′B′,則tanB′的值為()A. B. C. D.4.如圖,已知正五邊形內(nèi)接于,連結(jié),則的度數(shù)是()A. B. C. D.5.在Rt△ABC中,∠C=90°,AC=1,BC=3,則∠A的正切值為()A.3 B. C. D.6.如圖,已知AB、CD、EF都與BD垂直,垂足分別是B、D、F,且AB=1,CD=3,那么EF的長是()A. B. C. D.7.下列運算正確的是()A.6-3=3B.-32=﹣3C.a(chǎn)?a2=a2D.(2a8.下列命題中假命題是()A.正六邊形的外角和等于 B.位似圖形必定相似C.樣本方差越大,數(shù)據(jù)波動越小 D.方程無實數(shù)根9.估算的值是在()A.2和3之間 B.3和4之間 C.4和5之間 D.5和6之間10.已知關(guān)于x的一元二次方程有實數(shù)根,則m的取值范圍是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,已知在Rt△ABC中,∠ACB=90°,AB=4,分別以AC,BC為直徑作半圓,面積分別記為S1,S2,則S1+S2等_________.12.如圖,在邊長為4的菱形ABCD中,∠A=60°,M是AD邊的中點,點N是AB邊上一動點,將△AMN沿MN所在的直線翻折得到△A′MN,連接A′C,則線段A′C長度的最小值是______.13.長、寬分別為a、b的矩形,它的周長為14,面積為10,則a2b+ab2的值為_____.14.一組數(shù)據(jù)7,9,8,7,9,9,8的中位數(shù)是__________15.如圖,點A為函數(shù)y=(x>0)圖象上一點,連接OA,交函數(shù)y=(x>0)的圖象于點B,點C是x軸上一點,且AO=AC,則△ABC的面積為______.16.當__________時,二次函數(shù)有最小值___________.17.2018年5月18日,益陽新建西流灣大橋竣工通車,如圖,從沅江A地到資陽B地有兩條路線可走,從資陽B地到益陽火車站可經(jīng)會龍山大橋或西流灣大橋或龍洲大橋到達,現(xiàn)讓你隨機選擇一條從沅江A地出發(fā)經(jīng)過資陽B地到達益陽火車站的行走路線,那么恰好選到經(jīng)過西流灣大橋的路線的概率是_____.三、解答題(共7小題,滿分69分)18.(10分)為響應(yīng)市政府“創(chuàng)建國家森林城市”的號召,某小區(qū)計劃購進A、B兩種樹苗共17棵,已知A種樹苗每棵80元,B種樹苗每棵60元.若購進A、B兩種樹苗剛好用去1220元,問購進A、B兩種樹苗各多少棵?若購買B種樹苗的數(shù)量少于A種樹苗的數(shù)量,請你給出一種費用最省的方案,并求出該方案所需費用.19.(5分)如圖①,在正方形ABCD中,△AEF的頂點E,F(xiàn)分別在BC,CD邊上,高AG與正方形的邊長相等,求∠EAF的度數(shù).如圖②,在Rt△ABD中,∠BAD=90°,AB=AD,點M,N是BD邊上的任意兩點,且∠MAN=45°,將△ABM繞點A逆時針旋轉(zhuǎn)90°至△ADH位置,連接NH,試判斷MN2,ND2,DH2之間的數(shù)量關(guān)系,并說明理由.在圖①中,若EG=4,GF=6,求正方形ABCD的邊長.20.(8分)隨著交通道路的不斷完善,帶動了旅游業(yè)的發(fā)展,某市旅游景區(qū)有A、B、C、D、E等著名景點,該市旅游部門統(tǒng)計繪制出2017年“五?一”長假期間旅游情況統(tǒng)計圖,根據(jù)以下信息解答下列問題:(1)2017年“五?一”期間,該市周邊景點共接待游客萬人,扇形統(tǒng)計圖中A景點所對應(yīng)的圓心角的度數(shù)是,并補全條形統(tǒng)計圖.(2)根據(jù)近幾年到該市旅游人數(shù)增長趨勢,預(yù)計2018年“五?一”節(jié)將有80萬游客選擇該市旅游,請估計有多少萬人會選擇去E景點旅游?(3)甲、乙兩個旅行團在A、B、D三個景點中,同時選擇去同一景點的概率是多少?請用畫樹狀圖或列表法加以說明,并列舉所用等可能的結(jié)果.21.(10分)如圖,小明今年國慶節(jié)到青城山游玩,乘坐纜車,當?shù)巧嚼|車的吊箱經(jīng)過點A到達點B時,它經(jīng)過了200m,纜車行駛的路線與水平夾角∠α=16°,當纜車繼續(xù)由點B到達點D時,它又走過了200m,纜車由點B到點D的行駛路線與水平面夾角∠β=42°,求纜車從點A到點D垂直上升的距離.(結(jié)果保留整數(shù))(參考數(shù)據(jù):sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)22.(10分)為加快城鄉(xiāng)對接,建設(shè)全域美麗鄉(xiāng)村,某地區(qū)對A、B兩地間的公路進行改建.如圖,A、B兩地之間有一座山,汽車原來從A地到B地需途徑C地沿折線ACB行駛,現(xiàn)開通隧道后,汽車可直接沿直線AB行駛.已知BC=80千米,∠A=45°,∠B=30°.開通隧道前,汽車從A地到B地大約要走多少千米?開通隧道后,汽車從A地到B地大約可以少走多少千米?(結(jié)果精確到0.1千米)(參考數(shù)據(jù):≈1.41,≈1.73)23.(12分)如圖,在△ABC中,∠C=90°,以AB上一點O為圓心,OA長為半徑的圓恰好與BC相切于點D,分別交AC,AB于點E,F(xiàn).(1)若∠B=30°,求證:以A,O,D,E為頂點的四邊形是菱形;(2)填空:若AC=6,AB=10,連接AD,則⊙O的半徑為,AD的長為.24.(14分)已知,平面直角坐標系中的點A(a,1),t=ab﹣a2﹣b2(a,b是實數(shù))(1)若關(guān)于x的反比例函數(shù)y=過點A,求t的取值范圍.(2)若關(guān)于x的一次函數(shù)y=bx過點A,求t的取值范圍.(3)若關(guān)于x的二次函數(shù)y=x2+bx+b2過點A,求t的取值范圍.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
根據(jù)中位數(shù)和方差的定義分別計算出原數(shù)據(jù)和新數(shù)據(jù)的中位數(shù)和方差,從而做出判斷.【詳解】∵原數(shù)據(jù)的中位數(shù)是2+42=3,平均數(shù)為1+2+4+54=3,
∴方差為14×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=52;
∵新數(shù)據(jù)的中位數(shù)為3,平均數(shù)為1+2+3+【點睛】本題考查了中位數(shù)和方差,解題的關(guān)鍵是掌握中位數(shù)和方差的定義.2、B【解析】
方程兩邊同時乘以(x-2),轉(zhuǎn)化為整式方程,由此即可作出判斷.【詳解】方程兩邊同時乘以(x-2),得1﹣3(x﹣2)=﹣4,故選B.【點睛】本題考查了解分式方程,利用了轉(zhuǎn)化的思想,熟練掌握解分式方程的一般步驟以及注意事項是解題的關(guān)鍵.3、D【解析】
過C點作CD⊥AB,垂足為D,根據(jù)旋轉(zhuǎn)性質(zhì)可知,∠B′=∠B,把求tanB′的問題,轉(zhuǎn)化為在Rt△BCD中求tanB.【詳解】過C點作CD⊥AB,垂足為D.根據(jù)旋轉(zhuǎn)性質(zhì)可知,∠B′=∠B.在Rt△BCD中,tanB=,∴tanB′=tanB=.故選D.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),旋轉(zhuǎn)后對應(yīng)角相等;三角函數(shù)的定義及三角函數(shù)值的求法.4、C【解析】
根據(jù)多邊形內(nèi)角和定理、正五邊形的性質(zhì)求出∠ABC、CD=CB,根據(jù)等腰三角形的性質(zhì)求出∠CBD,計算即可.【詳解】∵五邊形為正五邊形∴∵∴∴故選:C.【點睛】本題考查的是正多邊形和圓、多邊形的內(nèi)角和定理,掌握正多邊形和圓的關(guān)系、多邊形內(nèi)角和等于(n-2)×180°是解題的關(guān)鍵.5、A【解析】【分析】根據(jù)銳角三角函數(shù)的定義求出即可.【詳解】∵在Rt△ABC中,∠C=90°,AC=1,BC=3,∴∠A的正切值為=3,故選A.【點睛】本題考查了銳角三角函數(shù)的定義,能熟記銳角三角函數(shù)的定義的內(nèi)容是解此題的關(guān)鍵.6、C【解析】
易證△DEF∽△DAB,△BEF∽△BCD,根據(jù)相似三角形的性質(zhì)可得=,=,從而可得+=+=1.然后把AB=1,CD=3代入即可求出EF的值.【詳解】∵AB、CD、EF都與BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴=,=,∴+=+==1.∵AB=1,CD=3,∴+=1,∴EF=.故選C.【點睛】本題考查了相似三角形的判定及性質(zhì)定理,熟練掌握性質(zhì)定理是解題的關(guān)鍵.7、D【解析】試題解析:A.6與3不是同類二次根式,不能合并,故該選項錯誤;B.(-3)2C.a?aD.(2a故選D.8、C【解析】試題解析:A、正六邊形的外角和等于360°,是真命題;B、位似圖形必定相似,是真命題;C、樣本方差越大,數(shù)據(jù)波動越小,是假命題;D、方程x2+x+1=0無實數(shù)根,是真命題;故選:C.考點:命題與定理.9、C【解析】
求出<<,推出4<<5,即可得出答案.【詳解】∵<<,∴4<<5,∴的值是在4和5之間.故選:C.【點睛】本題考查了估算無理數(shù)的大小和二次根式的性質(zhì),解此題的關(guān)鍵是得出<<,題目比較好,難度不大.10、C【解析】
解:∵關(guān)于x的一元二次方程有實數(shù)根,∴△==,解得m≥1,故選C.【點睛】本題考查一元二次方程根的判別式.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】試題解析:所以故答案為12、【解析】
解:如圖所示:∵MA′是定值,A′C長度取最小值時,即A′在MC上時,過點M作MF⊥DC于點F,∵在邊長為2的菱形ABCD中,∠A=60°,M為AD中點,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=1,∴FM=DM×cos30°=,∴,∴A′C=MC﹣MA′=.故答案為.【點評】此題主要考查了菱形的性質(zhì)以及銳角三角函數(shù)關(guān)系等知識,得出A′點位置是解題關(guān)鍵.13、1.【解析】
由周長和面積可分別求得a+b和ab的值,再利用因式分解把所求代數(shù)式可化為ab(a+b),代入可求得答案【詳解】∵長、寬分別為a、b的矩形,它的周長為14,面積為10,
∴a+b==7,ab=10,
∴a2b+ab2=ab(a+b)=10×7=1,
故答案為:1.【點睛】本題主要考查因式分解的應(yīng)用,把所求代數(shù)式化為ab(a+b)是解題的關(guān)鍵.14、1【解析】
將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù),據(jù)此可得.【詳解】解:將數(shù)據(jù)重新排列為7、7、1、1、9、9、9,所以這組數(shù)據(jù)的中位數(shù)為1,故答案為1.【點睛】本題主要考查中位數(shù),解題的關(guān)鍵是掌握中位數(shù)的定義.15、6.【解析】
作輔助線,根據(jù)反比例函數(shù)關(guān)系式得:S△AOD=,S△BOE=,再證明△BOE∽△AOD,由性質(zhì)得OB與OA的比,由同高兩三角形面積的比等于對應(yīng)底邊的比可以得出結(jié)論.【詳解】如圖,分別作BE⊥x軸,AD⊥x軸,垂足分別為點E、D,∴BE∥AD,
∴△BOE∽△AOD,
∴,
∵OA=AC,
∴OD=DC,
∴S△AOD=S△ADC=S△AOC,
∵點A為函數(shù)y=(x>0)的圖象上一點,
∴S△AOD=,
同理得:S△BOE=,
∴,
∴,
∴,
∴,
∴,
故答案為6.16、15【解析】二次函數(shù)配方,得:,所以,當x=1時,y有最小值5,故答案為1,5.17、.【解析】
由題意可知一共有6種可能,經(jīng)過西流灣大橋的路線有2種可能,根據(jù)概率公式計算即可.【詳解】解:由題意可知一共有6種可能,經(jīng)過西流灣大橋的路線有2種可能,所以恰好選到經(jīng)過西流灣大橋的路線的概率=.故答案為.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.注意列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數(shù)與總情況數(shù)之比.三、解答題(共7小題,滿分69分)18、(1)購進A種樹苗1棵,B種樹苗2棵(2)購進A種樹苗9棵,B種樹苗8棵,這時所需費用為1200元【解析】
(1)設(shè)購進A種樹苗x棵,則購進B種樹苗(12﹣x)棵,利用購進A、B兩種樹苗剛好用去1220元,結(jié)合單價,得出等式方程求出即可;(2)結(jié)合(1)的解和購買B種樹苗的數(shù)量少于A種樹苗的數(shù)量,可找出方案.【詳解】解:(1)設(shè)購進A種樹苗x棵,則購進B種樹苗(12﹣x)棵,根據(jù)題意得:80x+60(12﹣x)=1220,解得:x=1.∴12﹣x=2.答:購進A種樹苗1棵,B種樹苗2棵.(2)設(shè)購進A種樹苗x棵,則購進B種樹苗(12﹣x)棵,根據(jù)題意得:12﹣x<x,解得:x>8.3.∵購進A、B兩種樹苗所需費用為80x+60(12﹣x)=20x+120,是x的增函數(shù),∴費用最省需x取最小整數(shù)9,此時12﹣x=8,所需費用為20×9+120=1200(元).答:費用最省方案為:購進A種樹苗9棵,B種樹苗8棵,這時所需費用為1200元.19、(1)45°.(1)MN1=ND1+DH1.理由見解析;(3)11.【解析】
(1)先根據(jù)AG⊥EF得出△ABE和△AGE是直角三角形,再根據(jù)HL定理得出△ABE≌△AGE,故可得出∠BAE=∠GAE,同理可得出∠GAF=∠DAF,由此可得出結(jié)論;(1)由旋轉(zhuǎn)的性質(zhì)得出∠BAM=∠DAH,再根據(jù)SAS定理得出△AMN≌△AHN,故可得出MN=HN.再由∠BAD=90°,AB=AD可知∠ABD=∠ADB=45°,根據(jù)勾股定理即可得出結(jié)論;(3)設(shè)正方形ABCD的邊長為x,則CE=x-4,CF=x-2,再根據(jù)勾股定理即可得出x的值.【詳解】解:(1)在正方形ABCD中,∠B=∠D=90°,∵AG⊥EF,∴△ABE和△AGE是直角三角形.在Rt△ABE和Rt△AGE中,,∴△ABE≌△AGE(HL),∴∠BAE=∠GAE.同理,∠GAF=∠DAF.∴∠EAF=∠EAG+∠FAG=∠BAD=45°.(1)MN1=ND1+DH1.由旋轉(zhuǎn)可知:∠BAM=∠DAH,∵∠BAM+∠DAN=45°,∴∠HAN=∠DAH+∠DAN=45°.∴∠HAN=∠MAN.在△AMN與△AHN中,,∴△AMN≌△AHN(SAS),∴MN=HN.∵∠BAD=90°,AB=AD,∴∠ABD=∠ADB=45°.∴∠HDN=∠HDA+∠ADB=90°.∴NH1=ND1+DH1.∴MN1=ND1+DH1.(3)由(1)知,BE=EG=4,DF=FG=2.設(shè)正方形ABCD的邊長為x,則CE=x-4,CF=x-2.∵CE1+CF1=EF1,∴(x-4)1+(x-2)1=101.解這個方程,得x1=11,x1=-1(不合題意,舍去).∴正方形ABCD的邊長為11.【點睛】本題考查的是幾何變換綜合題,涉及到三角形全等的判定與性質(zhì)、勾股定理、正方形的性質(zhì)等知識,難度適中.20、(1)50,108°,補圖見解析;(2)9.6;(3).【解析】
(1)根據(jù)A景點的人數(shù)以及百分表進行計算即可得到該市周邊景點共接待游客數(shù);先求得A景點所對應(yīng)的圓心角的度數(shù),再根據(jù)扇形圓心角的度數(shù)=部分占總體的百分比×360°進行計算即可;根據(jù)B景點接待游客數(shù)補全條形統(tǒng)計圖;(2)根據(jù)E景點接待游客數(shù)所占的百分比,即可估計2018年“五?一”節(jié)選擇去E景點旅游的人數(shù);(3)根據(jù)甲、乙兩個旅行團在A、B、D三個景點中各選擇一個景點,畫出樹狀圖,根據(jù)概率公式進行計算,即可得到同時選擇去同一景點的概率.【詳解】解:(1)該市周邊景點共接待游客數(shù)為:15÷30%=50(萬人),A景點所對應(yīng)的圓心角的度數(shù)是:30%×360°=108°,B景點接待游客數(shù)為:50×24%=12(萬人),補全條形統(tǒng)計圖如下:(2)∵E景點接待游客數(shù)所占的百分比為:×100%=12%,∴2018年“五?一”節(jié)選擇去E景點旅游的人數(shù)約為:80×12%=9.6(萬人);(3)畫樹狀圖可得:∵共有9種可能出現(xiàn)的結(jié)果,這些結(jié)果出現(xiàn)的可能性相等,其中同時選擇去同一個景點的結(jié)果有3種,∴同時選擇去同一個景點的概率=.【點睛】本題考查列表法與樹狀圖法;用樣本估計總體;扇形統(tǒng)計圖;條形統(tǒng)計圖.21、纜車垂直上升了186m.【解析】
在Rt中,米,在Rt中,即可求出纜車從點A到點D垂直上升的距離.【詳解】解:在Rt中,斜邊AB=200米,∠α=16°,(m),在Rt中,斜邊BD=200米,∠β=42°,因此纜車垂直上升的距離應(yīng)該是BC+DF=186(米).答:纜車垂直上升了186米.【點睛】本題考查了解直角三角形的應(yīng)用-坡度坡角問題,銳角三角函數(shù)的定義,結(jié)合圖形理解題意是解決問題的關(guān)鍵.22、(1)開通隧道前,汽車從A地到B地大約要走136.4千米;(2)汽車從A地到B地比原來少走的路程為27.2千米【解析】
(1)過點C作AB的垂線CD,垂足為D,在直角△ACD中,解直角三角形求出CD,進而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,進而求出汽車從A地到B地比原來少走多少路程.【詳解】解:(1)過點C作AB的垂線CD,垂足為D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC?sin30°=80×(千米),AC=(千米),AC+BC=80+40≈40×1.41+80=136.4(千米),答:開通隧道前,汽車從A地到B地大約要走136.4千米;(2)∵cos30°=,BC=80(千米),∴BD=BC?cos30°=80×(千米),∵tan45°=,CD=40(千米),∴AD=(千米),∴AB=AD+BD=40+40≈40+40×1.73=109.2(千米),∴汽車從A地到B地比原來少走多少路程為:AC+BC﹣AB=136.4﹣109.2=27.2(千米).答:汽車從A地到B地比原來少走的路程為27.2千米.【點睛】本題考查了勾股定理的運用以及解一般三角形,求三角形的邊或高的問題一般可以轉(zhuǎn)化為解直角三角形的問題,解決的方法就是作高線.23、(1)見解析;(2)【解析】
(1)先通過證明△AOE為等邊三角形,得出AE=OD,再根據(jù)“同位角相等,兩直線平行”證明AE//OD,從而證得四邊形AODE是平行四邊形,再根據(jù)“一組鄰邊相等的平行四邊形為菱形”即可得證.(2)利用在Rt△OBD中,sin∠B==可得出半徑長度,在Rt△ODB中BD=,可求得BD的長,由CD=CB﹣BD可得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024民間個人借款合同范本
- 《古鼎花紋模板》課件
- 2024貨品供應(yīng)合同范本
- 2024太陽能光伏發(fā)電站EPC總承包合同
- 蘇州科技大學天平學院《數(shù)控技術(shù)及應(yīng)用》2021-2022學年第一學期期末試卷
- 搪瓷制品的品質(zhì)與品牌認證考核試卷
- 創(chuàng)意產(chǎn)業(yè)的綠色低碳發(fā)展考核試卷
- 2024供熱外網(wǎng)施工合同
- 城市軌道交通在促進經(jīng)濟發(fā)展中的應(yīng)用考核試卷
- 空間規(guī)劃學校
- GB/T 7095.4-2008漆包銅扁繞組線第4部分:180級聚酯亞胺漆包銅扁線
- 《中藥竹罐治療頸椎病的應(yīng)用進展綜述【3000字論文】》
- GA/T 1567-2019城市道路交通隔離欄設(shè)置指南
- 第六章革命軍隊建設(shè)和軍事戰(zhàn)略的理論
- 年度取用水計劃申請表
- 二年級生命安全教育7《攀爬高處有危險》課件
- QC080000 有害物質(zhì)過程管理體系要求(HSPM)( 2017版)
- 文網(wǎng)文業(yè)務(wù)發(fā)展報告(XX單位)
- 硬筆書法章法課件
- 養(yǎng)老院老人入院風險告知書4篇
- 智能制造專業(yè)群建設(shè)(智能制造業(yè)專業(yè)技術(shù)學校創(chuàng)業(yè)計劃)課件整理
評論
0/150
提交評論