Capgemini-利用數(shù)字化技術(shù)加速低碳氫和削減成本(英)_第1頁
Capgemini-利用數(shù)字化技術(shù)加速低碳氫和削減成本(英)_第2頁
Capgemini-利用數(shù)字化技術(shù)加速低碳氫和削減成本(英)_第3頁
Capgemini-利用數(shù)字化技術(shù)加速低碳氫和削減成本(英)_第4頁
Capgemini-利用數(shù)字化技術(shù)加速低碳氫和削減成本(英)_第5頁
已閱讀5頁,還剩77頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

Acceleratinglow-carbonhydrogenandcutting

costswithdigital

technology

Digitalleversfor

enhancingand

acceleratingthe

developmentof

low-carbonhydrogen

Deliveringgreatervaluefromyour

low-carbonhydrogenassetsbyusingbetterassetinformationtoimproveinvestmentdecisionsandoperations.

Siemens

Index

ExecutiveSummaryScopeofthispaper

1.SiemensandCapgeminijointapproachforlow-carbonhydrogenasset

1.1OurValueProposition

1.2SiemensandCapgemini,arelevantpartnershipforthedigitalizationofthehydrogenindustry

2.Settingupthescene–definitions,frameworksandprerequisites

2.1Introducingthedigitaltwinforassetintensiveindustries

2.2Integratedengineering

2.3Prerequisitestounleashdigitalpotential

3.Unleashingpotential:Digitalization’sroleincuttingtheLevelizedCostofHydrogen

3.1Unlockingefficiency:Digitalleversforefficientdesignandengineering,fasterconstruction,andassetreplication

3.2Optimizingproduction:enhancingefficiencyfromenergysupplytooperationandmaintenance

3.2.1Energysupplyoperations3.2.2Productionprocesses

3.2.3Maintenance

3.3Enablingtraceability,compliancetargets,andcarbonintensity

3.4ManageefficientlyAssetsportfolio

3.5LCOHcanbereducedbyanestimated9%to12%activatingdigitalleversandassociatedactions

References

4

8

9

10

11

12

13

13

16

22

23

28

28

30

34

37

39

39

41

3

ExecutiveSummary

Despiteadynamictrend,thehydrogenmarketdoesnotprogressasfastasexpected

Thedecarbonizationpotentialoflow-carbonhydrogeninhard-to-abatesectors,coupledwithitscapacitytofacilitateenergytransporttoresource-constrained

regionsatscale,hasgeneratedsignificantenthusiasmwithinthehydrogensectorinrecentyears.However,despitegrowingannouncementsofnewlow-carbonhydrogenprojects–potentiallyreaching38Mtby

2030,ifallannouncedprojectsmaterialize-only4%ofprojectshavereachedthefinalinvestmentdecision

(FID)orconstructionphase,asreportedbythe

InternationalEnergyAgency(IEA).Clearly,wehavenotyetmetourobjectives.

Low-carbonhydrogenstillstrugglestobecomecompetitive

Low-carbonhydrogenremainstooexpensiveandlackscompetitivenesscomparedtocarbon-based

hydrogen.1Thecostrangesfrom6-9€/kg2for

low-carbonhydrogenversus1.5-3€/kgforhydrogenproducedfromnaturalgasreforming(before

subsidies).Thiscostdisparityarisesfromvariousfactorsrelatedtoproduction,infrastructure,and

technologicalrequirements.Transitioningtohydrogen

fromrenewablesisparticularlycostlyduetoexpensiveproductionprocessesandtheadvancedend-use

technologiesinvolved.Establishingthenecessary

infrastructureforhydrogenproduction,storage,anddistributionrequiressubstantialcapitalinvestment,

includingtheconstructionofrenewableenergyplants,electrolyzers,storagefacilities,andtransportation

networks.

Currentlythelow-carbonLevelizedCostofHydrogen(LCOH)producedviaelectrolysisprimarilycomprisespowercosts(representing40%to60%ofthetotal),equipment,engineeringandconstructioncosts(20%to35%)andoperationalcostsof(5%to15%).3The

LCOHishighlyinfluencedbytheloadfactor(includingavailability)whichimpactsproductionvolume,powerconsumption,andcapitalexpenditures(CAPEX)

amortization.

Thehydrogensectorisactivelyseekingleverstomitigatecosts

Asprojectsdevelopersadvanceintoearlyengineeringanddesignstages,assetdevelopersareactively

seekingwaystomitigatecostsandextensiveliteratureoutlinesstrategiestodrivedowncostsandposition

hydrogenasaneffectiveenergytransitionvector.

Whilesomelevershavealreadybeenemployedto

reduceinvestmentcostsinlow-carbonhydrogen,

additionalopportunitiesremainforplayersacrossthevaluechains,especiallyequipmentmanufacturersandassetdevelopers(seefigure1).

Systemdesignandengineering

Standardization

Laborcosts

Systemdesign

optimizationsolutions

SimulationenergyandH2lows(HMS,designtwin)

Developingautomationandvirtualcommissioning

GenerativeAI

ProcurementandConstruction

StorageTechnologies

Electrolyzerstechnologies

Modularization

Laborcosts

Constructiontwin

Dataanalytice

OperationsandMaintenance

Equipments’eiciency

ConnectedWorker

Operationstwin

Maintenancetwin

DigitalleversimpactCAPEX,electricitycostsandotherOPEXaswellasthevolumeofproduction

Electricitysupplycost

FrameworksforPPAcontracts

Flexibilitytechnologies

(Incl.BESS)

CapacitySizingOptimization(incl.RES,BESS)

Predectiveanalyticsforpowersupplystrategy

Digitallevers

Otherlevers

Figure1-LCOHreductionlevers4

4CapgeminixSiemens

5

Whydigitalizationwillplayapivotalrole

Asassetmanagersembracethedigitalage,creating“digitalnative”assetsbecomescrucial.ThisapproachensuresthecomprehensiveavailabilityofoperationalandassetdataforinformeddecisionmakingthroughDigitalAssetManagement.Bystrategicallyfocusing

onkeydecisionswithinassetprocessesand

transformingdataintoactionableinsights,assetmanagerscandeliversignificantbusinessvalue.

Digitalizationwillplayapivotalroleinenhancingtheinvestmentcaseforlow-carbonhydrogenprojectsbyoptimizingthedesign,operationsandmanagementofproductionassets5,asperthefollowingkeyfacts:

?Greenfieldassets:giventhatthelow-carbon

hydrogensectorisstillinitsearlystages,greenfieldprojectsofferasignificantopportunitytodevelopdigitalnativeproductionassetsandleverage

digitalizationevenpriortothecommencementofconstruction.Plantsarebeingbuiltforthefirsttimeandadigitaltwinoftheplantisgeneratedasa

by-productoftheengineeringprocesswithoutadditionaleffort.

?Scale-up:mostoftheplantsandassetscanactasablueprinttobereplicatedlater.

?Securingfinancing:adigitaltwincapableto

demonstratethevalidityoftheengineering,whichcanalsopredicttheeffectivenessoftherunningplantenablethesuccessfulclosingoffundraisingactivity.

?Respectingprojecttimeline:thesimulation

opportunitiesofferedbydigitaltoolsenabletoanticipate,avoiderrorsthatwouldoccurina

first-of-a-kindproject,andprepareforthestartofoperationsatanearlystage,-eventotrain

operators,viavirtualtrainings.

?Innovativefirstofakindplants:beingableto

simulatebeforeinvestinginthefinalconstructionbringsahugeadvantage.

?Newplayersandmaturityofthemarketplayers’roles:similarly,adigitalplantcanhelpovercomelackofexperiencefromnewincumbents.

?Manysimilarbutcomplexpackageunitsandcomponents,wheredigitaltoolsfacilitatethecomprehensiveintegrationofamodularsetup.

1.Forhydrogenproductiontobeconsideredlow-carbon,itmustcomeundertheEU’sproposedemissionsthresholdof3.38kgCO2e/kgH2,whichis70%lowerthanthatofthe

predefinedfossilfuelcomparator,includingtransportandothernonproductionemissions.IntheUS,thecorrespondingcarbonintensityvaluetoqualifyforhydrogenproductiontaxcreditsundertheIRAis4.0kgCO2e/kgH2.

2.Low-carbonhydrogenproducedwithelectrolysis.

3.Thesefiguresvaryaccordingtoprojects’configuration,buttheyrepresenttheorderofmagnitude.

4.PPA:PowerPurchaseAgreement;RES:RenewableEnergyStorage;BESS:BatteryEnergyStorageSystem

5.Thehydrogenproductionassetisdefinedbytheelectrolysisunitandeverythingthatsurroundsit,toenabletheultimateproductionoflow-carbonhydrogen.

KeyeconomicbenefitsfromdigitaltoolsovertheLCOH

DigitaltoolscanbringasignificantimpactinreducingtheLCOHthroughreducingthedevelopmentcostsofaproject,throughmoreeffectiveengineeringand

easierreplicabilityofsimilarprocessesand

components,andtheoperatingcoststhroughtheoptimizeddesignandclosecontrolofrunning

parametersinterfacedwiththedigitaltwindata.

Ouranalysisshowswithaconcreteexampleareductionbetween9%and12%oftheLCOHoverall,applyingthedifferentdigitalleversonareferencescenario.

ActivatingdigitalleversreducetheLCOHby~10%

LCOHinthe

reference

scenario

ImpactonCAPEX

ImpactonotherOPEX

Impactonenergy

costs

Volumee?ect*

LCOHwithdigitallevers

CAPEX

OtherOPEX

Electricitycosts

-4%to-5%

?Systemsdesignoptimization

solutions,mainlyprojecttwin

?GenerativeAI

~-1

?AssetO&Mtwin

(Operationstwinandmaintenancetwin)Connectedworker

-2%to-3%

?Microgridcontrolsolutions,

?BaseLoad

ManagementSystems,

?Energy

managementsystems

?Hydrogen

managementsystem

?Predictiveanalytics

-2%to-3%

?Energyeiciencysolution

?AssestO&Mtwin

?Anomalies

detectionsolutions

?Hydrogen

Managementsystem

*duetoadditionalproductionrelatedtoavailabilityand

e?ciency

CAPEX

OtherOPEX

Electricitycosts

Figure2-ShareofOPEXandCAPEXcostsintheLCOHofa100MWalkalineelectrolysis

installationandpotentialreductionthroughdigitalsolutions.

Especially,this100MWelectrolyzerplant,running8000hoursayear,canreducetheyearlyenergybillby500k€ormorepereachpercentofoptimizationprovidedbythedigitaltwin.Theamountofpotentialcumulatedsavingsalongtheplantlifetimeshouldjustifyhavingdigitaltwinasatier1priorityinanyprojectinthisdomain.

Youwillfindassumptions,furtherdetailsandexamplesofSiemensdigitaltoolsrelatedtotheseLCOHoptimizationinsection3.

6CapgeminixSiemens

7

Weanalyzedtherolethatdigitalizationcanplaythroughoutthevaluechain

SiemensandCapgeminihaveanalyzedarangeof

digitalsolutionsandidentifiedspecificleversthatcanreducetheLevelizedCostofHydrogen(LCOH),

enablingcustomerseffectiveandfastadoptionofatailoreddigitaltoolsetspecificallydesignedtomaketheirprojectcompetitiveandfuture-proof.The

followingleversaredesignedtoassistproject

developers,operators,andassetmanagersin

addressingvariouschallengesandrefertoallphasesofaHydrogenProject.

1.Thedesign,engineeringandconstructionphase

–forprojectdevelopersandassetowners

?Designeffectivelythroughproperinput

requirementsprovidedasperOwner-Operator

mandatesandRegulatoryrequirements.

Optimizingassetdesignandengineeringthroughsimulationshelpsavoidingreworkbyenabling

clashdetections,accessibilityconcerns,etc.therebyreducingcostsandtimetoconstruct.

?Buildfasterandreducetimetooperations,

throughoutadata-centricapproach-especially3DComputerAidedDesign(CAD)-accelerating

collaborativeinteractionsbetweendifferent

engineeringdisciplinesinvolvedandstakeholdersespeciallybetweenEngineeringProcurement

Construction(EPC),OriginalEquipmentManufacturers(OEM)andAssetOwners

Operators(AOO)incompliancewithindustry

processandsafetystandardsusingapre-definedtoolsettoensureallengineeringdataisattheend

consistentandavailableforfurtheruseinoperation.

?Capitalize,replicateandscalefasteratlowercosts,leveragingontheknowledgebaseand

lessonslearntfromoneprojecttoanotherenabledbydigitaltwinblueprints.

2.Theoperationsandmaintenancephase–forassetownersandoperators

?Handoverthephysicalassetfromprojectto

operations,withallthedigitalinformation,

documents,procedures,manuals(operatingandmaintenance),3Dmodelsoftheequipmentand

instrumentationsdeployedintheassetalongwithSafetyandRegulatoryclearances.

?Operateefficientlyfromday1,through

accessibleandactivabledata,optimizingprocessparametersbybalancingproductivity,improvingqualityandmaintainingeffectiveenergy

consumptionacrossthevariouspartsoftheplant.Thisinformation/datadigitallyrecordedand

loggedhelpsfuturefleetofassets,both:

–inthecontrolroom,tomonitortheproduction,orchestrateproductionprocesswhilemaximizingthevalue,basedonmarketsprices,contractualcommitmentsandplannings(incl.maintenance)

–ontheshopfloor,toautomateproductionprocesses

andprovidetheworkerswithrelevantinformation(e.g.usingadigitaltwinformaintenance)

?Improveproductioncontinuity,avoid

unexpectedproductionstopsandmaximize

availability.Thekeyroleofmaintenanceteamsisnotonlytomaintainproductioncontinuitybut

alsotomaximizeassetlifethrougheffective

preventivemaintenanceprograms,leverage

predictivemaintenancedigitaltwinsandplanforsparepartswellinadvancetoensurelong-termreliabilityoftheassets.

3.Traceability–fortheentireecosystem:ensuretraceability,especiallycarboncontenttrackingtocomplywithclients’specificationsorregulatoryneeds.

4.Theassetsportfoliomanagement–forassetowners

?Optimizeassetsplanning.

?IntegratenewassetswithexistinglegacyassetslikeO&GorRenewables.Thiswillalsodefinenewfutureassetinvestmentbusinessmodelsand

organizationalstrategieswhichneedstobethoughtthroughandoptimized.

CapgeminiandSiemensstandreadytosupportthetransitiontowardsalow-carboneconomy.

Anyinitiativetargetingtodelivervalueandatimely

achievementofproject’smilestonestoitsinvestors,

shallputthecreationofitsowndigitalroadmap

amongfirstprioritiessincethebeginningofthe

projectdevelopment.SiemensandCapgeminican

effectivelysupporttogetherthesecustomerswitha

combinedapproachofbroadconsultingservices,

best-of-the-classdigitaltools,experiencedandtrainedengineeringresources.Throughtheirinnovative

solutionsandstrategiccollaborations,CapgeminiandSiemensstandreadytosupportthetransitiontowardsalow-carboneconomy.

Thispaperwillthengiveimportantinsightsonhow

CapgeminiandSiemenscanconsultandsupport

owners,operators,EPCcompaniesinachievingtheir

goalsandovercomingthechallengesrelatedtoscaling

upandindustrializinglow-carbonmarkettechnologies.

Scopeofthispaper

ThispaperdelvesintothedigitalleversthatcanreducetheLCOHwhileintroducingthejointvaluepropositionofCapgeminiandSiemens,

showinghowtheDigitalHydrogenplantwithaholisticdigitaltwin

conceptiskeytoreducingtheLCOH.Itcoverscostsinallphasesofahydrogenproject,fromInvestmentDecisions,BasicEngineering,PlantEngineeringandconstructionuptooperations.

Opportunityanalysis&projectlaunch

Feasibilitystudy

Process

engineering

Plant&packageunitengineering

Construction

Packageunitintegration

FAT

Operations

Figure3-Projectstages

Thefocusofthispapercentersonhydrogen

production,particularlyinacontextofelectrolysis,butitrepresentsonlyafractionofthebroaderscopethatSiemensandCapgeminicancollectivelyaddresswithinthehydrogendomain.Theirtechnologicalexpertise

andindustryacumenextendtodistribution,

derivativesproduction,theutilizationofhydrogentodecarbonizingindustry,transportationandtheenergysector.Asacomplementaryassetinhard-to-abate

sectorswhereelectrificationfaceseconomicor

technologicalchallenges,hydrogencanhaveapivotalrole.

Forexample,sustainableaviationfuel,methanol,andammoniaproductioncanleveragelow-carbon

hydrogenwithadvanceddigitalsolutionsoptimizing

conversionprocessestoenhanceefficiency,

sustainability,andmitigatefinancialandtechnicalrisks.

ProductionDistributionUsage

EnergysourceH2production1)Pre-transportationprocessingStorageandtransportationEndsectors

Directusewithlocalhydrogenproduction

Industry

Chemicals/ammoniaPetroleumreinementSteelproduction

Others

Grid

mgmt.

Water

electrolysis

(incl.ramp-upofelectrolyzerproduction)

BlueandgreyGreen(NEW)

CarbonCapture,

UtilizationandStorage

Renewableenergies(e.g.,solar,wind)

Gaspipeline

(e.g.,compressedH2)

Hydrogen

compressionandpuriication

Batterystorage

Liqueiedhydrogen

Trucking

(e.g.,compressedH2,LOHCintanks)

Mobility

Synthetic/e-fuels

(e.g.,foraviation,marine)

Naturalgas

Steam

Methane

Reforming

Local

storage

and

distribution

GreenH2asfuel

(e.g.,fuelcell,ICE,illingstation)

New

Energy

Re-electriication(e.g.,fuelcells,

gasturbineetc.)

Heatinginbuildings

New

Ammonia

asenergycarrier

Shipping

(e.g.,liquid

hydrogen/

ammonia/

methanolvessel)

Coal

Coal

gasiication

Hydrocarbon(Incl.methanoletc.)

Bulkstorage(e.g.,cavern)

H2

Figure4-Hydrogensupplychain:fromenergysourcetohydrogenusage

8CapgeminixSiemens

1.

SiemensandCapgeminijointapproachfor

low-carbonhydrogenassets

1.1Ourvalueproposition

Combiningdeepknowledgeandexperienceinthe

hydrogenindustry,technicalexcellenceandend-to-endindustrialassetdigitalization,weatCapgeminiandSiemensextendourhistoriccollaborationtothehydrogenfield.

Whetheryouareaplantowner,anEPCoraplant

operator,CapgeminiandSiemenscansupportyouinmeetingyourkeychallenges:

Wemanagecomplexitytode-riskyourinvestment

?Weleverageadvancedsimulationtoolsto

helpyounavigateuncertainty,envisionmultiplecomplexscenarios,andmitigatefinancial,

regulatory,andoperationalrisksallatonce.

?Wecapitalizeonourextensivecrossindustryexperiencetoprojectyourindustrialasset

futureperformanceandmakethebestinvestmentdecisions.

Wedeliverinvestmentandoperationalcostreductiontoclosethecompetitivenessgap

?Weemployourdesign,engineering,and

simulationsolutionsinearlyphasestobuild

aplantthatcloselymeetsyourcurrentand

futureneedswhileoptimizingCAPEXandOPEXthroughouttheentireprojectlifecycle.

?Wealignyourindustrialstrategyandproductionsetupwithtailoredenergyprocurement

strategiestooptimizethepriceoflow-carbon

energy,whichremainsamajordriveroftheLCOH.Wesupplyandintegrateenergymanagement

andflexibilitysolutionstoenablethosestrategies.

?Weassistyouinidentifyingprocess

optimizationopportunities,reducingenergyandwaterconsumption.

Weconnectanddigitalizetheentirehydrogen

ecosystemtoacceleratetheadoptionoflow-carbonsolutions

?Ourexpertiseinthehydrogenindustryallowsustoknowestablisheddatastandardsandthemosteffectivemethodsforstructuringandsharing

information.Byadoptingadata-centricapproachandcreatingasinglesourceoftruth,wefacilitate

collaborationacrossthevaluechainandhelpyouaccelerateyourgo-to-marketstrategy.

?Wedeployend-to-endtraceabilitysolutions

thatarerecognizedbyendusersandpublic

authoritiestocertifythecarbonintensityofthehydrogenyouproduce,ensuringitsmarketabilityandprofitability.

?Wecreatedigitaltwinsthataccumulate

knowledgethroughouttheprojectlifecycle.Thesedigitalreplicasfunctionatdifferentstages—

‘a(chǎn)s-designed,’‘a(chǎn)s-built,’and‘a(chǎn)s-operated’—servingasblueprintsforfuturehydrogenprojects.

Wehelpyoudevelopfuture-proof,robustindustrialassetsfromday1

?Weassistyouinbuildingdigital-nativeassetswithatechstackarchitectureenablingdigitalcontinuity.Youwillbereadytocapturethe

valuethatdigitaltechnologiesoffertodayandtomorrow.

?Withouradvanceddesignandengineering

solutions,youareideallypositionedtoscaleup,usingstandardizedproductionelements,optimizingtheircompatibility,andsimulatingtheexpansionorreplicationofyourplantsinthefuture.

?Weensuretheintegrityofyourindustrialassetswithbest-in-classcybersecuritysolutions.

Weempoweroperationteamstomakedata-informedoptimizationdecisionsthatleadtoprofitableresults

?Wepromoteandenableaholisticdecision-

makingapproach,combiningrealtime

processmonitoringdataandlong-termCAPEXconsiderationstosecureyourtargetlevelizedcostofhydrogenandyourprofitmargin.

?Toachievethis,weimplementacomprehensiveportfolioofsolutionsforon-sitemeasurement,dataanalytics,andreal-timemonitoring.

?Wetranslatecontrolroomdecisionsintoaction

byofferingautomationandconnectivitysolutionsforfieldworkers,whilealsoconductingchange

toeffectivelyharnessthefullpotentialofdigitaltools.

10CapgeminixSiemens

1.2SiemensandCapgemini,arelevantpartnershipforthedigitalizationofthe

hydrogenindustry

SiemensandCapgeminicollaborateas

complementarypartnerstofullyleveragedigitaltransformationthroughoutthe

low-carbonhydrogenvaluechain.Siemens,

withitsexpertiseinenergyandchemicals

sectors,offersadvanceddigitalizationand

automationsolutions.Meanwhile,Capgemini,atrustedbusinessandtechnological

transformationpartnerforglobalindustrialleaders,identifieshigh-valueusecases,

definesdigitaltransformationroadmaps

alignedwithindustrialstrategies,implementstechnologicalsolutions,anddriveschange.

11

2.

Settingupthe

scene–definitions,frameworksand

prerequisites

CapgeminiSiemens

13

2.1Introducingthedigitaltwinforassetintensiveindustries

Thedigitaltwinisavirtualrepresentationofthe

currentandalmostfuturephysicalreality,e.g.,ofa

product,aproductionprocess,aplanthavingmultiplecriticalassets(pumps,motorsandrespectivepipelinevalves,etc.),includingtheirbehaviorandhealthstatus.Itbringstogetherdatafromalllifecyclephasesand

fromallfunctionsandlevels,helpingtounderstand,manageandpredicttheperformanceofthe

correspondingprocessorplantandtherebylayingthegroundworkforinformeddatadrivendecisions

throughdatacentricapproach.

Byreplicatingreal-worldplantoperationsinvirtualsimulations,engineersandoperatorscanfine-tunedesigns,identifypotentialissuesearlyon,and

streamlinetheirprocesses.Thisnotonlyreduces

commissioningtimesbutalsoslashescosts,makinghydrogenproductionmoreeconomicallyviable.Thisenablesthereductionincommissioningtimesfromaregulatoryandauditoryperspective,enhances

informationhandovertoOwnerOperatorsteams

therebyslashingrelatedcosts,fastergotomarketin

termsofproductionoutputmakingitmoreeconomicallyviable.

Butwhatexactlyaredigitaltwins?

Adigitaltwinisavirtualreplicaofaphysicalasset,

suchasaproductionplant,thatconsolidatesdata

fromalllifecyclephases.Byharnessingthepowerofsimulationmodelsandprocessengineeringsoftware,engineerscandesignandoptimizeplantlayouts,

createdetailedprocessflowdiagrams,andplan

automationsystemswithprecision.Italsoenables

bestinclassconstructionpracticesbysimulatingclashdetections,constructionworkersafetyand

accessibilityscenariosandfutureO&MactivitiesfortheAOO.

Anothercrucialaspectofdigitaltwinsisthepotentialforscalabilityandinnovation.Withtheabilitytocopy(bynumberingupper“drag-and-Drop”)andrebuild

entirehydrogenplantsvirtually,engineerscanexplorenewdesignconcepts,usingthedigitaltwinofthe

plantasablueprint,toexperimentwithdifferent

configurations,andscaleupproductionseamlessly.ItisalsothinkablethatanelectrolyzerManufacturer

couldusethattomakeaworld-widefleet

managementofanyoftheirdeliveredelectrolyzerstofurtheroptimizeorprovideserviceandsupport.Thisnotonlyacceleratestime-to-marketbutalsolaysthegroundworkforthewidespreadadoptionofgreen

hydrogenproduction

CapgeminiandSiemensseeaspecialmomentumforadoptionofaholisticdigitaltwinsinGreenH2

Productionlandscapethatwillmaintaininformationcontinuitythroughtheassetlifecycle.

2.2Integratedengineering

Theabove-mentionedstepscanberealizedusing

integratedengineeringtointegratedoperation.Thedigitaltwinisasecondaryresultoftheintegrated

engineeringprocess.

Integratedengineeringactuallyreferstoan

approachofaugmentedengineeringwith

automationandsimulation.Thisrequiresusingadefinedall-embracingtoolsetforsimulationandengineering,tomakesureallengineeringdataisconsistentandaccessibleinoneplatform.

Digitaltwinsenableseamlessintegrationintoexistingenergysystems,allowingoperatorstobettermanagefluctuatingenergysuppliesfromrenewablesources.Byaccuratelysimulatingplantoperations,operatorscanoptimizeenergyusage,minimizecosts,and

maximizeoverallsystemflexibility.

6.Therepresentationsareprobabilisticandapproximateanddependsonaccuracyofhistoricalandreal-timedataandanyunknownphenomenoncanalterfuturerealityevenifallhistoricalinformationiscorrect.Inthatsense,digitaltwinisnotatrue–evenifvirtual–representationofa“futurephysicalreality”.

H2processInput

(i.esimulationwithgPROMS)

Input

?Processandmaterialdata

?Designparameters

?Block?owdiagrams

Engineering

P&IDs

EI&C

PAA

?Automationengineering

?Installation

IntegratedinCOMOS

?Processplanningandengineering

?P&IDs

?El&Cengineering

?Parameterization

Output

IntegratedinCOMOS

DCS

(SIMATICPCS7)

xml-interface

ImportBPCMlibraryExportautomationdata

GUI(GraphicalUserInterface)design

3D-Mockup(simple3Dmodel)

(COMOSWalkinside)

Maintenance,RepairandOperationsManagement

PlantSimulation

(SIMIT)

Results

?Dynamicsimulation

templatesinSIMITlinkedwithSIMATICPCS7

?Layoutplanning

?Plantvisialization

?Maintainancescheduling

?Plantmanagement

?3D-Mockupforeach

templateandthewholeplant

?Virtualcommissioning

?Operatortraining

Figure5-IntegratedapproachwithSiemenssolutionsforholisticdataexchangebetweenmodeling,processengineering,simulationandautomation

Integratedengineeringphaseinvolvescomplextaskstoensuresmoothhydrogenproductiondesign

implementation:

?Ensuringdataconsistencyacrossdisciplinesisaprimarychallenge,asinconsistentdatacancauseerrors,delays,andincreasedcosts.

?Thoroughtestingandtrainingareessentialtoreducestartuptimeandcosts.Virtual

commissioningandoperatortrainingspreventoperationalinefficienciesandsafetyincidents.

Aunifieddatabaseforseamlessdataflowimproves

decision-makingandreducesengineeringcycletimes.

Thismakesitpossibletouse

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論